Физическая программа ВЭПП-2000 (КМД-3 и СНД)

В.Дружинин

ИЯФ СО РАН , 21 мая 2021 г.

Накопленная статистика

Накопленная статистика

Физика на ВЭПП-2000 (0.3-2.0 ГэВ)

- ✓ Первичная реакция $e^+e^- \rightarrow q \overline{q}$, q=u,d,s
- ✓ ВЭПП-2000 работает в области резонансов в системе q q̄
- ✓ Три семейства векторных резонансов:
- ✓ ρ(770), ρ(1450), ρ(1700)
- ✓ ω(782), ω(1420), ω(1650)

Физическая программа ВЭПП-2000

 $e^+e^- \rightarrow K\overline{K}, K\overline{K}\pi$

Измерение адронных сечений

Измерение полного адронного сечения

- ✓ В резонансной области (ниже 2 ГэВ) полное адронное сечение не может быть вычислено в рамках КХД
- Это сечение необходимо для вычисления в рамках Стандартной модели таких параметров как бегущая константа электромагнитных взаимодействий и аномальный магнитный момент мюона (вклад адронов в поляризацию вакуума)

$$\alpha(E) = \frac{\alpha(0)}{1 - \Delta\alpha(E)}, \quad \Delta\alpha = \sum_{f} \sqrt{f} \int_{f} \sqrt{\gamma} R(s) = \frac{\sigma(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

$$R(s) = \frac{\sigma(e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

$$a_{\mu}^{had(LO)} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{R(s)\hat{K}(s)}{s^{2}}$$

✓ Для аномального магнитного момента мюона имеется разница между расчетом и измерением на уровнея около в4.22%.

Измерение полного адронного сечения

✓ Ожидается улучшение точности измерения а_µ в ~3 раза.
 ✓ Нужно улучшить точность полного адронного сечения.
 Вклад различных реакций в а_µ^{had,HO-VP}

✓ Требуется измерить все адронные сечения ниже 2 ГэВ, а сечение e⁺e⁻ → π⁺π⁻ с точностью лучше 0.5%.

Физическая программа ВЭПП-2000

 2π

Phys. Rept. 887 (2020) 1

Individual SM contributions \times 10⁻¹⁰

a_{μ}^{QED}	11658471.893 ± 0.010
a_{μ}^{EW}	15.4 ± 0.1
$a_{\mu}^{had,LO-VP}$	693.1 ± 4.0
$a_{\mu}^{had,HO-VP}$	-8.59 ± 0.07
$a_{\mu}^{had,LbLs}$	9.4 ± 1.9
$a_{\mu}^{\text{total-SM}}$	11659181.0 ± 4.3
$a_{\mu}^{\ BNL-FNAI}$	11659206.1 ± 4.1
Data - SM	25.1 ± 5.9 (4.2σ)

Phys. Rev. Lett. 126, 141801 (2021)

 $^{\scriptscriptstyle -}
ightarrow \pi^+\pi^-$ на СНД

Физическая программа ВЭПП-2000

Total

0.8

0.9

Direct scan vs ISR

 $e^+e^- \rightarrow \pi^+\pi^-$

- Мы должны не только измерить сечение с высокой точностью, но и убедить всех, что наше измерение правильное
- Статья с детальным описанием методики измерения и оценки систематических ошибок
 - $-e/\pi/\mu$ разделение
 - Разрешение и точность измерения полярного угла
 - Учет радиационных поправок к начальному состоянию
 - Учет излучения из конечного состояния
 - Измерение сечения $e^+e^- \rightarrow \mu^+\mu^-$

$e^+e^- \rightarrow \pi^+\pi^-$ на КМД-З

Ожидаемая статистическая точность

$e^+e^- \rightarrow \pi^+\pi^-$ на КМД-З

Два метода разделения энерговыделение/импульсы

Сравнение RHO2013/2018

Анализ почти на финишной прямой Идет детальный анализ систематик Есть вопросы к телесному углу/ генератору π+π- (экспериментальной асимметрии) Хочется получить систематику ~ 0.5%

