Японский коллайдер SuperKEKB поставил рекорд светимости

В лаборатории KEK (Цукуба, Япония) на электрон-позитронном коллайдере SuperKEKB, в экспериментах на котором принимают активное участие Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский государственный университет (НГУ), был поставлен рекорд светимости – установка достигла параметров 2,40x1034см-2с-1. Светимость, характеризующая эффективность столкновения пучков, – это количество взаимодействий частиц, происходящих в единицу времени. На данный момент полученное значение светимости – самое высокое в мире. Результаты опубликованы на официальном сайте организации.

 
График светимости коллайдера SuperKEKB Иллюстрация KEK
График светимости коллайдера SuperKEKB. Иллюстрация KEK

 

SuperKEKB – электрон-позитронный коллайдер Лаборатории физики высоких энергий (KEK) в Цукубе (Япония). На установке реализуется международный эксперимент Belle II, являющийся продолжением Belle, где впервые, параллельно с экспериментом BaBar в лаборатории SLAC (США), было экспериментально обнаружено нарушение закона сохранения комбинированной четности в распадах B-мезонов. 
 

«В эксперименте Belle II проводится прецизионная проверка современной теории элементарных частиц – Стандартной модели (СМ), а также поиском Новой физики – явлений за пределами СМ, – рассказал главный научный сотрудник ИЯФ СО РАН, участник международного эксперимента Belle II, заведующий лабораторией Междисциплинарного центра физики элементарных частиц и астрофизики НГУ (МЦФЭЧиА НГУ), доктор физико-математических наук Семен Эйдельман. – Увеличение светимости коллайдера, то есть эффективности столкновения пучков частиц, позволит увеличить число зарегистрированных событий, например, рождения и распадов B, D-мезонов и тау-лептонов – как разрешенных СМ, так и процессов, подавленных или запрещенных теорией».

Предыдущий рекорд светимости был достигнут на протон-протонном коллайдере LHC (Large Hadron Collider) в Европейской организации по ядерным исследованиям (CERN) в 2018 г. Значение светимости установки составило 2,14 x 1034см-2с-1. В июне 2020 г. коллайдер SuperKEKB побил существующий рекорд, достигнув 2,40 x 1034см-2с-1. В течение нескольких последующих лет японский коллайдер достигнет своей проектной светимости, которая будет в 40 раз превосходить прежнюю величину, и составит 8 x 1035 см-2 с-1. Достижение 2020 г. стало возможным благодаря реализации на коллайдере SuperKEKB ряда передовых технологий в области ускорителей частиц, которые впервые в мире применены на таком большом ускорителе.

«Увеличение светимости происходит постепенно, сейчас специалисты занимаются настройкой различных систем SuperKEKB, – добавил Семен Эйдельман. – У коллайдера очень много параметров и систем, скажем так, «ручек», которые нужно покрутить, чтобы настроить оптимальный режим столкновения пучков и эффективность этих столкновений. Так, например, в коллайдере реализованы технологии «crab waist» и метод нано-пучков, которые способны повысить светимость установки в сотни раз, и все их нужно откалибровать. Метод «crab waist» был предложен итальянским физиком Панталео Раймонди, а в дальнейшее его развитие заметный вклад внесли физики ИЯФ СО РАН, которые провели множество расчетов и моделирований».

ИЯФ СО РАН внес большой вклад в создание ускорительного комплекса коллайдера SuperKEKB и детектора для экспериментов на новом коллайдере.

«В 2012 г. ИЯФ СО РАН было произведено и поставлено в КЕК 702 вакуумные камеры общей длиной около 1900 м для нового позитронного кольца коллайдера SuperKEKB. Камеры имеют сложный профиль, порты для присоединения вакуумных насосов и специальный блок для измерения положения пучка. Особенностью этих камер является то, что все их элементы изготовлены из высокопрочных алюминиевых сплавов, – рассказал главный научный сотрудник ИЯФ СО РАН, ведущий научный сотрудник МЦФЭЧиА НГУ, доктор физико-математических наук Борис Шварц. – Изготовление этих камер потребовало специальных расчетов и конструирования в КБ ИЯФ, а также освоения новых технологий в экспериментальном производстве ИЯФ. Важную роль в этом сыграл наш большой опыт в разработке и изготовлении ускорителей как для работ в Институте, так и для зарубежных лабораторий. Кроме того, в 2012 году в ИЯФ СО РАН было изготовлены 220 корректирующих магнитов для SuperKEKB».

По словам специалиста, большая работа была выполнена физиками Института и при создании детектора для экспериментов на новом коллайдере. «Группой ИЯФ СО РАН была разработана новая электроника электромагнитного калориметра детектора Belle II, создан необходимый пакет программ, произведена установка и настройка новой электроники. Был также разработан и создан монитор светимости, позволяющий измерять эту важную величину в реальном времени. Таким образом, рекордная светимость, опубликованная в данном сообщении, была измерена прибором, созданным нашими физиками», – пояснил Борис Шварц.

Следует отметить, что в подготовке и проведении эксперимента Belle II принимают активное участие студенты и аспиранты НГУ и ИЯФ СО РАН. «Участие в передовом международном эксперименте дает возможность молодым физикам получить уникальный опыт работы на самом современном оборудовании в составе большой команды физиков и внести свой вклад в получение новых физических результатов на самом передовом рубеже науки», – рассказал главный научный сотрудник ИЯФ СО РАН, заведующий лабораторией НГУ, доктор физико-математических наук Александр Кузьмин.

В международном эксперименте Belle II участвуют примерно 1000 физиков и инженеров из 119 университетов и лабораторий, расположенных в 26 странах и регионах по всему миру. От России, помимо группы из ИЯФ СО РАН и НГУ – самой большой по численности – принимают участие специалисты из Физического института им. П. Н. Лебедева РАН, Национального исследовательского ядерного университета «МИФИ», Национального исследовательского университета «Высшая школа экономики», Московского физико-технического института, а также Института физики высоких энергий им. А. А. Логунова Национального исследовательского центра «Курчатовский институт».