Измерение произведения электронной ширины на удельную вероятность распада в пару мюонов $\psi(2\mathsf{S})$ -мезона

А. М. Сухарев

ИЯФ СО РАН, 27 апреля 2018 г.

Параметры $\psi(2S)$ -мезона

Общая ситуация

- PDG рекомендует выдавать результат в виде $\Gamma_{ee} imes \mathcal{B}_i$
- $\Gamma_{ee} imes \mathcal{B}_i$ требует измерения площади под резонансной кривой
- Большинство результатов по лептонным параметрам $\psi(2S)$ получены BES2 и BES3
 - неправильно учитывали вакуумную поляризацию,
 - выдавали результаты в виде $\Gamma, \Gamma_{\ell\ell}$,
 - использовали лептонную универсальность

Экспериментальные трудности

- наличие каскадного распада $\psi(2\mathsf{S}) o J/\psi\, X o \ell^+\ell^-\, X$ и других фонов
- в электронном канале малость эффекта на фоне нерезонансного рассеяния

Параметры $\psi(2S)$ -мезона PDG 2017

$$\psi(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$$

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the integrated cross section into channel(i) in the e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(i)$ or the branching ratio $\Gamma(i)$ /total.

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma$	total			$\Gamma_1\Gamma_6/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT
2.233±0.015±0.042	$^{ m 1}$ ANASHIN	12	KEDR	$e^+e^-\to hadrons$
ullet $ullet$ We do not use the follow	ing data for average	es, fits,	limits, e	etc. • • •
2.2 ±0.4	ABRAMS	75	MRK1	e^+e^-
¹ ANASHIN 12 reports the v uncertainty is due to assump continuum. We combined t	tions on the interfer	ence be	tween th	
$\Gamma(\tau^+\tau^-) \times \Gamma(e^+e^-)/\Gamma_{\rm to}$	otal			$\Gamma_8\Gamma_6/\Gamma$
VALUE (eV) EVTS	DOCUMENT ID	TECN	сом.	MENT
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •
9.0±2.6 79 1	ANASHIN 07	KED	R e+e	$\tau^- \rightarrow \psi(2S) \rightarrow \tau^+ \tau^-$
1 Using $\psi(2S)$ total width of	337 ± 13 keV. Syst	ematic	errors n	ot evaluated.

Теоретическое сечение

$$e^+e^-
ightarrow \mu^+\mu^-$$
, $e^+e^-
ightarrow$ адроны

Азимов и др., 1975 + Кураев, Фадин, 1985 + ...

$$\begin{split} \sigma_{\mathrm{X}}(W) &= \frac{4\pi}{W^2} (1 + \delta_{sf}) \Bigg(\frac{3\Gamma_{\mathrm{ee}}\Gamma_{\mathrm{X}}}{M\Gamma} \mathrm{Im}\,\mathcal{F} - \frac{2\alpha\sqrt{R\Gamma_{\mathrm{ee}}\Gamma_{\mathrm{X}}}}{M} \lambda \mathrm{Re}\,\frac{\mathcal{F}}{1 - \Pi_0} \Bigg) + \sigma_{\mathrm{K}\ni\mathrm{J}} \\ &= \sigma_{\mathrm{pe}3} + \sigma_{\mathrm{ин}\mathrm{T}} + \sigma_{\mathrm{подл}}, \\ \delta_{sf} &= \frac{3}{4}\beta + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72} \right), L = \ln\frac{W^2}{m_{\mathrm{e}}^2} \\ \mathcal{F} &= \frac{\pi\beta}{\sin\pi\beta} \left(\frac{M/2}{-W + M - i\Gamma/2} \right)^{(1-\beta)}, \beta = \frac{4\alpha}{\pi} \left(\ln\frac{W}{m_{\mathrm{e}}} - \frac{1}{2} \right) \end{split}$$

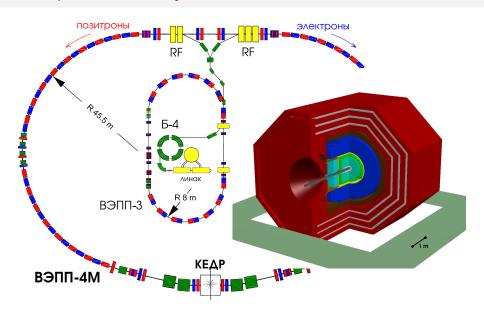
Для $e^+e^- o \mu^+\mu^ \Gamma_{\rm x} = \Gamma_{\mu\mu}$, R=1, $\lambda=1$.

Угловое распределение $d\sigma_{\mathsf{рез},\mathsf{инт}} \sim (1+\cos^2\theta)d\Omega$.

