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Аннотация

Выводится полная система уравнений сокращённой маг-
нитной гидродинамики для открытых ловушек с высоким
относительным давлением плазмы. На основе малого па-
раметра, обратного аспектного отношения ловушки, вы-
сокочастотная ветвь магнитного звука заменяется парак-
сиальным квазиравновесием. Система уравнений может
быть использована для разработки численных моделей
разрядов в газодинамических ловушках.
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1 Введение
Основной идеей приближения сокращённой МГД [1, 2,
3, 4, 5, 6, 7, 8, 9], разработанной изначально для описа-
ния нелинейных процессов в плазме токамака, было от-
деление относительно низкочастотных возмущений альф-
веновского типа от высокочастотного магнитного звука.
Магнитозвуковая ветвь считается находящейся в квази-
равновесии, что, при низком β, эквивалентно пренебре-
жению возмущением продольного магнитного поля вооб-
ще. В открытых ловушках типа ГДЛ [10] или в проектных
режимах ГДМЛ [11] с β ∼ 0.5 пренебрегать возмущени-
ем продольного поля, конечно, нельзя, но основную идею
можно сохранить. Более того, её точность за счёт мало-
сти обратного аспектного отношения ϵ = a/L, отноше-
ния радиуса плазмы a к характерной длине L, значитель-
но выше, чем в токамаках. Например, в ГДЛ расстояние
между пробками составляет 7м при характерном радиусе
плазмы в 15см, так что ϵ = 2%. Напротив, величина β, в
отличие от токамаков, эффективным малым параметром
не является, поскольку уже в текущих экспериментах пи-
ковые значения достигают β ∼ 0.6.

Установление поперечного равновесия в открытых ло-
вушках происходит со скоростью быстрого магнитного
звука, которая не снижается даже в пределе полного вы-
теснения магнитного потока, β → 1. Характерная часто-
та при этом ω⊥ ∼ cA/a, где cA - альфвеновская скорость
по вакуумному полю. Продольное равновесие также уста-
навливается со скоростью звука, которая при β → 1 ста-
новится одного порядка с альфвеновской. В результате,
ω∥ ∼ vT i/L ∼ cA/L. С такими же характерными частота-
ми развиваются конвективные неустойчивости; для же-
лобковых мод γ ∼ vT i/L ∼ ω∥. В результате, поперечное
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квазиравновесие устанавливается гораздо быстрее вырав-
нивания давления вдоль ловушки и развития конвектив-
ных неустойчивостей: ω⊥/ω ∼ ϵ−1 ≫ 1 даже в пределе
большого давления плазмы. Надо отметить, что термин
«высокое β» в приближении сокращённой МГД встреча-
ется встречается часто, однако реально предполагается
β ∼ ϵ в соответствии с условиями в плазме токамаков.

Диссипативные процессы, изменяющие распределение
равновесных параметров, в открытой ловушке типа ГДЛ
имеют характерную частоту ωdiss ∼ 1/τ∥ ∼ ω∥/R, где R
- эффективное пробочное отношение. Поскольку в ГДЛ
R ∼ 35, в дальнейшем будем считать характерные скоро-
сти диссипативных процессов малыми величинами вто-
рого порядка: ωdiss ∼ ϵω∥ ∼ ϵ2ω⊥. Целью вывода сокра-
щённой МГД являются уравнения конвективной динами-
ки плазмы со средними характерными частотами поряд-
ка ω∥. Однако более медленные диссипативные процес-
сы также необходимо учитывать, поскольку они влияют
на долговременную нелинейную эволюцию фонового рав-
новесия плазмы. Совместное описание фоновых процес-
сов переноса и турбулентной конвекции сильно услож-
няет модель, но для моделирования разрядов открытых
ловушек является необходимостью.

Использование малого обратного аспектного отноше-
ния открытых ловушек в качестве параметра разложения
является стандартным приёмом. В частности, в фунда-
ментальной работе Ньюкомба [12] проведён анализ МГД-
устойчивости плазмы параксиальных ловушек с конеч-
ным β и учётом анизотропии давления и дрейфовых эф-
фектов. Эта работа базируется на консервативной бес-
столкновительной модели и не приспособлена для описа-
ния диссипативных процессов, которые необходимы для
моделирования разрядов в ловушках типа ГДЛ. Широко
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применяемые Ньюкомбом координаты Лагранжа также
совершенно не годятся для моделирования квазистацио-
нарной конвекции (что имеет место, например, в режиме
вихревого удержания в ГДЛ [13]).

Вариационный метод вывода сокращённой МГД с точ-
ностью ϵ2 использован в [8, 9], причём утверждается, что
возможно описание слабо-диссипативных систем при ко-
нечном β. Возможно ли учесть сильную диссипацию в
граничных условиях на электродах плазмоприёмника, что
необходимо для описания эффектов частичной вморожен-
ности и вихревого удержания – неясно. Ещё одно огра-
ничение этих работ – использование мелкомасштабности
возмущений ε = (k⊥a)

−1 ≪ 1 в качестве второго мало-
го параметра, причём считается β ∼ ε и давление изо-
тропно. Применимость этого приближения для открытых
ловушек типа ГДЛ ограничена, поскольку наиболее опас-
ной модой при наличии эффекта конечного ларморовско-
го радиуса (КЛР) является m = 1 с малым k⊥.

Основной метод вывода сокращённой МГД – реду-
цированное представление векторных полей общего ви-
да с помощью определённого набора скалярных полей
меньшей размерности, реализующего разложение по ма-
лому параметру задачи. Этот метод действительно эф-
фективен и мы будем его использовать при выводе, од-
нако наш набор скалярных полей должен быть приспо-
соблен к новой задаче. В стандартной сокращённой МГД
возмущение магнитного поля описывается единственной
(продольной) компонентой векторного потенциала, а по-
перечное электрическое поле и скорость плазмы полно-
стью определяются её электростатическим потенциалом.
Например, в [3] рассматривается модель плоского слоя и
задача сводится к зацепленным уравнениям для продоль-
ного векторного потенциала ψ и продольной завихренно-
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сти течения U :

∂ψ

∂t
= [ϕ, ψ] + η(J − J0), J = ∇2ψ, (1)

ρ
∂U

∂t
= ρ[ϕ, U ] + [J, ψ], U = ∇2ϕ, (2)

где [A,B] ≡ ∇A × ∇B · e⃗z, J — продольная плотность
тока, ϕ – электростатический потенциал , η – проводи-
мость, а J0 моделирует равновесную плотность тока (в
токамаке). Система (1),(2) представляет собой стандарт-
ный «скелет» сокращённой МГД, описывающий винто-
вые моды и альфвеновские колебания, на который могут
навешиваться дополнительные физические эффекты. На-
пример, моделирование баллонных мод потребует введе-
ния в систему дополнительных уравнений для эволюции
давления и продольной скорости. Кроме эволюционных
уравнений система содержит ещё два соотношения ти-
па U = ∇2ϕ, которые мы в дальнейшем будем называть
«уравнениями связи».

В этой работе мы попробовали не навешивать на «ске-
лет» сокращённой МГД дополнительные эффекты и свя-
зи, которые мы посчитали бы важными и нужными, а вы-
вести полную систему «на все случаи жизни» из первых
принципов. Это делает её, конечно, весьма громоздкой.
Позитивным свойством такого подхода является возмож-
ность последующей редукции полной модели к более про-
стым, причём можно будет быть уверенным в отсутствии
в них внутренних противоречий. Например, численные
модели с продольным течением обычно нуждаются в дис-
сипации звуковых колебаний, что может быть достигну-
то введением продольной вязкости. В то же время про-
дольная вязкость эквивалентна столкновительной дисси-
пации анизотропии давления и, поэтому, связана сразу со
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многими аспектами модели, в частности, с продольными
потерями через пробку.