Сейчас идет переобработка после перекалибровки ДК, улучшения в анализе где часть проблемных эффектов будет подавлена 17

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

- ✓ The process $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ gives the second largest contribution into $a_{\mu}^{had,LO-VP}$ and its error.
- ✓ Currently $a_{\mu}^{3\pi}$ is known with about 3% accuracy
- New measurements are expected from BES-III and BABAR

R measurement near 2 GeV

Too many multihadron reactions contribute to the total hadronic cross section above 1.8 GeV Example: recent measurement of the $e^+e^- \to \pi^+\pi^-\pi^+\pi^-\pi^0\pi^0\pi^0$ cross section (0.6 nb near 2 GeV) at BABAR □ Inclusive measurement above 1.7 GeV; at SND: $1h^{\pm} + n\gamma$ (n>1), $2h^{\pm} + n\gamma$ (n>0), $n\gamma$ (n>4) \Box Study of fine structure in R near $N\overline{N}$ threshold

Адронная спектроскопия

Спектроскопия ρ , ω , ϕ

Прецизионное измерение сечений $e^+e^- \to \pi^+\pi^-$, $e^+e^- \to \pi^+\pi^-\pi^0$, $e^+e^- \to \pi^0\gamma$, $e^+e^- \to \eta\gamma$ и $e^+e^- \to K\overline{K}$ + точное

измерение энергии.

- ✓ Уточнение массы и ширины ω.
- Прецизионное измерение вероятностей распадов ρ, ω и ф и фаз интерференции между ними (интерференция -> сдвиги масс резонансов).

✓ Изучение изоспин-нарушающих распадов $\omega \to \pi^+ \pi^-$ и $\rho \to \pi^+ \pi^- \pi^0$. ρ - ω смешивание и прямые распады.

✓ Редкие распады, $\phi \to \pi^+\pi^-$, $\omega \to \pi^0\mu^+\mu^-$, ...

Адронная спектроскопия выше ф

 Изучение свойств возбуждённых векторных мезонов. Для них неизвестны массы, ширины, формы резонансов, вероятности распадов.

• В частности, для изучения резонансов $\rho(1450)$ и $\rho(1700)$ нужно провести анализ промежуточных состояний $(\omega \pi^0, a_1 \pi, f_2 \rho^0, \rho^+ \rho^-, ...)$ в процессах $e^+ e^- \to 4\pi$.

• Поиск радиационных процессов, например, $e^+e^- \rightarrow \rho(1700) \rightarrow f_2 \gamma$

Amplitude analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ at CMD-3

section (nb)

Cross

- ➢ 43 pb⁻¹
- \succ ωπ⁰, a₁π, ρ⁺ρ⁻, ρ⁰f₀ intermediate states are clearly seen
- Simultaneous fit to $\pi^+\pi^-\pi^0\pi^0$ and $\pi^+\pi^-\pi^+\pi^-$ may improve separation between modes

- We analyze the two-dimensional distribution of the charged-pion momenta and the $\pi^+\pi^-$ mass spectrum.
- These distributions are fitted with a model including the $\rho(770)\pi$, $\rho(1450)\pi$, and $\omega\pi^0$ intermediate states.
- A significant fraction of the ρ(1450)π intermediate state is observed in the energy region 1.55-1.75 GeV.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

- The cross section for the intermediate state $\rho(1450)\pi$ differs significantly from zero in the range 1.55 - 1.75 GeV, where the resonance $\rho(1680)$ is located.
- ✓ In the ρ(770)π cross section the resonance structure near 1680 MeV is not seen.