Теоретическое сечение

 $e^+e^-
ightarrow e^+e^-$, энергетический разброс

Электронное сечение имеет другую угловую зависимость:


$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_{\text{KЭД}}}{d\Omega} + \frac{1+\delta_{sf}}{W^2} \left(\frac{9\Gamma_{ee}^2}{4M\Gamma} \text{Im} \, \mathcal{F}(1+\cos^2\theta) \right. \\ &- \frac{3\alpha\Gamma_{ee}}{2M} \text{Re} \, \mathcal{F}\left(\frac{1+\cos^2\theta}{1-\Pi_0(s)} - \frac{(1+\cos\theta)^2}{(1-\cos\theta)} \frac{1}{1-\Pi_0(t)} \right) \right) \\ &= \frac{d}{d\Omega} \big((\sigma_{\text{рез}} + \sigma_{\text{s-инт}}) + \sigma_{\text{t-инт}} + \sigma_{\text{подл}} \big), \\ s &= W^2, t \approx -\frac{s}{2} (1-\cos\theta), \end{split}$$

Учёт энергетического разброса ускорителя — свёртка теоретического сечения с гауссовым распределением.

Точность теоретических формул оценивается в 0.1%.

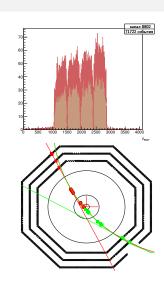
А. М. Сухарев

Экспериментальная установка

Мюонная система детектора КЕДР Устройство

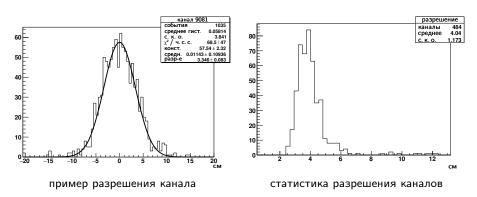
- самогасящийся стримерный режим
- газовая смесь $Ar + CO_2 + н$ -пентан (7%)
- продольная координата по разности времён прихода сигнала

- три слоя,
 толщина железа 23 см
- 544 канала, 2208 трубок, 88 блоков (7 типов)
- ullet телесный угол $\sim 0.7 imes 4\pi$


блок мюонной системы

• + (c 2015 г.) торцевая система (7 блоков, 56 каналов)

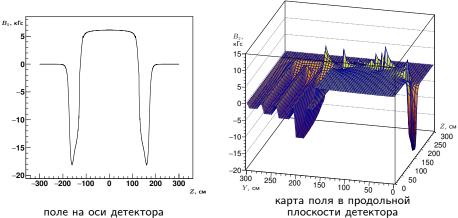
Мюонная система детектора КЕДР


Вклад автора

- Калибровка (генераторная и по космике)
- Моделирование и реконструкция
- Позаходное уточнение калибровок и статусов и определение эффективности и разрешения
- Вспомогательные программы (контроль продувки, проверка ТП-плат и др.)
- Торцевая система

Мюонная система детектора КЕДР

Достигнутые параметры системы



- Продольное координатное разрешение на уровне многократного рассеяния
- Нормальная эффективность $\sim 99\%$

системы в одном из заходов

Карты магнитного поля в детекторе КЕДР

Расчёт выполнен в программе Mermaid3d для нескольких величин поля и для различных конфигураций ярма магнита.

Карты можно использовать при моделировании и обработке экспериментальных данных.

Набор статистики в области $\psi(2S)$ -резонанса

набор	время	интегральная светимость, н 6^{-1}	σ_W , МэВ
сканирование 0	конец 2004		1.08
пик/подложка 1	начало 2005	358	1.08
пик/подложка 2	осень 2005	222	0.99
сканирование 1	весна 2006	255	0.99
пик/подложка 3	весна 2006	631	0.99
пик/подложка 4	осень 2006	701	0.99
пик/подложка 5	осень 2007	1081	1.01
сканирование 2	конец 2007	967	1.01
сканирование 3	лето 2010	379	1.00
сканирование 4	конец 2010	2005	0.98

интеграл светимости $\sim 6600~{ m H}{ m G}^{-1}$

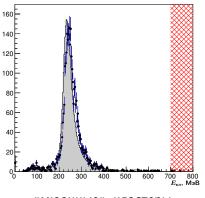
- существенно менялось состояние детектора
- менялись условия набора (триггер, σ_W , измерение энергии...)

Триггер

Первичный:

до 2007 г. — SC2*ABG + LKR, затем SC2 + LKR Эффективность аргумента SC2 проверялась по специально отобранным космическим событиям и для баррельных счётчиков составляла $99.3 \div 99.9\%$.

Вторичный:

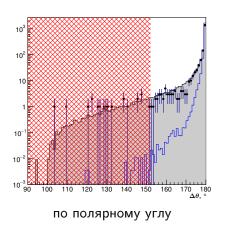

менялся в соответствии с состоянием детектора Эффективность вторичного триггера проверялась по событиям каскадного распада $\psi(2\mathsf{S}) \to J/\psi \pi^0 \pi^0$ и составляла $99.0 \div 99.9\%$ для $\mu^+\mu^-$, $98.0 \div 99.9\%$ для e^+e^- .