Область применимости полученной системы ограни-
чена приближениями исходной МГД модели: даже с учё-
том возможности дрейфовых поправок эффекты конеч-
ного ларморовского радиуса описываются неполно. В част-
ности, моделирование режима диамагнитного удержания
[14] потребует отдельной схемы для внутренности диа-
магнитного пузыря с незамагниченной плазмой, а также,
возможно, для корректного описания структуры переход-
ного слоя в присутствии быстрых ионов. Тем не менее,
сокращённая МГД с учётом источников и диссипативных
эффектов может быть очень полезна для моделирования
переходных режимов от вихревого [13] к диамагнитно-
му удержанию. Это необходимо для обоснования соот-
ветствующих режимов работы ГДМЛ [11].

В разделе 2 мы обсуждаем вывод полной системы урав-
нений движения плазмы из дрейфовой теории следуя клас-
сическим работам. В разделе 3 приводится редуцирован-
ное представление векторных полей - магнитного поля и
скорости. В разделе 4 обсуждается условия поперечного
квазиравновесия с точностью ϵ2, в разделе 5 – универ-
сальная запись закона Ома, в разделе 6 – связь скорости
и условия замыкания токов. На этой основе в разделе
7 получено уравнение на поперечную сжимаемость тече-
ния, которое обычно, ввиду сложности, заменяется по-
стулированным условием несжимаемости. В разделе 8 из
условия замыкания токов выводится уравнение перено-
са обобщённой завихренности, а в разделе 9 – уравнения
продольного движения и эволюции компонент давления.
В разделе 10 приводится полная замкнутая система из
6 эволюционных уравнений и 5 уравнений связи, а в За-
ключении обсуждается область примения.
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2 Гидродинамика разреженной плаз-
мы

Начнем вывод с полных исходных уравнений магнитной
гидродинамики. В литературе существует множество ва-
риаций этой системы уравнений с различными прибли-
жениями и условиями замыкания. В открытых ловушках
плазма обычно слабостолкновительная с существенной
анизотропией давления. Кроме того, целью сокращённой
МГД являются низкочастотные процессы, в которых сто-
ит учитывать дрейфовые, диссипативные и двужидкост-
ные эффекты, источники и стоки частиц и энергии. Что-
бы построить более-менее универсальную модель, сохра-
ним основной каркас уравнений и в них добавим сво-
бодные члены с ясным физическим смыслом, которые в
конкретных приложениях можно будет использовать для
описания нужных эффектов. Чтобы наша система урав-
нений была совместима с дрейфовыми поправками типа
эффектов конечного ларморовского радиуса (КЛР), надо
установить её соответствие с дрейфовой теорией.

Сначала получим выражения для локальной скоро-
сти потока частиц с зарядом e и массой m из дрейфовой
теории. Скорость дрейфа ˙⃗

R используем из обзора [15] (в
форме Брагинского) в терминах «сглаженных» проекций
скорости частицы на магнитное поле B⃗ = b⃗B в точке ве-
дущего центра (U∥, U⊥):

U∥ = u∥ +
u2⊥
2ωc

b⃗ · ∇ × b⃗, (3)

U⊥ = u⊥ −
u∥u⊥
2ωc

b⃗ · ∇ × b⃗, (4)

˙⃗
R = U∥⃗b+ c

E⃗ × b⃗
B

+
U2
⊥

2ωc

b⃗×∇lnB +
U2
∥

ωc

b⃗× κ⃗+ F⃗ × b⃗
mωc

, (5)
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причём адиабатическим инвариантом с точностью до чле-
нов второго порядка малости является величина

mµ =
m2U2

⊥
2B

. (6)

Здесь u⃗ - локальная скорость частицы, ωc = eB/mc, и
по сравнению с [15] в (5) изменены некоторые обозначе-
ния и добавлена скорость дрейфа под действием «про-
чих» поперечных сил F⃗ (например, инерции, гравитации
или трения с другим сортом частиц). Поправка к скоро-
сти (3) может показаться малой, но формально вклад от
неё в (5) такого же порядка как и дрейфы, и её придётся
сохранить, чтобы избежать ошибки впоследствии.

Для вычисления гидродинамической плотности пото-
ка частиц путём усреднения по функции распределения
будем использовать методы из обзоров [16, 17]. Для этого
нам понадобится связь кривизны силовых линий магнит-
ного поля с локальной плотностью тока и градиентом мо-
дуля магнитного поля. Будем использовать соотношения

∇× b⃗ = 1

B
∇× B⃗ + b⃗×∇lnB ≈ 4π

cB
j⃗ + b⃗×∇lnB, (7)

b⃗ · ∇ × b⃗ ≈ 4π

cB
j∥, b⃗× κ⃗ ≈ 4π

cB
j⃗⊥ + b⃗×∇lnB, (8)

где κ⃗ =
(⃗
b∇
)
b⃗ - кривизна магнитного поля, а знак при-

ближения соответствует пренебрежению током смещения
(или включению его в j⃗). Теперь мы можем усреднить (5)
по функции распределения, которая должна зависеть от
сглаженных скоростей U⃗ :

n
〈
˙⃗
R
〉
= n

〈
v∥
〉
b⃗+

4πp⊥
eB2

j∥⃗b+ nc
E⃗ × b⃗
B

+

+ c
p⊥ + p∥
eB

b⃗×∇lnB +
4πp∥
eB2

j⃗⊥ + nc

〈
F⃗
〉
× b⃗

eB
. (9)
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Здесь n - плотность, а p⊥, p∥ - компоненты тензора дав-
ления данного сорта частиц. По сравнению с формулой
(1.13) в [17] в этом выражении есть дополнительное слага-
емое (второе), возникшее из-за поправки первого порядка
по 1/ωc к продольной скорости из (3).

Плотность потока ларморовских центров отличается
от плотности потока частиц на величину «обтекающего»
потока ∇×K⃗, где K⃗ - плотность кинематического момен-
та ларморовских кружков [17]:

K⃗ =
1

2
n ⟨r⃗ × v⃗⟩ = − p⊥

mωc

b⃗, (10)

∇× K⃗ =
1

mωc

(⃗
b×∇p⊥ − 2p⊥b⃗×∇lnB −

4πp⊥
cB

j⃗

)
. (11)

Теперь локальная плотность потока частиц определённо-
го сорта может быть записана в виде:

nv⃗ = n
〈
v∥
〉
b⃗+

c

eB

[
neE⃗ × b⃗+ n

〈
F⃗
〉
× b⃗+ b⃗×∇p⊥ +

+
(
p∥ − p⊥

)( 4π

cB
j⃗⊥ + b⃗×∇lnB

)]
, (12)

где все параметры - n, e, p относятся к данному сорту ча-
стиц. Отличие от формулы (1.18) в [17] и формулы (1.17)
в [18] заключается в отсутствии слагаемого с продоль-
ным током, которое точно сократилось. Это приведёт к
изменённому результату и для плотности тока. Учитывая
сорта частиц и квазинейтральность, можно найти плот-
ность продольного тока:

j∥ =
∑
k

en
(
v⃗⃗b
)
=
∑
k

en
〈
v∥
〉
. (13)

Это выражение выглядит менее парадоксально, чем при-
ведённое в [17, 18] (формулы (1.23) и (1.18) соответствен-
но), где плотность продольного тока получилась в 1 +
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4πp⊥/B
2 раз меньше. Эта поправка может оказаться важ-

на для плазмы высокого давления.
Для поперечного тока полученные в литературе [17,

18] выражения корректны, но мы будем использовать аль-
тернативную форму его записи

j⃗⊥ =
c

B

(⃗
b×∇p⊥ +

(
p∥ − p⊥

)
b⃗× κ⃗ +

+
∑
k

n
〈
F⃗
〉
× b⃗
)
, (14)

где компоненты давления - суммарные по сортам частиц.
К этой форме можно прийти, если выразить j⃗⊥ в правой
части исходного уравнения (12) через b⃗× κ⃗.

