Новости

Физики предложили проект одной из основных частей детектора для коллайдера Супер С-Тау фабрика

Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разрабатывает проект электрон-позитронного коллайдера Супер С-тау фабрика с беспрецедентной светимостью в диапазоне энергии от 3 до 7 ГэВ и универсального магнитного детектора для него. Основными задачами физической программы являются: поиск CP-нарушающих эффектов в распадах очарованных частиц, поиск Новой физики в редких или запрещенных Стандартной моделью распадах очарованных частиц и тау-лептона и многое другое. В настоящее время идет проработка различных систем детектора. Физики уже создали проект одной из ключевых частей детектора – дрейфовой камеры (ДК). ДК предназначена для регистрации заряженных частиц и измерения их импульса. В недавних работах на малом прототипе специалисты провели первичные измерения главного параметра ДК – ее пространственного разрешения. Эксперименты продемонстрировали возможность получения проектных параметров в 90 микрон. Результаты опубликованы в журналах Nuclear Instruments and Methods in Physics Research Section A https://www.sciencedirect.com/science/article/pii/S0168900221004757 и «Ученые записки физического факультета Московского университета».

Сотрудники ИЯФ СО РАН приняли участие в благотворительной акции

Сотрудники Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) приняли участие в благотворительной акции для детей, оставшихся без попечения родителей, и детей из социально-реабилитационных центров. Игрушки, одежду и сладкие подарки получили 146 детей из новосибирских воспитательных учреждений и учреждений социального обслуживания.

Новые результаты коллайдера ВЭПП-2000 уменьшают интригующую разницу между Стандартной моделью и экспериментом

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) провели измерение вероятности рождения пары пионов в результате столкновения пучков электронов и позитронов. Эксперименты проводились с помощью детектора КМД-3 на коллайдере ВЭПП-2000 с 2013 по 2020 годы. Рекордный объем набранных данных позволил провести очень детальное измерение. Результат стал сюрпризом - вероятность оказалась выше, чем наблюдалась ранее в экспериментах, проводимых в разных странах на протяжении 60-и лет.

Этот результат озадачил физиков. Дело в том, что вероятность рождения пионов используется для расчета вклада в аномальный магнитный момент мюона (АМММ). Магнитный момент отражает силу взаимодействия частицы с магнитным полем. Аномальный магнитный момент возникает в результате взаимодействия частицы с короткоживущими ненаблюдаемыми, или виртуальными, частицами. Величина АМММ предсказывается с высокой точностью Стандартной моделью, существующей теорией, описывающей физику микромира. Именно в этом расчете используется вероятность рождения пионов. В последние годы АМММ был измерен с высокой точностью и результаты измерений отличались от значения, предсказанного Стандартной моделью. Это отличие вызвало огромный интерес научного сообщества, так как оно указывало на существование Новой физики – явлений (частиц и сил), не описываемых Стандартной моделью.

Результаты измерения вероятности рождения пары пионов в электрон-позитронной аннигиляции, то есть в процессе взаимного исчезновения и рождения новых частиц, физики ИЯФ СО РАН примерно в два раза сократили наблюдаемое различие между экспериментальным значением АМММ и предсказанием СМ. Новый результат вместе с детальным описанием эксперимента опубликован в архиве международной научной библиотеки, готовится статья для научного журнала.

Пучок электронов в линейном ускорителе строящегося комплекса «СКИФ» ускорен до энергии 30 МэВ

Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) смонтировали и запустили первую очередь линейного ускорителя будущего источника синхротронного излучения «СКИФ», на базе которого создается Центр коллективного пользования (ЦКП «СКИФ»). После «тренировки» первой очереди ускорителя специалистам удалось ускорить пучок электронов до энергии 30 МэВ. Проектные параметры линака в составе всего комплекса – 200 МэВ, на них он выйдет в 2024 г., но уже сейчас можно говорить о том, что они будут достигнуты.

 

В рамках нацпроекта «Наука и университеты» разработана слабо проводящая керамика

В рамках нацпроекта «Наука и университеты» (федеральный проект "Развитие масштабных научных и научно-технологических проектов по приоритетным исследовательским направлениям") в Институте химии твёрдого тела и механохимии СО РАН (ИХТТМ СО РАН) при участии Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) разработан новый тип слабо проводящей керамики (СПК) с заданной электропроводностью для снятия статического заряда с внутренних поверхностей вакуумных камер ускорителей. Кроме того, они могут быть использованы для создания высоковольтных изоляторов в различных областях электротехники.

Сварной шов с пределом прочности авиационного сплава получили в Новосибирске

Все мировое авиастроение стремится к одному – строительству более прочных, но при этом легких летательных аппаратов. Для этого создаются сплавы с улучшенными техническими характеристиками, например, алюминий-литиевые. Такие сплавы, не теряя своей прочности, снижают массу конструкции, а вместе с этим и расход топлива. Еще одно преимущество алюминий-литиевых сплавов в том, что их можно сваривать, отказавшись от технологии клепки металла в пользу сварных соединений. До недавнего времени большой проблемой было то, что сварной шов проигрывал в прочности самому сплаву. В Сибирском отделении РАН эту задачу решили. Специалисты Института теоретической и прикладной механики им. С. А. Христиановича (ИТПМ СО РАН) совместно с коллегами из Института химии твердого тела и механохимии СО РАН (ИХТТМ СО РАН) и Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) впервые получили сварной шов с пределом прочности таким же, как у основного материала. Результаты были представлены на конференции «Создание теоретической и экспериментальной платформы для изучения физико-химической механики материалов со сложными условиями нагружения».