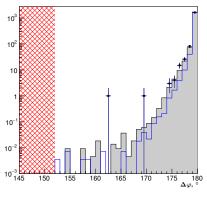
Отбор $\mu^{+}\mu^{-}$

- В событии восстановлено ровно два трека, и они имеют противоположные заряды.
- 2 Оба трека из одной точки в области места встречи пучков.
- 3 Оба уровня программного триггера дали положительное решение.
- Энерговыделение в калориметре для каждого трека не превышает 700 МэВ.
- В калориметре имеется не более одного лишнего кластера, и его энергия не должна превышать 160 МэВ.
- 6 Оба трека имеют подтверждение в мюонной системе.
- 7 Расколлинеарность треков по полярным и азимутальным углам θ и φ не более 28° .
- f 8 Диапазон полярных углов треков $50^\circ < heta < 130^\circ$ (определяется размерами мюонной системы).
- 9 Условие на времена пролёта частиц для подавления космики.

Отбор $\mu^+\mu^-$

Распределения по энерговыделению


«мюонные» кластеры

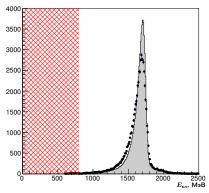


«лишние» кластеры

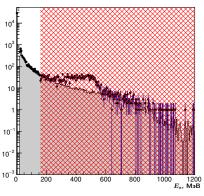
Отбор $\mu^+\mu^-$

Распределения по разности углов треков

по азимутальному углу

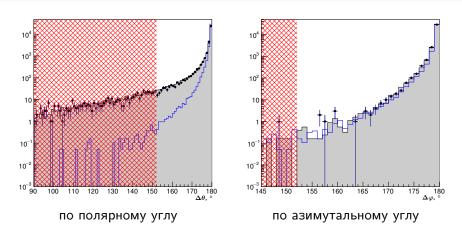

синяя гистограмма — моделирование $\psi(2\mathsf{S}) \to \mu^+\mu^-$, серая — моделирование нерезонансного $e^+e^- \to \mu^+\mu^-$

Отбор *e*⁺*e*⁻


- В событии восстановлено ровно два трека, и они имеют противоположные заряды.
- Оба трека выходят из одной точки в области места встречи пучков.
- 3 Оба уровня программного триггера дали положительное решение.
- Энерговыделение в калориметре для каждого трека не меньше 800 МэВ.
- В калориметре имеется не более одного лишнего кластера, и его энергия не должна превышать 160 МэВ.
- **6** Расколлинеарность треков по полярным и азимутальным углам θ и φ не более 28° .
- **7** Диапазон полярных углов треков $45^{\circ} < \theta < 135^{\circ}$ (определяется калориметром).

Отбор e^+e^-

Распределения по энерговыделению


«электронные» кластеры

«лишние» кластеры

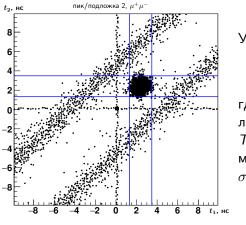
Отбор e^+e^-

Распределения по разности углов треков

синяя гистограмма — моделирование $\psi(2\mathsf{S}) \to e^+e^-$, серая — моделирование нерезонансного $e^+e^- \to e^+e^-$

Моделирование

Моделировались:


- $\psi(2S) \rightarrow \mu^+\mu^-$, $\psi(2S) \rightarrow e^+e^-$ (+ PHOTOS)
- нерезонансные $e^+e^- o \mu^+\mu^-$, $e^+e^- o e^+e^-$ генератор BHWIDE (MCGPJ, BABAYAGA для проверки)
- интерференция в e^+e^- -канале специальное угловое распределение
- фоновые процессы (JETSET + PHOTOS, ...):
 - $\psi(2S) \rightarrow J/\psi + X$
 - $\psi(2S) \rightarrow \gamma \chi$
 - ..

В моделирование закладывались сдвиги калориметра.

При обработке учитывалось актуальное состояние детектора, и накладывались события случайного запуска.

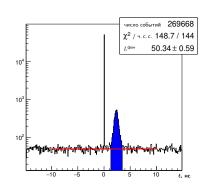
Эффективность измерения времени пролёта

Потеря времён и условие отбора

Условие на времена:

$$|t \times \sin \theta - T_0| \leqslant 3\sigma_{\scriptscriptstyle \mathsf{B\Pi C}},$$

где t и θ — время пролёта и полярный угол треков,


 $T_0=2.4$ нс — время пролёта для мюонов от распада $\psi(2\mathsf{S})$,

$$\sigma_{ exttt{впс}}=0.36$$
 нс

неэффективность достигает 20%

Эффективность измерения времени пролёта

Основной вариант

Для одного трека:
$$arepsilon_{+/-} = \frac{N^{\flat}}{N_{-/+} - N^{\Phi}_{-/+}}$$
,

 $N^{-}/I = N^{-}/I = N^{$

Полная эффективность $\varepsilon_{\rm Bnc} = \varepsilon_+ \varepsilon_-$ Статистическая точность лучше + работает в подложке \Rightarrow основной метод.