Уравнение (14) сворачивается в МГД-подобную фор-
му, если из него найти поперечную объёмную силу, дей-
ствующую на плазму:∑

k

n
〈
F⃗
〉
⊥
= −∇p⊥ −

(
p∥ − p⊥

)
κ⃗+

1

c
j⃗⊥ × B⃗. (15)

Эта суммарная сила включает инерцию всего плазмен-
ного потока, включая «обтекающий», а не только потока
ларморовских кружков. В этом смысле можно считать,
что уравнение движения анизотропной плазмы поперёк
поля в дрейфовой теории точно согласуется с магнитной
гидродинамикой:

ρ

(
dv⃗

dt

)
⊥
= −∇p⊥ −

(
p∥ − p⊥

)
κ⃗+

1

c
j⃗⊥ × B⃗ + f⃗⊥, (16)

где f⃗ - «прочая» объёмная сила. Это означает, что вместо
поперечной компоненты уравнения движения ионов мож-
но использовать выражение (12), где

〈
F⃗
〉

- сила, вклю-
чающая инерцию самого потока ρv⃗.
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МГД уравнения движения плазмы с анизотропным
давлением, основанные на работах Чу-Голдбергера-Лоу
[19], можно найти, например, в обзоре Волкова [16]. Мы
их запишем с добавлением свободных источников:

1. Уравнение непрерывности:

dρ

dt
+ ζρ = qρ, (17)

где дивергенции скорости введено обозначение

ζ = ∇ · v⃗, (18)

а qρ - плотность объёмного источника массы (напри-
мер, из-за ионизации нейтралов).

2. Уравнение движения плазмы как целого:

ρ
dv⃗

dt
= −∇ ·←→p +

1

c

[⃗
j × B⃗

]
+ f⃗ , (19)

где дивергенция тензора давления в замагниченной
анизотропной плазме может быть записана в виде

∇ ·←→p = ∇p⊥ +
(
B⃗∇

)[ B⃗
B2

(
p∥ − p⊥

)]
≡

≡ ∇p⊥ + δf⃗p, (20)

δf⃗p =
(
p∥ − p⊥

)
κ⃗+ B⃗

(⃗
b∇
) p∥ − p⊥

B
, (21)

а f⃗ – объёмная сила (например, вязкая, или воз-
никающая из-за инжекции импульса с частицами).
Продольная вязкая сила в f⃗ не входит, она учиты-
вается анизотропией давления.
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3. Упрощённые уравнения для компонент тензора дав-
ления могут быть получены из поперечной адиаба-
ты ЧГЛ и одномерной продольной адиабаты с учё-
том источников и диссипации:

dp⊥
dt

+ ζp⊥ −
p⊥
B

dB

dt
+ q⊥ = 0, (22)

dp∥
dt

+ ζp∥ + 2p∥(⃗b∇)v∥ + q∥ = 0. (23)

Здесь q⊥, q∥ – отвечают за источники нагрева (в том
числе с частицами) и дивергенции потоков тепла в
рамках конкретной модели замыкания. В отличие
от работы [16] мы здесь пока сохранили dB/dt, по-
скольку его исключение зависит от конкретной мо-
дели закона Ома. Для описания продольной вязко-
сти течения в источники достаточно включить ре-
лаксацию анизотропии с частотой νT :

qr⊥ = νT
(
p⊥ − p∥

)
, qr∥ = −2νT

(
p⊥ − p∥

)
. (24)

Альтернативные варианты замыкания магнитной гид-
родинамики, лучше приспособленные для модели-
рования затухания Ландау продольного звука, об-
суждаются в [20]. Наш базовый вариант с продоль-
ной вязкостью кажется более подходящим для опи-
сания медленной эволюции равновесия и вытяну-
тых вдоль поля мод в газодинамических ловушках.

4. Закон Ома идеальной одножидкостной МГД

E⃗ +
1

c

[
v⃗ × B⃗

]
= 0 (25)

является радикальным упрощением по сравнению
с более реалистичным двухжидкостным описанием

12



условий протекания тока. В частности, поперечная
скорость плазмы, которую из него можно легко най-
ти, по сравнению с (12) содержит только дрейф в
скрещенных полях. Сохранить возможность услож-
нения этой модели можно по общей схеме введе-
ния произвольной поправки. При выводе уравне-
ний сокращённой гидродинамики способ использо-
вания поперечной и продольной компонент закона
Ома отличается: поперечная нужна для описания
связи скорости плазмы с электрическим полем, а
продольная - для описания продольной плотности
тока. В нашей модели электроны можно считать
безмассовыми, тогда скорость плазмы совпадает со
скоростью ионов, а продольное электрическое по-
ле определяется равновесием электронной жидко-
сти вдоль силовых линий. Поэтому, вместо попе-
речной компоненты закона Ома будем использовать
поперечную часть уравнения (12) для ионной ком-
поненты в виде:

v⃗⊥ = c
E⃗ × b⃗
B

+ v⃗d, (26)

где v⃗d - модельно-зависимая дополнительная ско-
рость поперечного дрейфа:

v⃗d =
c

qiB

[⃗
b×∇p⊥i +

(
p∥i − p⊥i

)
b⃗× κ⃗

]
+

+
nc

qiB

〈
F⃗i

〉
× b⃗, (27)

n
〈
F⃗i

〉
= ρ

dv⃗

dt
− f⃗i − qi

j⃗

σ
, (28)

и qi - заряд иона. Учёт v⃗d в том или ином виде может
понадобиться для описания резистивных и дрейфо-
вых эффектов.
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Продольная компонента обобщённого закона Ома
может быть записана как

E∥ = E , (29)

E = − 1

ne

[(⃗
b∇
)
p∥e +

(
p⊥e − p∥e

) (⃗
b∇
)
lnB

]
+

+
j∥
σ∥

+
f∥e
ne

(30)

и в этой формуле e > 0, т.е. заряд электрона есть−e.
Учёт градиента давления электронов через E поз-
волит описывать влияние амбиполярного потенциа-
ла. Как амбиполярный потенциал, так и дрейфовые
эффекты, в том числе КЛР, нельзя считать малы-
ми в современных открытых ловушках типа ГДЛ,
поэтому соответствующие поправки к идеальному
закону Ома должны быть интегрированы в мате-
матическую модель. Для сокращения записи ниже
будем использовать выражения (26), (29).

Система МГД уравнений (17), (19), (22), (23), (26), (29)
является полной. Модель также должна содержать опре-
деления свободных слагаемых

(
qρ, f⃗ , q⊥, q∥, v⃗d,E

)
при их

наличии.
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3 Представление векторных полей
Для сведения векторных уравнений к скалярным обыч-
но требуется репер - привязка к системе координат или
постоянному векторному полю. В случае стандартной со-
кращённой МГД постоянным является некоторое «про-
дольное» магнитное поле, а изменения поля описывают-
ся исключительно как малые поперечные поправки на
его фоне. При высоком относительном давлении плазмы
β ∼ 1 этот подход не работает, поскольку все компоненты
магнитного поля могут сильно меняться. В нашей моде-
ли малым параметром является непараксиальность, т.е.
естественным реперным полем является постоянное на-
правление оси магнитной системы установки e⃗z, а маг-
нитная ось разряда при этом может меняться. Магнитная
система ловушки находится снаружи от плазмы, так что
она может оказывать влияние на динамику только через
внешние боковые граничные условия на магнитное поле,
которые мы будем полагать известными.

Нам необходимо получить более полное представле-
ние магнитного поля по сравнению со стандартной со-
кращённой МГД, учитывающее в том числе и возмуще-
ния продольного поля. Для этого понадобятся минимум
два скалярных поля, в качестве которых мы выберем осе-
вые компоненты магнитного поля и векторного потенци-
ала. При этом точность представления магнитного поля
должна быть как минимум ϵ2, поскольку кривизна сило-
вых линий, влияющая на конвекцию, имеет порядок ∼ ϵ2.
Выберем представление магнитного поля в виде

B⃗ = Bz e⃗z + e⃗z ×∇ψ +∇⊥s, (31)

где Bz(r⃗, t) - произвольное аксиальное поле, ψ(r⃗, t) - акси-
альная компонента векторного потенциала, и s(r⃗, t) - по-
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правка, описывающая дивергентное поперечное поле. Па-
раксиальность магнитного поля означает, что ψ, s ∼ ϵ1.