В рамках нацпроекта «Наука и университеты» разработан проект оригинального сверхпроводящего ондулятора

В рамках нацпроекта «Наука и университеты» (федеральный проект "Развитие масштабных научных и научно-технологических проектов по приоритетным исследовательским направлениям") специалисты Института ядерной физики им. Г. И. Будкера СО РАН (г. Новосибирск) разработали проект оригинального сверхпроводящего ондулятора.

Сделан первый шаг к литий-нейтронозахватной терапии онкологических заболеваний

Бор-нейтронозахватная терапия (БНЗТ) – один из перспективных высокотехнологичных методов лечения злокачественных опухолей. Он заключается в накоплении в клетках опухоли стабильного нерадиоактивного изотопа бор-10 и последующего облучения нейтронами. В результате поглощения нейтрона бором происходит ядерная реакция с выделением 84% энергии реакции именно в той клетке, которая содержала ядро бора, что приводит к ее гибели. К настоящему времени БНЗТ подтвердила свою эффективность, и первые клиники уже открылись в Японии, Китае и Южной Корее. В ближайшие годы ожидается открытие клиник еще в ряде стран, в том числе и в Российской Федерации, для которой ИЯФ СО РАН изготавливает источник нейтронов, подобный поставленному в Китай.

ИЯФ СО РАН изготовит ЯМР магнитометр «Сибирь-1» для метрологического центра «Ростест-Москва»

Магнитометр – это прибор для измерения характеристик магнитного поля и магнитных свойств материалов. Магнитометры используется повсеместно: в геологии при поиске полезных ископаемых; в археологии при археологических раскопках; для навигации на море, в космосе и авиации; в военной разведке для обнаружения погружённых подводных лодок; в биологии и медицине; в сейсмологии (предсказании землетрясений); в научных экспериментах; в магнитной геохронологии. Для всех этих задач используется различные виды магнитометров, и многие из них требуют калибровки, которой занимаются в специальных метрологических центрах.

Начато испытание сверхпроводящего магнита для первого вигглера ЦКП «СКИФ»

Установка класса мегасайенс Центр коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ») позволит специалистам из различных областей наук – химикам, биологам, геологам,        материаловедам и др. – изучать структуры объектов с нанометровым разрешением. Разглядеть детали менее сотни нанометров станет возможным благодаря предельно ярким и интенсивным пучкам рентгеновского излучения или синхротронного излучения (СИ). За генерацию пучка и его качество в установке отвечают специальные сверхпроводящие магниты – вигглеры. Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) создали и начали испытания первого вигглера для ЦКП «СКИФ».

Физикам удалось увеличить плотность плазмы и замедлить ее истечение в установке СМОЛА

Исследования в области управляемого термоядерного синтеза проводятся на экспериментальных установках, в основе которых лежат различные системы магнитного удержания. Цель у них одна – добиться нужных для термоядерного синтеза температуры, плотности и времени удержания плазмы. В Институте ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) проводят исследования на нескольких экспериментальных установках открытого типа, одна из которых – открытая ловушка со спиральным магнитным удержанием СМОЛА. На ней специалисты ИЯФ СО РАН улучшили параметры удержания плазмы, снизив поток истечения вещества в десять раз, а также повысили плотность плазмы в 1,5 раза. Ученые опубликовали две научные статьи с результатами в журнале Journal of Plasma Physics. Одна из статей попала на обложку.

Износостойкость популярного авиационного сплава увеличена в 4 раза

Различные отрасли промышленности, в первую очередь, авиационная, требуют новых усовершенствованных материалов – с повышенной прочностью, высокой теплопроводностью, стойких к коррозии. Заданными свойствами могут обладать металлокерамические композиты. Благодаря пластичности металлической матрицы и твердости керамических частиц специалисты могут получить желаемое увеличение износостойкости. А одна из эффективных технологий, позволяющая создавать такие материалы – аддитивная, или технология 3D выращивания объектов. Специалисты Института теоретической и прикладной механики им. С. А. Христиановича (ИТПМ СО РАН) совместно с коллегами из Института химии твердого тела и механохимии СО РАН (ИХТТМ СО РАН) освоили технологию печати изделий из порошковой металлокерамики на собственной установке прямого лазерного сплавления. Полученные материалы при помощи синхротронного излучения (СИ) они исследуют в Сибирском центре синхротронного и терагерцового излучения (ЦКП СЦСТИ) Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН). Исследования показали, что добавление керамического соединения диборида титана в популярный титановый сплав повышает его износостойкость в 4 раза. Важно и то, что специалисты на фундаментальном уровне объяснили причины изменения свойств материала. Оказалось, что импульсное лазерное воздействие приводит к образованию в материале нано и микроволокон, функцию которых можно сравнить с функцией арматуры в железобетоне. Результаты опубликованы в журнале Physical Mesomechanics и готовятся к публикации в журнале «Физическая мезомеханика».