Эффективность измерения времени пролёта

Результаты

Набор данных	$arepsilon_{ extsf{BI}}$	_{1C} , %
Паоор данных	по основному методу	по каскадному распаду
пик/подложка 1	$85.9 \pm 0.7 \pm 0.9$	84.5 ± 3.5
пик/подложка 2	$83.6 \pm 1.0 \pm 1.1$	78.5 ± 4.8
сканирование 1	$84.2 \pm 1.0 \pm 0.5$	81.8 ± 5.4
пик/подложка 3	$81.5 \pm 0.6 \pm 0.5$	81.1 ± 2.7
пик/подложка 4	$79.8 \pm 0.5 \pm 0.4$	78.3 ± 2.3
пик/подложка 5	$86.7 \pm 0.4 \pm 0.4$	85.7 ± 2.3
сканирование 2	$82.9 \pm 0.5 \pm 1.1$	85.7 ± 3.0
сканирование 3	$80.4 \pm 0.8 \pm 0.9$	82.1 ± 4.0
сканирование 4	$81.7 \pm 0.4 \pm 0.9$	83.6 ± 1.9

В систематическую погрешность включены 0.3%, учитывающие возможную корреляцию ε_+ и ε_-

Процедура подгонки

Для определения светимости события e^+e^- разбивались на бины по среднему углу $\theta=(\pi-\theta_++\theta_-)/2$:

$$\begin{split} & N_{e^{+}e^{-}}^{\text{ожид}}(W_{i},\theta_{j}) = \mathcal{L}_{i} \cdot \sigma_{ee}^{\text{ожид}}(W_{i},\theta_{j}), \\ & \sigma_{ee}^{\text{ожид}}(W_{i},\theta_{j}) = (\sigma_{\text{pes}}^{\text{теор}}(W_{i},\theta_{j}) + \sigma_{\text{s-инт}}^{\text{теоp}}(W_{i},\theta_{j})) \cdot \varepsilon_{\text{pes}}(\theta_{j})|_{i} \\ & + \sigma_{\text{t-инт}}^{\text{теоp}}(W_{i},\theta_{j}) \cdot \varepsilon_{\text{инт}}(\theta_{j})|_{i} + \sigma_{\text{подл}}^{\text{мод}}(W_{i},\theta_{j}) \cdot \varepsilon_{\text{подл}}(\theta_{j})|_{i} + \sigma_{\text{фон}}^{\text{ожид}}(W_{i},\theta_{j}) \end{split}$$

У мюонных событий разбиения по θ нет:

$$\begin{split} & N_{\mu^+\mu^-}^{\text{ожид}}(W_i) = \mathcal{L}_i \cdot \sigma_{\mu\mu}^{\text{ожид}}(W_i), \\ & \sigma_{\mu\mu}^{\text{ожид}}(W_i) = \left. \varepsilon_{\text{впс}}^{\text{набл}} \right|_i \times \left(\left(\sigma_{\text{рез}}^{\text{теор}}(W_i) + \sigma_{\text{инт}}^{\text{теор}}(W_i) \right) \cdot \varepsilon_{\text{рез}} \right|_i \\ & + \sigma_{\text{подл}}^{\text{мод}} \cdot \varepsilon_{\text{подл}} \right|_i + \sigma_{\text{фон}}^{\text{ожид}}(W_i) \right) \end{split}$$

Эффективности определяются на моделировании, кроме $\varepsilon_{\rm впc}$. Свободными параметрами подгонки являлись $\Gamma_{\rm ee} imes \mathcal{B}_{\mu\mu}$ и $\Gamma_{\rm ee} imes \mathcal{B}_{\rm ee}$.

Усреднение результатов и погрешностей отдельных измерений

Наборы данных, использованные в данной работе, рассматриваются как практически независимые эксперименты, имеющие независимые статистические ошибки, но частично скоррелированные систематические ошибки.

Процедура усреднения:

$$\begin{split} \langle \Gamma_{\text{ee}} \times \mathcal{B}_{\mu\mu} \rangle &= \sum w_i \times (\Gamma_{\text{ee}} \times \mathcal{B}_{\mu\mu})_i, \\ \sigma_{\text{ctat}}^2 &= \sum w_i^2 \times \sigma_{\text{ctat},i}^2 \\ \sigma_{\text{cuct}}^2 &= \sum w_i^2 \times (\sigma_{\text{cuct},i}^2 - \sigma_{\text{cuct},0}^2) + \sigma_{\text{cuct},0}^2 \\ w_i &\sim 1/(\sigma_{\text{ctat},i}^2 + \sigma_{\text{cuct},i}^2 - \sigma_{\text{cuct},0}^2), \end{split}$$