We conclude that the $\rho(1450)\pi$ mechanism gives a significant contribution to the decay $\omega(1680) \rightarrow \pi^+\pi^-\pi^0$, while the $\omega(1420) \rightarrow \pi^+\pi^-\pi^0$ decay is dominated by the $\rho(770)\pi$ intermediate state.

EPJ C 80 (2020) 1139

 \checkmark The analysis is based on 26 pb⁻¹ recorded in 2011-2012

✓ Cross sections for the K*K and $\phi \pi^0$ intrermediate states are measured separately

 $\phi(1680)$ dominates in the $e^+e^- \rightarrow K^*K$ cross section

 $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ cross section can not be described by $\rho(1450)$ and $\rho(1700)$. Fit with $\rho(1700)$ and unknown resonance with m=1585 \pm 15 MeV and Γ =75 \pm 30 MeV

√s (GeV)

Радиационные процессы выше ф

- Важны для понимания кварковой структуры возбужденных векторных резонансов
- e⁺e⁻ → π⁰γ, ηγ: на СНД обнаружены вклады ρ(1450), φ(1680)
 В канале Зγ КМД-З может использовать высокое разрешение по точке конверсии фотона
- e⁺e⁻ → π⁰π⁰γ, π⁰ηγ, ηηγ: доминируют адронные промежуточные состояния ωπ⁰, ωη, φη. Однако вклады радиационных процессов также видны.
 - На КМД-3 интересно изучить зарядовую асимметрию в процессе $e^+e^- o \pi^+\pi^-\gamma$ (интерференция ISR и FSR).

EPJ C **80**, 1008 (2020)

The measured $e^+e^- \rightarrow \omega\eta$ cross section is in good agreement with the SND and CMD-3 measurements in the $\omega \rightarrow$ $\pi^+\pi^-\pi^0$ decay mode.

The non-VP $e^+e^- \rightarrow \eta \pi^0 \gamma$ process has been observed with significance of 5.8 σ .

We have performed the first measurement of the cross section for this process in the energy range 1.05-2.00 GeV.

The value of the cross section is about 15-20 pb in the region 1.4-1.9 GeV.

$e^+e^- \rightarrow N\overline{N}$

 $e^+e^- \rightarrow p\bar{p}$ at CMD-3

 $e^+e^- \rightarrow n\bar{n}$ at SND

С 2019 года в калориметре СНД используется новая электроника

2019 data set

time(ns)

10

-10

0

-20

 $e^+e^- \rightarrow n\bar{n}$ at SND

 ✓ Data collected in 2012, 2017, 2019, 2020
 ✓ 2012, 2017 – time measurement in FLT
 ✓ 2019, 2020 – time

measurement in each calorimeter channel

Адронные сечения около порога $N\overline{N}$

- о Структуры около порога $N\overline{N}$ обнаружены в двух процессах $e^+e^- → 3(\pi^+\pi^-)$ и $e^+e^- → K^+K^-\pi^+\pi^-$
- $\circ~$ Параметр ρ равен 0.0±2.5 МэВ для 6 π и 2.4±2.0 для КК $\pi\pi$
- Наличие структуры в КК $\pi\pi$ выглядит неожиданно для модели $e^+e^- \rightarrow N\overline{N} \rightarrow$ mesons

Адронные сечения около порога $N\overline{N}$

- Существенное увеличение статистики выше и на пороге *N \overline{N}* позволит
- Заглянуть внутрь энергетического разброса. Можно дополнительно использовать информацию о времени срабатывания калориметра
- Сделать измерение $|G_E/G_M|$
- Изучить структуры в реакциях $e^+e^- \to \text{mesons}$, в частности, $e^+e^- \to 2(\pi^+\pi^-\pi^0)$ и $e^+e^- \to K_S K^-\pi^+\pi^0$
- В полном адронном сечении М+С ожидают скачка 2.5 нб/10 МэВ