Из ∇ · B⃗ = 0 имеем

∇2
⊥s = −

∂Bz

∂z
, (32)

что можно считать определением s. Здесь и ниже обо-
значение «⊥» относится к компонентам, перпендикуляр-
ным e⃗z, а не магнитному полю. Таким образом, магнитное
поле определено с помощью двух произвольных скаляр-
ных функций Bz, ψ и граничных условий для уравнения
(32). Граничные условия играют важную роль. Напри-
мер, с их помощью можно описать вакуумное магнитное
поле с винтовой симметрией как в установке СМОЛА при
Bz = const.

Для отыскания всех компонент поля необходимо ре-
шать двумерное уравнение Пуассона (32) с соответству-
ющим граничным условием, определяемым внешним по-
лем. Наше представление магнитного поля (31) делает
уравнение Пуассона двумерным в плоскости (x, y), что
упрощает численное решение.

По известному магнитному полю можно получить вы-
ражение для плотности тока с помощью уравнения Макс-
велла:

4π

c
j⃗ = e⃗z∇2

⊥ψ −∇⊥
∂ψ

∂z
− e⃗z ×∇

(
Bz −

∂s

∂z

)
. (33)

Слагаемое с ∂ψ/∂z описывает дивергентную часть попе-
речного тока плазмы, которая замыкается продольным
током.

Абсолютную величину поля можно найти по

B2 = B2
z + |e⃗z ×∇ψ +∇⊥s|2. (34)
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C точностью ϵ2

B = Bz +
|e⃗z ×∇ψ +∇⊥s|2

2Bz

. (35)

Форма силовой линии может быть найдена из реше-
ния уравнения

r⃗′ =
dr⃗

dz
=
e⃗z ×∇ψ +∇⊥s

Bz

, (36)

где r⃗ - поперечный радиус-вектор от оси системы, штрих
означает производную по z. Единичный вектор вдоль по-
ля

b⃗ =
(e⃗z + r⃗′)

h
, (37)

где h =
√
1 + r′2. Если использовать параксиальное при-

ближение, т.е. считать r⃗′ ∼ ϵ, e⃗z∇ ∼ ϵ, то с точностью
ϵ1

b⃗ ≈ e⃗z + r⃗′, (38)

а кривизна магнитной силовой линии получится величи-
ной второго порядка:

κ⃗ =
(⃗
b∇
)
b⃗ ≈ r⃗′′. (39)

В старшем приближении по параксиальности вектор кри-
визны ортогонален к e⃗z, что будет использоваться при
дальнейшем выводе.

Гидродинамическая скорость плазмы также является
векторным полем, которое нужно выразить через скаляр-
ные. Представим его в виде

v⃗ = v∥⃗b+ e⃗z ×∇χ+∇⊥u. (40)
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Из-за сильной анизотропии уравнения движения, поле
«продольной» скорости v∥ логично привязать к направ-
лению магнитного поля b⃗, а не к e⃗z. Это не мешает оста-
вить две другие компоненты - вихревую, e⃗z×∇χ, и дивер-
гентную, ∇⊥u, привязанными к e⃗z, хотя выбранное пред-
ставление теперь неортогонально (в меру непараксиаль-
ности). В дальнейшем мы установим, что из условия по-
перечного квазиравновесия следует второй порядок ма-
лости дивергентной части поперечной скорости∇⊥u ∼ ϵ2,
так что можно не учитывать её инерцию и связать с про-
чими параметрами разряда уравнением Пуассона типа
(32). Несмотря на малость, дивергентная часть попереч-
ной скорости очень важна для описания долгосрочной
эволюции плотности, завихренности и давления плазмы.
В выражении ζ через компоненты скорости не содержит-
ся вихревой потенциал скорости χ:

ζ ≡ ∇ · v⃗ =
(
B⃗∇

) v∥
B

+∇2
⊥u. (41)

В стандартной сокращённой МГД представление по-
перечной скорости соответствует дрейфу в скрещенных
полях и производится посредством скалярного потенциа-
ла электрического поля φ, а отдельного вихревого потен-
циала скорости χ нет. Наш подход основан на обратной
логике: поскольку течение плазмы обладает инерцией, а у
поля её почти нет, то именно течение формирует распре-
деление электрического поля в плазме, а не наоборот. Это
означает, что по найденной из уравнений движения ско-
рости мы будем искать компоненты электрического поля
и выражать их через χ, u с помощью обобщённого закона
Ома или (26).
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4 Поперечное квазиравновесие
Сутью «сокращения» магнитной гидродинамики являет-
ся описание высокочастотной ветви поперечного магнит-
ного звука как квазиравновесия. В параксиальном при-
ближении хорошо известное условие поперечного равно-
весия плазмы можно приближённо записать как

B2 + 8πp⊥ = B2
v , (42)

где Bv - вакуумное магнитное поле, p⊥ - поперечное дав-
ление плазмы. Проблема с этим выражением в том, что
при β = 8πp⊥/B

2
v → 1 любые малые погрешности вычис-

ления становятся важными и, например, могут привести
к нефизическим решениям типа B2 < 0. В реальности,
если в какой-то момент окажется, что β > 1, это приве-
дёт к быстрому расширению плазмы и, сначала, дисба-
ланс сил компенсируется инерцией, а затем расширение
приведёт к адиабатическому снижению давления. Суще-
ствует обратная связь между p⊥ и B, вне рамок уравне-
ния равновесия, предотвращающая нефизические реше-
ния. Эта обратная связь порождает и быстрые магнито-
звуковые колебания, которые мы надеемся исключить из
рассмотрения с помощью уравнения (42). Ситуация по-
хожа на описание несжимаемой жидкости: если исполь-
зовать только условие ρ = const, забывая про ∇ · v⃗ = 0,
можно сильно ошибиться.

В качестве быстрой обратной связи между давлением
плазмы и полем в силовой трубке, в магнитной гидро-
динамике действуют механизмы адиабатического изме-
нения давления, p⊥/ργ = const, и вмороженности, ρ/B =
const. В совокупности это даёт p⊥/Bγ = const. Важным
частным случаем является поперечная адиабата ЧГЛ (Чу-
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Голдбергера-Лоу):

p⊥
ρB

= const, (43)

которая с учётом вмороженности соответствует γ = 2. Её
мы и будем использовать в дальнейшем.

Константа в правой части адиабаты на самом деле
является медленно меняющейся функцией, эволюция ко-
торой определяется процессами продольного перетекания
плазмы и поперечного переноса, но остаётся постоянной
на коротком периоде магнитного звука. Именно такого
типа функции следует использовать в уравнениях в усло-
виях квазиравновесия. Введём «медленную» функцию

βs(r⃗, z, t) ≡
8πp⊥
B2

, 0 ≤ βs ≤ ∞. (44)

С её помощью условие поперечного равновесия может
быть переписано в виде пары уравнений на «медленные»
составляющие магнитного поля, B̄, и давления, p̄⊥:

B̄ =
Bv√
1 + βs

, (45)

p̄⊥ =
βsB

2
v

8π(1 + βs)
. (46)

Как видно, проблема B2 < 0 полностью исчезла.
Параксиальное поперечное квазиравновесие (42) в на-

шем представлении имеет точность ϵ0. С этой точки зре-
ния под Bv можно понимать несколько различные по-
стоянные или функции координат. По выводу уравнения
равновесия в прямой системе это должно быть магнитное
поле снаружи от плазмы. Само это поле зависит от токов
во внешних проводниках и может реагировать на изме-
нения магнитного поля в плазме из-за наведённых токов.
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Например, поле снаружи от плазмы, окружённой прово-
дящим кожухом, будет возрастать с ростом диамагнетиз-
ма плазмы. Не углубляясь в детали описания внешних
граничных условий для магнитного поля, будем считать,
что они заданы именно в виде функции Bv(z, t). Её можно
использовать для повышения точности квазиравновесия
с учётом непараксиальности.