Сводная таблица систематических ошибок

И	сточник систематической неопределённости	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4	σ_{cuct}^{kopp}
1	энергетический разброс	1.9	2.7	1.1	2.9	2.2	2.6	1.1	2.9	1.7	0
2	табличное значение $M_{\psi(2S)}$, $\Gamma_{\psi(2S)}$	0.7	0.6	0.1	0.3	0.7	0.7	0.5	0.2	0.9	0.1
3	измерение энергии	3.1	0.6	< 0.1	1.7	0.3	0.5	0.2	3.8	2.7	< 0.1
4	моделирование e^+e^- -рассеяния	1.4	1.4	2.2	1.7	1.1	2.1	1.6	2.6	0.9	0.9
5	моделирование $\mu^+\mu^-$ -рассеяния	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.2
6	условия на коллинеарность	0.8	2.8	2.4	0.8	2.1	1.4	1.5	5.4	1.6	0.8
7	угловой диапазон для e^+e^-	1.1	2.0	1.8	1.0	1.0	1.2	1.6	2.1	1.3	1.0
8	восстановление заряда	0.6	0.3	0.8	0.6	0.2	1.9	0.1	1.0	0.4	0.1
9	асимметрия детектора	0.9	0.2	0.5	0.9	0.1	0.1	0.2	0.4	0.2	0.1
10	условие на лишнее энерговыделение	1.4	1.2	2.2	0.5	1.0	0.6	2.2	1.7	1.6	0.5
11	условие на мюонную систему	2.5	2.7	2.2	0.6	0.3	0.5	0.6	0.7	< 0.1	0
12	пороги ABG	0.3	0.7	0.5	0.1	0.3	_	_	_	_	0.1
13	калориметрические пороги триггера	0.1	0.1	0.2	0.1	< 0.1	0.4	0.5	0.4	0.2	< 0.1
14	эффект случайных совпадений	0.2	0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	0.9	0.3	< 0.1
15	фотоны в конечном состоянии	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3
16	разбиение событий e^+e^- по $ heta$	0.6	0.2	0.6	0.5	0.5	0.3	0.1	0.4	0.3	0.1
17	эффективность измерения времени пролёта	1.9	2.5	1.5	1.2	0.8	0.9	2.8	2.7	2.3	0.8
18	эффективность триггера	0.9	< 0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	< 0.1
19	точность теории	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	квадратичная сумма	5.7	6.2	5.4	4.4	3.7	4.5	4.7	8.7	4.9	1.9

приведены относительные погрешности в %

Энергетический разброс ускорителя

Энергетический разброс ускорителя измерялся в сканированиях по процессу $\psi(2\mathsf{S}) \to \mathsf{адроны}$. Для наборов «пик/подложка» бралось ближайшее сканирование.

Точность измерения $\sigma_{\scriptscriptstyle W}$ в сканированиях: 2%

Дополнительная погрешность для наборов «пик/подложка»: $\leqslant 2\%$

Итоговый вклад в систематическую погрешность (%):

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
1.9	2.7	1.1	2.9	2.2	2.6	1.1	2.9	1.7

Скоррелированная часть систематической погрешности $\sigma_{\mathsf{сист}}^{\mathsf{корp}} = 0$

Точность знания параметров резонанса

Масса и ширина $\psi(2\mathsf{S})$ -мезона варьировались в пределах точности, с которой они известны.

 $M_{\psi(2\mathsf{S})}$ — измерение КЕДР, $\Gamma_{\psi(2\mathsf{S})}$ — PDG.

Изменение результата при варьировании параметров резонанса (%):

параметр	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
масса	0.6	0.5	0.1	0.2	0.6	0.6	0.4	0.2	0.7
ширина	0.4	0.3	< 0.1	0.2	0.3	0.4	0.3	< 0.1	0.5

Оценка $\sigma_{ extsf{cuct}}^{ extsf{kopp}} = 0.1\%$ по минимальной погрешности.

Измерение энергии

Для вычисления сечения $\sigma_i = \sigma(\langle E_{\sf 3ax} \rangle|_i)$ используется средняя по заходам энергия в точке $\langle E_{\sf 3ax} \rangle|_i$.

Оценка систематики — по варианту с усреднением сечений: $\sigma_i = \langle \sigma(E_{\sf sax})
angle |_i.$

Изменение результата (%):

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
3.1	0.6	< 0.1	1.7	0.3	0.5	0.2	3.8	2.7

В качестве оценки $\sigma_{\text{сист}}^{\text{корр}}$ взято минимальное значение неопределённости.

Моделирование нерезонансных процессов

 e^+e^- : замена генератора BHWIDE на MCGPJ/BABAYAGA.

$$\mu^+\mu^-$$
: $\sigma_{\mu\mu}^{\rm подл}(E=1843~{\rm M}{
m 9B})=8.328~{\rm H}{
m 6}~({\rm MCGPJ})$ стат. точность $pprox 0.1\%$, $\sigma_{\rm cuct}^{
m kopp}\lesssim 0.2\%$.

Влияние на результат (%):

процесс	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
e^+e^-	1.4	1.4	2.2	1.7	1.1	2.1	1.6	2.6	0.9
$\mu^+\mu^-$	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3

Условия на коллинеарность треков

Варьировались условия на треки:

- $oldsymbol{1}$ допустимая расколлинеарность $28^{\circ}
 ightarrow 10^{\circ}$
- 2 ограничение heta-диапазона только для одного трека

Изменения результата (%):

	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
1	0.8	2.8	2.2	0.8	2.1	0.7	0.1	5.4	1.6
2	0.7	1.8	2.4	0.6	1.1	1.4	1.5	0.8	0.9

Вклад в систематику для каждого набора — максимальное из двух.

$$\sigma_{\mathsf{cuct}}^{\mathsf{kopp}} = 0.4\%.$$

Ошибки при определении зарядов треков

Влияние на результат возможных ошибок при определении зарядов треков оценивалось путём сравнения специальных вариантов реконструкции треков, в одном из которых допускалась неправильное восстановление одного или обоих зарядов.