HLBL вклад в а $_{\mu}$

Phys. Rept. 887 (2020) 1

$a_{\mu}^{\ had,LO-VP} imes 10^{-10}$	693.1 ± 4.0
$a_{\mu}^{\ had,LbLs} imes 10^{-10}$	9.4 ± 1.9

а., had, LbLs вычисляется теоретически □ Требует знания мезон-фотонных переходных формфакторов Р, А, $T \rightarrow \gamma^* \gamma^*$ Эти формфакторы измеряются в процессах • $e^+e^- \rightarrow M\gamma$, $Ml^+l^$ e[±](p) • $M \rightarrow \gamma \gamma, \gamma l^+ l^-$ • $e^+e^- \rightarrow e^+e^-M$ □ Интегралы от формфакторов входят в распады $M \rightarrow l^+ l^-$ П Интересны также процессы $e^+e^- \rightarrow e^+e^-\pi\pi$

Поиск процессов $e^+e^- \rightarrow P$, A. T

- ✓ Для псевдоскалярных мезонов процесс подавлен (m_e/m_P)²
- ✓ На ВЭПП-2000 установлены пределы

 $B(\eta \to e^+e^-) = 7 \times 10^{-7}$ и $B(\eta' \to e^+e^-) = 5.6 \times 10^{-9}$

- ✓ Для аксиальных и тензорных мезонов подавления по спиральности нет.
- $\sigma = \frac{4(2J+1)}{M^2} B(M \to e^+e^-)$ ✓ СНД ведет поиск в конечных состояниях, не рождающихся в однофотонном канале: $f_1(1285) \rightarrow \eta \pi^0 \pi^0$, $f_2(1270) \rightarrow \pi^0 \pi^0$, $a_2(1320) \rightarrow \eta \pi^0$, $f_2^{\prime}(1525) \rightarrow K_S K_S$
 - First indication (2.5 σ): $\sigma(e^+e^- \rightarrow f_1(1285)) = 45^{+33}_{-24}$ pb, $B(f_1(1285) \rightarrow e^+e^-) = 5.1^{+3.7}_{-2.7} \times 10^{-9}$
- ✓ На КМД-3 можно изучать зарядовую асимметрию в процессах $e^+e^- \to \pi^+\pi^-$, $K^+K^-, \pi^+\pi^-\pi^0, \pi^+\pi^-\eta$ и искать рождение резонансов семейств a_1, a_2, f_1, f_2

$e^+e^- \rightarrow e^+e^-P$ at VEPP-2000

$e^+e^- \rightarrow e^+e^-P$, tagged electron

$e^+e^- \rightarrow e^+e^-\pi^0$, tagged electron

Transition form factor squared can be measured with an accuracy of about and better than 10% in the q^2 range from 0.1 to 0.5 GeV².

$e^+e^- \rightarrow e^+e^-\eta$, tagged electron

1.9 GeV

30° - 210 ev

45° - 80 ev

 $\frac{1.5}{Q^2} \frac{2}{(GeV^{2)}}$

100 pb

0.5

 $e^+e^- \rightarrow e^+e^-\eta, \eta \rightarrow 3\pi^0$

E=1.9 GeV 100 pb

$$\eta \rightarrow 3\pi^{0}$$

 $27^{\circ} < \theta_{\gamma} < 153^{\circ}$
 $\epsilon(\eta) = 0.24$
 $B(\eta \rightarrow 3\pi^{0}) = 32.7\%$

No tag ~1000 events Tagged e ~ 50 events $30^{\circ} < \theta_e < 150^{\circ}$

PDG value: $\Gamma_{\gamma\gamma}=0.515\pm0.018$ keV

Заключение

- Очень богатая физическая программа
- Недостаток физиков, в частности из-за сложности анализов
- Набрано 30% требуемой статистики
- Ближайшие планы
 - Сканирование порога $N\overline{N}$
 - Сканирование области 1.05 2 ГэВ
- Понадобится как минимум еще одно сканирование области ниже 1.05 ГэВ