Для уточнения уравнения (42) необходимо при его вы-
воде из уравнения движения (19) учесть влияние попе-
речных сил второго порядка малости на площадь сече-
ния силовой трубки. Например, силы, возникающей из-
за натяжения искривлённых силовых линий. Эта сила
стремится выпрямить силовую трубку, а не изменить её
сечение, но она также имеет небольшую дивергентную
часть. Ненулевая дивергенция поперечных сил соответ-
ствует магнитозвуковым возмущениям и в нашей моде-
ли должна привести всего лишь к небольшому смещению
квазиравновесия от его нулевого приближения (45). Та-
ким образом, поправка к квазиравновесию может быть
найдена из дивергенции поперечных компонент уравне-
ния движения.

Найдём дивергенции от поперечных к полю компо-
нент слагаемых в уравнении движения (19) с помощью
тождеств

∇ · (∇ ·←→p )⊥ = ∇2
⊥p⊥ +∇ ·

(
p∥ − p⊥

)
κ⃗, (47)

1

c
∇ ·
[⃗
j × B⃗

]
= −∇2

⊥pM + 2∇ · pM κ⃗, (48)

где pM = B2/8π - давление магнитного поля. Для опи-
сания квазиравновесия дивергенцию инерционного члена
опустим, но ρ (v⃗∇) v⃗⊥ можно при необходимости считать
спрятанной в f⃗ (для возможных приложений с быстро
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вращающейся плазмой). Тогда получим:

∇2
⊥ (p⊥ + pM) +∇⊥ ·

[(
p∥ − p⊥ − 2pM

)
κ⃗− f⃗

]
= 0. (49)

Вслед за Ньюкомбом [12] обозначим

Q ≡ 2pM + p⊥ − p∥, P = p⊥ + pM . (50)

Как известно [16, 12], знак Q определяет МГД критерий
шланговой неустойчивости, т.е. эта величина характери-
зует жёсткость системы относительно изгибов.

Уравнение (49) содержит производные, поперечные к
магнитному полю, а хотелось бы переписать его в плоско-
сти, перпендикулярной к оси системы, как предыдущие
уравнения Пуассона. Это можно сделать следующим об-
разом:

∇⊥b = ∇⊥z + e⃗z (e⃗z∇)− b⃗
(⃗
b∇
)
≈

≈ ∇⊥z − r⃗′ (e⃗z∇)− e⃗z (r⃗′∇⊥)− r⃗′ (r⃗′∇) , (51)

так что с точностью ϵ2, в плоскости, поперечной к оси
системы, имеем

∇2
⊥ (p⊥ + pM) + (r⃗′∇⊥)

2
(p⊥ + pM)−

−∇⊥ ·
[
Qκ⃗+ f⃗

]
= 0. (52)

В нулевом приближении параксиальное квазиравно-
весие имеет однородное решение P = p⊥ + pM = B2

v/8π =
const, а уравнение (52) можно рассматривать как усло-
вие на поправку к его правой части. Второе слагаемое
при этом оказывается порядка ϵ3, им можно пренебречь
и пользоваться уравнением (49) в плоскости z = const.
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Поперечное квазиравновесие с точностью ϵ2 будет выгля-
деть как

pM =
P

1 + βs
, B̄ =

√
8πP√
1 + βs

, (53)

p̄⊥ =
βsP

1 + βs
= βspM , (54)

где P заменяет давление вакуумного поля B2
v/8π нулево-

го приближения и является решением двумерного урав-
нения Пуассона

∇2
⊥P = ∇⊥ ·

[
Qκ⃗+ f⃗

]
(55)

с граничным условием сшивки с давлением поля вне плаз-
мы P → B2

v/8π. Правая часть уравнения (55) – второго
порядка малости, и в ней можно использовать давление
и поле нулевого приближения.

5 Электромагнитное поле и закон
Ома

Электрическое поле входит в скорость дрейфа (26), а сле-
довательно должна быть связь между функцией скоро-
сти χ и потенциалом плазмы φ, как в классической сокра-
щённой МГД. Эту связь можно найти с помощью закона
Ома. В нашей модели закон Ома можно записать как

E⃗ +
1

c

[
v⃗ × B⃗

]
= E b⃗+

1

c

[
v⃗d × B⃗

]
≡ E⃗0, (56)

а через потенциал скорости

E⃗ = E⃗0 −
1

c

[
[e⃗z ×∇χ]× B⃗

]
. (57)
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Продольное электрическое поле представляет собой
малую поправку и слабо влияет на связь χ и φ, однако
оно может генерировать существенный ток и, следова-
тельно, возмущать поперечное магнитное поле. Посколь-
ку само ψ ∼ ϵ1, нам достаточно вычислить его с точно-
стью ϵ0, чтобы найти кривизну κ⃗ в ведущем порядке. С
такой точностью из проекции закона Ома на магнитное
поле получим

E∥ = −
(⃗
b∇
)
φ+

1

c

∂ψ

∂t
= E , (58)

или
∂ψ

∂t
= c

(⃗
b∇
)
φ+ cE (59)

как связь ψ и φ, что аналогично стандартным моделям
сокращённой МГД. Заметим, что здесь b⃗ ≈ e⃗z + r⃗′, а на-
клон силовой линии r⃗′ даётся выражением (36) и зависит
как от ψ, так и от дивергентной части поперечного поля.
В качестве альтернативы можно использовать проекцию
закона Ома на ось z:

Ez = − (e⃗z∇)φ−
1

c

∂Az

∂t
= E0z−

e⃗z
c

[
[e⃗z ×∇χ]× B⃗

]
, (60)

e⃗z

[
[e⃗z ×∇χ]× B⃗

]
= −

(
B⃗∇⊥χ

)
= −B (r⃗′∇⊥χ) . (61)

Поскольку Az = −ψ, получим
∂ψ

∂t
= c (e⃗z∇)φ+B (r⃗′∇⊥χ) + cE0z. (62)

Связь χ и потенциала плазмы φ получим из диверген-
ции E⃗ с Кулоновской калибровкой вектороного потенци-
ала:

∇ · E⃗ ≡ −∇2φ =

= ∇ · E⃗0 −∇ ·
(
Bz∇⊥χ− e⃗z

(
B⃗⊥∇⊥χ

))
. (63)
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Эту связь также можно переписать в виде поперечного
уравнения Пуассона

∇2
⊥φ = ∇⊥ (Bz∇⊥χ)− δq, (64)

где δq – поправка,

δq = ∇ · E⃗0 +
∂

∂z

(
B⃗⊥ · ∇⊥χ

)
+
∂2φ

∂z2
. (65)

Второе и третье слагаемое в δq имеют порядок ϵ2, но пер-
вое

∇ · E⃗0 = B⃗∇E

B
+

1

c
∇ ·
[
v⃗d × B⃗

]
, (66)

также может содержать слагаемые порядка ϵ0, зависящие
от скорости диамагнитного дрейфа v⃗d. Если эта скорость
велика или сравнима со скоростью дрейфа в скрещенных
полях, например, из-за большого ларморовского радиуса
ионов как в ловушке ГДЛ, то δq может оказаться важным
слагаемым в (64).

Из закона Ома взятием ротора можно получить урав-
нение вмороженности магнитного поля:

∂B⃗

∂t
= ∇×

[
v⃗ × B⃗

]
− c∇× E⃗0 (67)

и преобразовать его к виду

dB⃗

dt
=
(
B⃗∇

)
v⃗ − ζB⃗ − c∇× E⃗0, (68)

и далее к скалярному уравнению на осевую компоненту
магнитного поля

dBz

dt
=
(
B⃗∇

)
vz − ζBz − ce⃗z · ∇ × E⃗0, (69)
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или модуль магнитного поля

dB

dt
=
(
B⃗∇

)
v∥ −Bv⃗ · κ⃗− ζB − c⃗b · ∇ × E⃗0. (70)

Напомним, что мы используем обозначения ζ = ∇ · v⃗,
κ⃗ =

(⃗
b∇
)
b⃗. Выражения для ∇ · E⃗0, ∇ × E⃗0 для учёта

дрейфов и резистивности должны обсуждаться в связи
с конкретной используемой физической моделью зада-
чи. Альтернативные формы записи уравнения (70) будут
приведены ниже: (93), (94). В разделе 7 также показано,
что в условиях поперечного квазиравновесия уравнение
(70) должно использоваться не как уравнение переноса
B, а для определения дивергенции поперечной скорости
плазмы.