Погрешность от неправильного определения зарядов (%):

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
0.6	0.3	0.8	0.6	0.2	1.9	0.1	1.0	0.4

 $\sigma_{\text{cuct}}^{\text{kopp}} = 0.1\%.$

Неопределённости, связанные с измерением полярного угла

Минимальный полярный угол $\theta_{\rm мин}$ для e^+e^- варьировался в пределах от -5° до $+5^\circ$ от значения по умолчанию 45° . ($\theta_{\rm Makc}=180^\circ-\theta_{\rm Muh}$)

Изменение результатов при вариациях θ_{Muh} :

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
1.1	2.0	1.8	0.9	1.0	1.2	1.6	2.1	1.3

$$\sigma_{\text{cuct}}^{\text{kopp}} = 0.9\%$$
.

При изменении числа бинов по θ для e^+e^- -данных от 5 до 20 (по умолчанию 4) результаты менялись в пределах $0.1 \div 0.6\%$. $\sigma_{\rm cuct}^{\rm kopp} = 0.1\%$.

Вклад асимметрии — по разнице результатов с θ_- и θ_+ .

Условие на лишнее энерговыделение

Изменение результата при варьировании условия на количество кластеров, не привязанных к трекам, и энерговыделение в них (%):

	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
$N_{\kappa} < 2$, $E_{\kappa} < 90$ МэВ	1.4	0.6	0.2	0.2	0.6	0.6	2.2	0.5	1.3
$N_{\rm K} < 2$, $E_{\rm K} < 200$ МэВ	0.4	0.7	1.0	0.2	< 0.1	0.1	0.5	1.7	0.7
$N_{\kappa} <$ 3, $E_{\kappa} <$ 160 МэВ	1.4	1.2	2.2	0.5	< 0.1	< 0.1	0.1	0.3	0.4
$N_{\kappa} <$ 3, $E_{\kappa} <$ 90 МэВ	0.6	0.5	1.8	0.3	1.0	0.5	2.2	0.9	1.6

(по умолчанию число кластеров $N_{\rm k} < 2$, $E_{\rm k} < 160$ МэВ)

Величины систематических погрешностей определяются по максимальному изменению результата в вариантах условий.

$$\sigma_{\text{CMCT}}^{\text{KOPP}} = 0.7\%$$
.

Влияние аргумента ABG — ранее набора «пик/подложка 5»

- потеря событий за счёт шумов ABG эффект менее 0.1%
- 2 различие эксперимента и моделирования из-за неточного знания порогов триггера для аргумента ABG. Величина порога составляла 35 МэВ с неопределённостью $\sim 50\%$.

Изменение результата в зависимости от условий ABG (%):

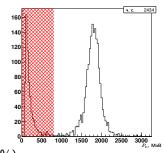
	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4
порог 25 МэВ	0.06	0.72	0.32	0.11	0.27
порог 45 МэВ	0.26	0.38	0.50	0.10	0.08

Величины систематических погрешностей определяются по максимальному изменению результата.

$$\sigma_{\text{CMCT}}^{\text{KOPP}} = 0.1\%.$$

Калориметрические пороги триггера

Для оценки неопределённости пороги калориметрических аргументов при вычислении программного триггера увеличивались на 25%.


Влияние на результат (%):

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
0.08	0.12	0.20	0.12	0.02	0.37	0.55	0.43	0.17

В качестве оценки $\sigma_{\text{сист}}^{\text{корр}}$ взято минимальное значение неопределённости.

Мюонная система

Подтверждение в мюонной системе для обоих треков \to подтверждение хотя бы для одного трека + условие на импульсы частиц: $\rho_{\mu}^{1,2} > 800 \; \mathrm{M}$ эВ.

Оценка систематики по разнице AND/OR (%):

п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
0.7	1.1	< 0.1	0.4	0.8	1.5	1.1	0.4	1.6

Состояние системы сильно менялось в наборах данных, $\sigma_{\text{сист}}^{\text{корр}}=0.$

Систематические погрешности

Разное

Наложение событий случайного запуска:

	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
эффект	1.7	1.5	1.1	1.2	1.6	1.2	0.3	0.1	0.7
неопр-ть	0.2	0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	0.9	0.3

Учёт излучения фотонов в конечном состоянии:

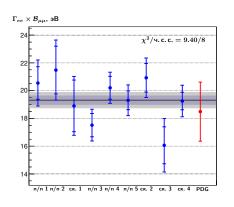
п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4
3.6	3.6	3.9	3.8	3.7	3.7	3.6	3.9	3.5

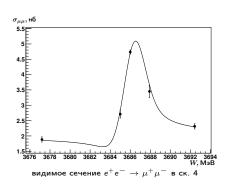
Систематическая неопределённость, связанная с применением PHOTOS, оценивается в 10% от его вклада: \sim 0.4%.

Сводная таблица систематических ошибок (%)

	SRC	п/п 1	п/п 2	ск. 1	п/п 3	п/п 4	п/п 5	ск. 2	ск. 3	ск. 4	σ_{cuct}^{kopp}
1	σ_W	1.9	2.7	1.1	2.9	2.2	2.6	1.1	2.9	1.7	0
2	М, Г	0.7	0.6	0.1	0.3	0.7	0.7	0.5	0.2	0.9	0.1
3	Е	3.1	0.6	< 0.1	1.7	0.3	0.5	0.2	3.8	2.7	< 0.1
4	SimE	1.4	1.4	2.2	1.7	1.1	2.1	1.6	2.6	0.9	0.9
5	SimM	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.2
6	COLL	0.8	2.8	2.4	0.8	2.1	1.4	1.5	5.4	1.6	0.8
7	TLIM	1.1	2.0	1.8	1.0	1.0	1.2	1.6	2.1	1.3	1.0
8	CHR	0.6	0.3	0.8	0.6	0.2	1.9	0.1	1.0	0.4	0.1
9	ASYM	0.9	0.2	0.5	0.9	0.1	0.1	0.2	0.4	0.2	0.1
10	EO	1.4	1.2	2.2	0.5	1.0	0.6	2.2	1.7	1.6	0.5
11	MU	2.5	2.7	2.2	0.6	0.3	0.5	0.6	0.7	< 0.1	0
12	ABG	0.3	0.7	0.5	0.1	0.3	_	_	1	1	0.1
13	THR	0.1	0.1	0.2	0.1	< 0.1	0.4	0.5	0.4	0.2	< 0.1
14	RND	0.2	0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	0.9	0.3	< 0.1
15	PHO	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3
16	BINS	0.6	0.2	0.6	0.5	0.5	0.3	0.1	0.4	0.3	0.1
17	TOF	1.9	2.5	1.5	1.2	0.8	0.9	2.8	2.7	2.3	0.8
18	TRG	0.9	< 0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	< 0.1
19	TH	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	SUM	5.7	6.2	5.4	4.4	3.7	4.5	4.7	8.7	4.9	1.9

Вклад фоновых процессов


	12.0/	0.7	0/
процесс	B, %	ε , %	поправка, %
$J/\psi\pi^+\pi^-$	34.49	$0.02 \div 0.08$	$2.09 \div 8.51$
$J/\psi\pi^0\pi^0$	18.16	$0.01 \div 0.02$	$0.38 \div 0.81$
$\gamma \chi_{c0}(1P)$	9.99	< 0.01	$0.01 \div 0.05$
$\gamma \chi_{c1}(1P)$	9.55	$0.02 \div 0.03$	$0.46 \div 0.80$
$\gamma \chi_{c2}(1P)$	9.11	$0.02 \div 0.03$	$0.43 \div 0.65$
$J/\psi\eta$	3.36	$0.02 \div 0.05$	$0.16 \div 0.45$
e^+e^-	0.79	< 0.01	< 0.01
$\eta_c \gamma$	0.34	< 0.01	< 0.01
$\tau^+\tau^-$	0.31	$0.05 \div 0.08$	$0.05 \div 0.06$
$J/\psi\pi^0$	0.13	$0.09 \div 0.15$	$0.03 \div 0.05$
р <u>ē</u>	0.03	$0.01 \div 0.03$	< 0.01


Вклад многоадронных и двухфотонных процессов незначителен.

Результаты измерений в отдельных наборах

набор	$\Gamma_{ee} imes \mathcal{B}_{\mu\mu}$, эВ	$\sigma_{стат}$, эВ	$\sigma_{сист}$, эВ	χ^2 /ч. с. с.
пик/подложка 1	20.5	1.2	1.2	2.6/6
пик/подложка 2	21.5	1.7	1.3	12.6/6
сканирование 1	18.9	1.9	1.0	27.0/26
пик/подложка 3	17.5	0.8	0.8	2.1/6
пик/подложка 4	20.2	0.8	0.8	6.0/6
пик/подложка 5	19.3	0.7	0.9	12.2/6
сканирование 2	20.9	1.0	1.0	28.4/30
сканирование 3	16.1	1.3	1.4	25.0/18
сканирование 4	19.3	0.6	0.9	20.5/18

Результат

КЕДР:
$$\Gamma_{ee} imes \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5$$
 эВ

«среднемировое»:
$$\Gamma_{ee} imes \mathcal{B}_{\mu\mu} = \langle \Gamma_{ee} \rangle imes \langle \mathcal{B}_{\mu^+\mu^-} \rangle = 18.5 \pm 2.1$$
 эВ

Электронная ширина $\psi(2\mathsf{S})$

С использованием лептонной универсальности:

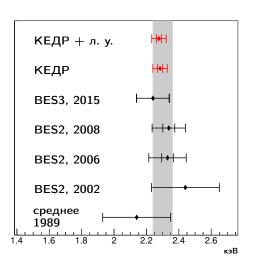
$$\Gamma_{ee} = \Gamma_{ee} imes \mathcal{B}_{\mathsf{адроны}} + \Gamma_{ee} imes \mathcal{B}_{\mu\mu} \cdot 2.39$$

Measurement of main parameters of the $\psi(2S)$ resonance, V. V. Anashin et al, Physics Letters B **711** 280 (2012):

$$\Gamma_{ee} imes \mathcal{B}_{\mathsf{адроны}} = 2.233 \pm 0.015 \pm 0.042$$
 кэВ