С помощью уравнений (68), (70) можно получить и
скорость изменения касательного вектора b⃗, которая по-
надобится в дальнейшем:

d⃗b

dt
=
[(⃗
b∇
)
v⃗
]
⊥
+
c

B

[
∇× E⃗0

]
⊥
. (71)

6 Уравнение движения и замыка-
ние токов

Основным уравнением классической сокращённой МГД
является уравнение для продольной компоненты завих-
ренности скорости, которое можно вывести взятием рото-
ра уравнения движения (19), или из условия замыкания
токов divj⃗ = 0 с учётом тока поляризационного дрейфа.
Мы будем следовать второму подходу. Для этого най-
дем поперечные компоненты плотности тока из уравне-
ния движения как сумму поляризационного, диамагнит-
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ного и дрейфового токов

j⃗⊥ = c
B⃗

B2
×
(
ρ
dv⃗

dt
+∇ ·←→p − f⃗

)
≡ j⃗pol + j⃗d + j⃗f . (72)

Дивергенция тензора давления даётся выражением (20).
Для каждой из компонент найдём дивергенции. При этом
токи j⃗pol, j⃗f считаем порядка ϵ2, так что их дивергенции
можно искать в нулевом приближении, а ток j⃗d имеет
порядок ϵ0 и требует аккуратности.

Дивергенцию диамагнитного тока запишем как

∇ · j⃗d = c∇p⊥ · ∇ ×
B⃗

B2
+ c∇ ·

[
B⃗

B2
× δf⃗p

]
. (73)

Далее, первое слагаемое преобразуем по схеме (x⃗ · y⃗) =(
x⃗ · b⃗

)(
y⃗ · b⃗

)
+
([
x⃗× b⃗

]
·
[
y⃗ × b⃗

])
и получаем

∇p⊥ · ∇ ×
B⃗

B2
=

4πj∥
B2

(⃗
b∇
)
p⊥+

+
1

B

[
∇p⊥ × b⃗

]
· (κ⃗+∇lnB) . (74)

Поскольку диамагнитный ток при β ∼ 1 большой, его
дивергенцию необходимо знать с высокой точностью. В
вакуумном поле и при низком β величина ∇lnB, как и
кривизна κ⃗ - второго порядка по непараксиальности, но
в целевом режиме даже при малой кривизне возможны
большие поперечные градиенты магнитного поля. При
этом дивергенция диамагнитного тока остаётся малой за
счёт примерной параллельности векторов ∇p⊥и ∇lnB.
Использовать здесь условие квазиравновесия в нулевом
приближении нельзя, поскольку его точность недостаточ-
на.
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Найдём
[
∇p⊥ × b⃗

]
·∇B с точностью ϵ2 с помощью пол-

ного уравнения движения (72):

∇p⊥ × b⃗ = b⃗×
[
ρ
dv⃗

dt
− f⃗ + δf⃗p

]
− B

4π

[
∇× B⃗

]
⊥
, (75)

при том, что b⃗× δf⃗p =
(
p∥ − p⊥

)
b⃗× κ⃗. Далее заметим, что[

∇× B⃗
]
⊥
·∇B = B

[
∇× b⃗

]
⊥
·∇B = Bκ⃗ ·

[
∇B × b⃗

]
, (76)

и следовательно[
∇p⊥ × b⃗

]
·∇B = b⃗×

[
ρ
dv⃗

dt
− f⃗ +

(
p∥ − p⊥ − 2pM

)
κ⃗

]
·∇B.

(77)
Дивергенция тока из-за δf⃗p также оказывается про-

порциональным кривизне:

∇ ·

[
B⃗

B2
× δf⃗p

]
= ∇ ·

[
b⃗

B
×
(
p∥ − p⊥

)
κ⃗

]
=

= ∇ ·
[
p∥ − p⊥
B

(
∇× b⃗

)
⊥

]
=

= b⃗× κ⃗ · ∇
p∥ − p⊥
B

−
(
B⃗∇

)((
p∥ − p⊥

) b⃗∇× b⃗
B2

)
. (78)

При этом продольный ток связан с продольной компо-
нентой векторного потенциала ψ согласно (33), и

b⃗ · ∇ × b⃗ =
4πj∥
cB

=
∇2

⊥ψ

B
, (79)

так что

∇ ·

[
B⃗

B2
× δf⃗p

]
= b⃗× κ⃗ · ∇

p∥ − p⊥
B

−

−
(
B⃗∇

) ∇2
⊥ψ
(
p∥ − p⊥

)
B3

. (80)
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Собирая все компоненты, получим дивергенцию диамаг-
нитного тока с точностью ϵ2:

∇ · j⃗d = c⃗b×
[
ρ
dv⃗

dt
− f⃗

]
· ∇B
B2

+
c

B
b⃗× κ⃗ · ∇

(
p∥ − pM

)
+

+
j∥

2pMB

(
B⃗∇

)
p⊥ −

(
B⃗∇

) j∥ (p∥ − p⊥)
2pMB

, (81)

где pM = B2/8π, причём градиент поперечного давления
в комбинации с кривизной сократился.

В результате повторного использования уравнения дви-
жения в выражении для ∇ · j⃗d присутствуют слагаемые
с инерцией и f⃗ . Их стоит объединить с дивергенциями
токов j⃗pol, j⃗f соответственно:

∇ ·
(⃗
jpol + j⃗f

)
+ c⃗b×

[
ρ
dv⃗

dt
− f⃗

]
· ∇B
B2

=

= − c

B
b⃗ · ∇ ×

[
ρ
dv⃗

dt
− f⃗

]
. (82)

Таким образом, суммарная дивергенция поперечного то-
ка имеет вид

∇ · j⃗⊥ =
c

B

(⃗
b× κ⃗ · ∇

(
p∥ − pM

)
− b⃗ · ∇ ×

[
ρ
dv⃗

dt
− f⃗

])
+

+
j∥

2pMB

(
B⃗∇

)
p⊥ −

(
B⃗∇

) j∥ (p∥ − p⊥)
2pMB

. (83)

Инерционное слагаемое можно было бы переписать через
потенциал скорости χ, но это действие лучше отложить
до разрешения уравнения относительно производной по
времени, которое проведено в следующем параграфе.

Дивергенция поперечного тока может быть исполь-
зована как часть уравнения замыкания токов в условии
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квазинейтральности:

∇ · j⃗ = ∇ · j⃗⊥ +
(
B⃗∇

) j∥
B

= 0, (84)

в котором появляется ещё одно слагаемое с продольным
током. Попробуем собрать их в комбинацию Sj:

Sj =
j∥

2pMB

(
B⃗∇

)
p⊥ +

(
B⃗∇

) Qj∥
2pMB

, (85)

где Q = 2pM + p⊥ − p∥, как и ранее, так что условие
замыкания токов в плазме имеет вид

b⃗× κ⃗ · ∇
(
p∥ − pM

)
− b⃗ · ∇ × ρdv⃗

dt
+ b⃗ · ∇ × f⃗ +

+ 2pM

(⃗
b∇
)[Q∇2

⊥ψ

2pMB

]
+
∇2

⊥ψ

B

(⃗
b∇
)
p⊥ = 0. (86)

Далее это уравнение будет преобразовано в закон эволю-
ции обобщённой завихренности течения.

7 Поперечная несжимаемость
Скорость течения плазмы (40) в нашей модели не может
быть произвольной, она должна соответствовать только
переходам между квазиравновесными состояниями. В ну-
левом приближении по ϵ это означает, что поперечная
скорость должна быть бездивергентной, т.е.

v⃗
(0)
⊥ = e⃗z ×∇χ, (87)

где χ(r⃗, z, t) - вихревой потенциал. В стандартной сокра-
щённой гидродинамике ситуация аналогична, но роль χ
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играет электростатический потенциал, поскольку попе-
речная «несжимаемость» является следствием сохране-
ния продольного магнитного поля при низком β. В на-
шем случае природа поперечной несжимаемости течения
связана с квазиравновесием при наличии вмороженности.
Действительно, в нулевом порядке по ϵ, когда продоль-
ным течением и переносами можно пренебречь, в движу-
щейся силовой трубке давление плазмы связано с «мед-
ленной» функцией βs как (46), и при этом меняется со-
гласно адиабате (22), т.е.

d

dt
lnp⊥ = −2∇ · v⃗⊥ =

d

dt
ln

(
βs

1 + βs

)
= O(ϵ2). (88)

Найдём ∇ · v⃗⊥ из явного выражения для скорости по-
перечного дрейфа (26). Это позволит узнать, какому са-
мосогласованному полю соответствует нужный тип попе-
речной скорости.

∇ · v⃗⊥ = ∇ ·

[
c
E⃗ × b⃗
B

+ v⃗d

]
=

= − B⃗

B2
· ∂B⃗
∂t
− cE⃗ · ∇ × B⃗

B2
+∇ · v⃗d. (89)

При помощи промежуточных выкладок

cE⃗ · ∇ × B⃗

B2
=
j∥E∥

2pM
+ c

E⃗ × b⃗
B
· (κ⃗+∇⊥lnB) (90)

получаем выражение

∇ · v⃗⊥ = −v⃗ · κ⃗−
(
d

dt

)
⊥
lnB + qu, (91)

где

qu = −
j∥E

2pM
+ v⃗d · (κ⃗+∇⊥lnB) +∇ · v⃗d, (92)
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и (d/dt)⊥ = ∂/∂t+ ez ×∇χ · ∇ содержит только попереч-
ные к полю компоненты скорости. По физическому смыс-
лу первое слагаемое в (91) отвечает за изменение удель-
ного объёма искривлённой силовой трубки при дрейфе
вдоль радиуса кривизны, а второе - за медленное измене-
ние сечения трубки при эволюции квазиравновесия из-за
поперечного переноса и продольного течения. При низ-
ком давлении плазмы второым слагаемым обычно пре-
небрегают, но нам надо его сохранить и также найти с
точностью ϵ2. Остаток, qu, соответствует амбиполярным,
дрейфовым и диссипативным эффектам.

Выражение (91) эквивалентно поперечной компоненте
уравнения (70) переноса для модуля магнитного поля(

d

dt

)
⊥
lnB = −∇ · v⃗⊥ − v⃗ · κ⃗+ qu, (93)

или, с полными производными и дивергенцией скорости,

d

dt
lnB =

(⃗
b∇
)
v∥ − ζ − v⃗ · κ⃗+ qu. (94)

Таким образом, нужный тип поперечной скорости плаз-
мы, совместимый с квазиравновесием (53), (54), реали-
зуется с условием (91). Причинная логика следующая:
продольное течение и переносы медленно меняют рас-
пределение βs на участке силовой трубки, в результате
смещается точка квазиравновесия и меняются p⊥, B. По
скорости изменения B с помощью (91) находим попереч-
ную дивергенцию скорости. Заметим, что квазиравнове-
сие определяет только поперечную дивергенцию скоро-
сти, полную дивергенцию ζ из (94) найти не получится.

Малая дивергентная часть нашего представления ско-
рости (40) описывается потенциалом u. Теперь можно
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сказать, что он удовлетворяет двумерному уравнению Пуас-
сона

∇2
⊥u = ∇ · v⃗⊥, (95)

где ∇ · v⃗⊥ берётся из (91). Уточнённое квазиравновесие
(53) можно переписать как

lnB̄ =
1

2
(lnP − ln(1 + βs) + ln(8π)) , (96)

и использовать в уравнении для поперечной дивергенции
скорости плазмы (95). В итоге, для нее получим уравне-
ние

∇2
⊥u = −v⃗ · κ⃗− 1

2P

(
dP

dt

)
⊥
+

1

2 + 2βs

(
dβs
dt

)
⊥
+ qu. (97)

8 Обобщённая завихренность
Вихревое движение неоднородной жидкости удобно опи-
сывать с помощью вектора обобщённой завихренности

Ω⃗ = ∇× ρv⃗. (98)

Перепишем через (98) ротор силы инерции капли жидко-
сти, входящий в условие замыкания токов (86), используя
уравнение непрерывности и тождество

dv⃗

dt
=
∂v⃗

∂t
+∇v

2

2
− v⃗ × [∇× v⃗] . (99)

Сперва перепишем инерцию в виде

ρ
dv⃗

dt
=

∂

∂t
(ρv⃗) + ρv⃗∇ · v⃗ + ρ∇v

2

2
+ v2∇ρ− v⃗ × Ω⃗, (100)
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а затем возьмём её ротор

∇× ρdv⃗
dt

=
dΩ⃗

dt
+∇v

2

2
×∇ρ−

−
(
Ω⃗∇

)
v⃗ + 2Ω⃗∇ · v⃗ +∇ (∇ · v⃗)× ρv⃗. (101)

Нас интересует только продольная проекция этого выра-
жения и, соответственно, продольная часть обобщённой
завихренности Ω = Ω⃗ · b⃗. Поперечную компоненту завих-
ренности находим как

Ω⃗⊥ ≈ ∇
(
ρv∥
)
× b⃗, (102)

тогда для продольной компоненты Ω, с использованием
(71), получим

b⃗ · ∇ × ρdv⃗
dt
≈ dΩ

dt
+ b⃗ · ∇v

2
⊥
2
×∇ρ−

− Ω⃗⊥
d⃗b

dt
−Ω

(⃗
b∇
)
v∥ + 2Ωζ + ρ∇ζ · ∇⊥χ. (103)

С помощью выражения (103) удаётся разрешить урав-
нение замыкания токов (86) относительно производной
по времени введением ещё одной скалярной функции -
продольной компоненты обобщённой завихренности. Са-
мо уравнение после этого можно будет назвать уравнени-
ем переноса завихренности, а его конечный вид выглядит
следующим образом

dΩ

dt
+Ω

(
2ζ −

(⃗
b∇
)
v∥

)
+ b⃗ · ∇v

2

2
×∇ρ+

+ ρ∇ζ · ∇⊥χ− b⃗× κ⃗ · ∇
(
p∥ − pM

)
=

= b⃗ · ∇ × f⃗ + 2pM

(⃗
b∇
)[Q∇2

⊥ψ

2pMB

]
+
∇2

⊥ψ

B

(⃗
b∇
)
p⊥.

(104)
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Остаётся связать потенциал скорости χ и завихрен-
ность Ω. В параксиальном приближении это достаточно
просто:

Ω = b⃗ · ∇ × ρv⃗ = ∇⊥ · ρ∇⊥χ+ ρv∥
∇2

⊥ψ

B
. (105)

Второе слагаемое отвечает за завихренность продольного
течения при b⃗ · ∇ × b⃗ ̸= 0. Сложность задачи в том, что,
если эволюция скорости определяется переносом завих-
ренности, то вихревой потенциал скорости оказывается
решением уравнения эллиптического типа (105) относи-
тельно χ.

Решать уравнение связи (105) относительно χ по из-
вестной Ω при произвольном распределении плотности –
непросто, особенно если есть области с низкой плотно-
стью, как, например, в залимитерной зоне SOL. Возник-
новение структур типа стримеров (быстрых струй) в об-
ластях с большими перепадами плотности, по-видимому,
является неустранимым физическим эффектом. Попыт-
ки замены обобщённой завихренности на обычную (с це-
лью упрощения уравнения связи) приводят к переуслож-
нению эволюционного уравнения.