КЕДР
$$+$$
 л. у.: $\Gamma_{ee} = 2.279 \pm 0.015 \pm 0.042$ кэВ

С использованием $\Gamma_{ee} \times \mathcal{B}_{ee}$ и $\Gamma_{ee} \times \mathcal{B}_{ au au}$:


$$\Gamma_{ee} = \Gamma_{ee} imes \mathcal{B}_{\text{адроны}} + \Gamma_{ee} imes \mathcal{B}_{ee} + \Gamma_{ee} imes \mathcal{B}_{\mu\mu} + \Gamma_{ee} imes \mathcal{B}_{ au au}$$
КЕДР: $\Gamma_{ee} imes \mathcal{B}_{ee} = 21.2 \pm 0.7 \pm 1.2$ эВ

Measurement of the τ lepton mass at the KEDR detector, V. V. Anashin et al, JETP Lett. **85** 347 (2007):

$$\Gamma_{ee} imes \mathcal{B}_{ au au} = 9.0 \pm 2.6$$
 эВ

КЕДР:
$$\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042$$
 кэВ

Электронная ширина $\psi(2\mathsf{S})$

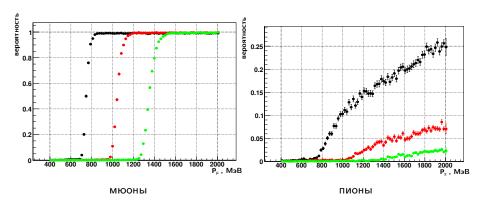
Заключение

Основные результаты, полученные автором

Сделано наиболее актуальное измерение параметра $\psi(2\mathsf{S})$ -мезона:

$$\Gamma_{ee} imes \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5$$
 эВ

C лучшей точностью получена электронная ширина $\psi(2\mathsf{S})$ -мезона:

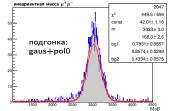

$$\Gamma_{ee}|_{{\sf лепт. \ унив.}} = 2.279 \pm 0.015 \pm 0.042 \; {\sf кэB}$$
 $\Gamma_{ee} = 2.282 \pm 0.015 \pm 0.042 \; {\sf кэB}$

Мюонная система детектора КЕДР:

- Созданы процедуры калибровки и определения статуса, разработано моделирование и реконструкция
- Достигнуты ожидаемые параметры системы
- Введена в эксплуатацию торцевая система

Мюонная система детектора КЕДР

Вероятность выхода частиц в слои системы



Эффективность измерения времени пролёта

Определение по каскадному распаду

Отбираются процессы $\psi(2{\sf S}) \to J/\psi \pi^+\pi^-$ и $\psi(2{\sf S}) \to J/\psi \pi^0\pi^0$, в которых $J/\psi \to \mu^+\mu^-$:

- $\psi(2{\sf S}) \to J/\psi \pi^+\pi^-$: 4 трека, 2 из них проходят отбор $\mu^+\mu^-$, два других пересекают ВПС вдали от мюонных
- $\psi(2\mathsf{S}) \to J/\psi \pi^0 \pi^0$: 2 трека + не менее 2 кластеров, не привязанных к трекам
- для отбора $\mu^+\mu^-$ нет условий на лишние кластеры и программный триггер
- нет лишних срабатываний в мюонной системе

Эффективность определяется из совместной подгонки распределений по инвариантной массе $\mu^+\mu^-$ событий с условием на ВПС и без него.

Недостатки — низкая статистическая точность, отсутствие событий в подложечных заходах.

Процедура подгонки

Пуассоновская функция правдоподобия:

$$L = -\sum_k (N_k^{
m owng} - N_k^{
m ha6л} + N_k^{
m ha6л} \ln rac{N_k^{
m ha6л}}{N_k^{
m owng}}),$$

где индекс k пробегает по всем конечным состояниям $(e^+e^-/\mu^+\mu^-)$, точкам по энергии и угловым бинам по θ .


Интегральная светимость:

$$\mathcal{L}_i = rac{N_{\mu\mu}^{\mathsf{Ha6} \mathsf{J}}|_i + N_{\mathsf{ee}}^{\mathsf{Ha6} \mathsf{J}}|_i}{\sigma_{\mu\mu}^{\mathsf{ow} \mathsf{IJ}}(W_i) + \sigma_{\mathsf{ee}}^{\mathsf{ow} \mathsf{IJ}}(W_i)},$$

для e^+e^- просуммировано по θ -бинам.

Свободными параметрами подгонки являлись $\Gamma_{ee} imes \mathcal{B}_{\mu\mu}$ и $\Gamma_{ee} imes \mathcal{B}_{ee}.$

Результат в e^+e^- -канале

Основные систематики:

- моделирование BhaBha,
- угловой диапазон

КЕДР:
$$\Gamma_{ee} imes \mathcal{B}_{ee} = 21.2 \pm 0.7 \pm 1.2 \; \mathrm{эB}$$

отклонение от $\Gamma_{ee} imes \mathcal{B}_{\mu\mu} = 19.3 \pm 0.3 \pm 0.5$ эВ составляет $\sim 1.6\sigma$