9 Продольное движение и эволю-
ция давления

Известно, что продольное течение слабостолкновитель-
ной плазмы с околозвуковыми частотами плохо описы-
вается магнитной гидродинамикой из-за сильного кине-
тического эффекта - затухания Ландау. Проблему при-
менимости и уточнения модели продольного движения
плазмы следует решать в каждой конкретной задаче, а
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мы используем слабо-столкновительную магнитную гид-
родинамику с анизотропным давлением. В этом случае
продольная компонента уравнения движения (19) с учё-
том (20) и параксиальности даёт

ρ⃗b · dv⃗
dt

= −(⃗b∇)p∥ +
(
p∥ − p⊥

)
(⃗b∇)lnB + f∥. (106)

Используя выражение (71) для d⃗b/dt, получим

ρ
dv∥
dt

= −(⃗b∇)p∥ +
(
p∥ − p⊥

)
(⃗b∇)lnB + ρv∥v⃗ · κ⃗+

+ ρ
(⃗
b∇
) v2

2
+ f∥ + ρ

c

B
v⃗ ·
[
∇× E⃗0

]
⊥
. (107)

Диссипация продольного течения (желательная для
численного моделирования) моделируется столкновитель-
ной релаксацией анизотропии давления, что эквивалент-
но продольной вязкости. В этом случае уравнение (23)
можно переписать в виде

dp∥
dt

+ ζp∥ + 2p∥(⃗b∇)v∥ − 2νT
(
p⊥ − p∥

)
+ q̂∥ = 0. (108)

Уравнение (22) также может быть переписано с учё-
том (94) и продольной вязкости:

dp⊥
dt

+ 2ζp⊥ − p⊥
(⃗
b∇
)
v∥ + p⊥v⃗ · κ⃗−

− p⊥qu + νT
(
p⊥ − p∥

)
+ q̂⊥ = 0. (109)

Заметим, что по сравнению со стандартным видом урав-
нения для поперечного давления [16] здесь появилось но-
вое слагаемое p⊥v⃗ · κ⃗ ∼ ϵ2, которое связано с измене-
нием объёма силовой трубки в искривлённом поле. По-
видимому, этот член ранее опускался из-за малости кри-
визны. В нашей модели можно либо использовать урав-
нение связи (54), либо свести (22) к уравнению эволюции
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βs:

dβs
dt

+ βs

((⃗
b∇
)
v∥ − v⃗ · κ⃗+ qu

)
+

+ νT

(
βs −

p∥
pM

)
+
q̂⊥
pM

= 0. (110)

10 Итоговая система уравнений со-
кращённой МГД

Соберём все полученные выше уравнения в виде полной
системы. Магнитное поле представляется в виде

B⃗ = Bz e⃗z + e⃗z ×∇ψ +∇⊥s, (111)

где осевое поле можно переобозначить как Bz ≡
√
8πpM и

выразить через поперечное давление плазмы с помощью
условия квазиравновесия. Если βs = p⊥/pM , и P является
решением уравнения связи

∇2
⊥P = ∇⊥ ·

[(
p∥ − (2 + βs) pM

)
κ⃗+ f⃗

]
, (112)

то
pM =

P

1 + βs
. (113)

Здесь κ⃗ – кривизна, f⃗ – внешняя объёмная сила. В ну-
левом порядке по параксиальности P – местное давление
вакуумного магнитного поля, а правая часть (112) име-
ет порядок ϵ2, так что его можно решать итерациями.
Уравнения связи решаются с граничными условиями на
границе вакуумного объёма, которые могут зависеть от
времени.
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Поправка s удовлетворяет своему уравнению связи,
обеспечивающему вездивергентный характер магнитного
поля

∇2
⊥s = −

∂Bz

∂z
. (114)

Вектор скорости плазмы представляется в виде

v⃗ = v∥⃗b+ e⃗z ×∇χ+∇⊥u, (115)

где вихревой потенциал χ можно найти из продольной
компоненты обобщённой завихренностиΩ путём решения
уравнения связи

∇⊥ · ρ∇⊥χ = Ω − ρv∥
∇2

⊥ψ

B
. (116)

Малая дивергентная часть поперечной скорости∇⊥u долж-
на быть согласована с изменениями поперечного квази-
равновесия:

∇2
⊥u = −v⃗ · κ⃗− 1

2P

(
dP

dt

)
⊥
+

1

2 + 2βs

(
dβs
dt

)
⊥
+ qu. (117)

Здесь (d/dt)⊥ ≡ ∂/∂t+ e⃗z×∇χ ·∇, скорость изменения P
определяется внешними (граничными) условиями и ма-
лыми поправками в правой части (112), а(

dβs
dt

)
⊥
= −

(⃗
b∇
)
βsv∥ + βsv⃗ · κ⃗− βsqu−

− νT
(
βs −

p∥
pM

)
− q̂⊥
pM

(118)

может быть подставлена в явном виде из уравнения эво-
люции поперечного давления (ниже), но сохранена для
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сокращения записи. Нужно отметить, что без учёта дрей-
фовых и диссипативных эффектов при большом βs суще-
ственный вклад в дивергенцию поперечной скорости вно-
сит продольное перетекание энергии плазмы, а при малом
она определяется кривизной поля ∇2

⊥u ∼ −v⃗ · κ⃗.
Полная система динамических уравнений сокращён-

ной магнитной гидродинамики состоит из

1. уравнения непрерывности

dρ

dt
+ ζρ = qρ; (119)

2. продольной компоненты закона Ома

∂ψ

∂t
= c

(⃗
b∇
)
φ+ cE , (120)

причём локальный электростатический потенциал
плазмы определяется по вихревому потенциалу ско-
рости уравнением связи

∇2
⊥φ = ∇⊥ (Bz∇⊥χ)− δq; (121)

3. уравнения переноса обобщённой завихренности

dΩ

dt
+Ω

(
2ζ −

(⃗
b∇
)
v∥

)
= −b⃗ · ∇v

2

2
×∇ρ+

+ b⃗× κ⃗ · ∇
(
p∥ − pM

)
− ρ∇ζ · ∇⊥χ+

+ 2pM

(⃗
b∇
)[Q∇2

⊥ψ

2pMB

]
+
∇2

⊥ψ

B

(⃗
b∇
)
(βspM)+

+ b⃗ · ∇ × f⃗ ; (122)
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4. продольного уравнения движения

ρ
dv∥
dt

= −(⃗b∇)p∥ +
(
p∥ − βspM

)
2

(⃗b∇)lnpM +

+ ρv∥v⃗ · κ⃗+ ρ
(⃗
b∇
) v2

2
+ f∥ + ρ

c

B
v⃗ ·
[
∇× E⃗0

]
⊥
, (123)

5. и двух замыкающих уравнений для поперечной и
продольной компонент давления:

dβs
dt

+ βs

((⃗
b∇
)
v∥ − v⃗ · κ⃗+ qu

)
+

+ νT

(
βs −

p∥
pM

)
+
q̂⊥
pM

= 0, (124)

dp∥
dt

+ ζp∥ + 2p∥(⃗b∇)v∥−

− 2νT
(
βspM − p∥

)
+ q̂∥ = 0. (125)

Таким образом, полная модель требует решения 6 ска-
лярных трёхмерных уравнений во времени и 5 двумерных
уравнений связи эллиптического типа.

11 Заключение
Получена полная система уравнений сокращённой маг-
нитной гидродинамики для плазмы параксиальных ло-
вушек с высоким анизотропным давлением. Для самосо-
гласованного учёта диссипации и дрейфовых эффектов
использованы свободные члены, которые могут менять-
ся в зависимости от использованной физической модели.
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Система уравнений может применяться при разработке
численных моделей разрядов в газодинамических ловуш-
ках. Сокращённая МГД с учётом источников и диссипа-
тивных эффектов может быть очень полезна для модели-
рования эволюции и устойчивости переходных режимов
от вихревого удержания при низком давлении плазмы к
диамагнитному удержанию с β ∼ 1.
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