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Abstract

The structure function approach and the parton picture, developed for the theo-
retical description of the deep inelastic electron-proton scattering, also proved to be
very effective for calculation of radiative corrections in Quantum Electrodynamics.
We use them to calculate radiative corrections to the cross section of electron-proton
scattering due to electron-photon interaction, in the experimental setup with the re-
coil proton detection, proposed by A.A. Vorobev to measure the proton radius. In
the one-loop approximation, explicit expressions for these corrections are obtained
for arbitrary momentum transfers. It is shown that, at momentum transfers small
compared with the proton mass, various contributions to the corrections mutually
cancel each other with power accuracy. In two loops, the corrections are obtained
in the leading logarithmic approximation.
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1 Introduction
Although after appearance of the paper [1] the "proton radius puzzle" [2, 3] – the striking
difference in the proton radius values extracted from the 2S-2P transition in muonic
hydrogen [4, 5] and obtained from electron-proton scattering and hydrogen spectroscopy
[6] (for a review, see Ref. [7]) – seems partially (regarding the contradiction between
the results of experiments with muonic and usual hydrogen) resolved, the contradiction
between muonic hydrogen and electron-proton scattering results remains. Moreover, latest
electron scattering experiments at Jlab [8] and MAMI [9] and hydrogen spectroscopy
experiments [10, 11] not only did not resolve the puzzle, but made it even more confusing.

Currently new scattering experiments are being prepared. A distinctive feature of
one of them [12], which was suggested by A.A. Vorobev and has to be performed with a
low-intensity electron beam at MAMI, is that instead of detecting a scattered electron,
as in previous experiments, it is supposed to detect with a high precision a recoil proton
in the region of low momentum transfers (0.04 GeV2 > Q2 > 0.001 GeV2). The aim is to
extract the proton radius with 0.6 percent precision, which could be decisive in solving
the proton radius puzzle. To this end, it is planned to achieve 0.2 percent accuracy of the
cross section dσ/(dQ2) measurement.

Such accuracy requires precise account of radiative corrections. Although calculation
of the radiative corrections to the electron-proton scattering cross section has a long his-
tory (see, for example, Refs. [13]-[16]1, and recent reviews [18]-[20]) the results obtained
before cannot be completely applied to the experiment discussed above. The reason it
that they were obtained for experiments in which scattered electrons were detected (hon-
estly speaking, there was the experiment [21] where the recoil proton was detected; but
calculation of the radiative corrections to this experiment was not explained). Since the
radiative corrections include contributions of inelastic processes with photon emission,
they depend strongly on experimental conditions, so that the corrections calculated for
experiments with detection of scattered electrons are not suitable for experiments with
detection of recoil proton. It occurs [22] that the radiative corrections for experiments
with detection of recoil proton have a new unexpected and pleasant property – cancel-
lation of the most important corrections, which are due to electron-photon interaction2,
in the region of low momentum transfers. In [22], the cancellation of not only infrared,
but also collinear singularities was shown and a simple physical explanation of this phe-
nomenon was given. It was also argued that in the one-loop approximation the accuracy
of the cancellation is higher than the logarithmic, and the terms not having the collinear
singularities (constant terms) are cancelled as well.

Here we refine the results of [22] and get new ones, with a wider scope of applicability,
using the structure function approach and the parton picture, developed for the theoretical
description of the deep inelastic electron-proton scattering [25]-[29] and adopted in [30]
for calculation of radiative corrections in QED.

1Higher order corrections to the lepton line was considered for the standard experimental set-up with
scattered electron measurement in [17].

2Cancellation of leptonic radiative corrections to deep inelastic scattering was discussed in [23] and[24].
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2 Statement of the approach
Following [22], we denote four-momenta of initial and final electron (proton) as l (p) and
l′ (p′); l2 = l′2 = m2, p2 = p′2 = M2, and use the designations Q2 = −q2, q = p − p′
both for elastic the and inelastic processes.

The cross section of electron-proton scattering with radiative corrections due only to
electron interaction can be considered as inclusive proton-electron scattering cross section.
It means that it can be written as

E ′p
d3σ

d3p′
=

(α(Q2))2

Q4

1√
(pl)2 −m2M2

Jµν(p, p′)Wµν(l, q) , (2.1)

where
α(Q2) =

α

1− P(q2)
, (2.2)

P(q2) is the vacuum polarisation, which is real at q2 = −Q2 < 0; Jµν(p, p′) is the proton
current tensor

Jµν(p, p′) =
∑

pol
JµJ∗ν , (2.3)∑

pol means summation over final polarisations and averaging over initial ones,

Jµ = ū(p′)

(
f1(Q2) γµ + f2(Q2)

[γµ, γν ]qν
4M

)
u(p) , (2.4)

f1(Q2) and f2(Q2) are the the Dirac and Pauli form factors of the proton, and Wµν(l, q)
is the deep inelastic scattering tensor,

Wµν(l, q) =
1

4π

∑
X
〈l|j(e)

ν (0)|X〉 〈X|j(e)
µ (0)|l〉 (2π)4δ(q + l − pX) . (2.5)

Here |l〉 is the initial electron state, |X〉 is any state which can be produced in photon-
electron collisions,

∑
X means averaging over initial electron polarisations and summation

over discrete and integration over continuous variables of |X〉, j(e)
µ is the electron electro-

magnetic current operator.
Taking into account conservation of the current, one can represent Wµν in the form

W µν(l, q) = F1(x,Q2)

(
−gµν +

qµqν

q2

)
+
F2(x,Q2)

(lq)

(
lµ − (lq)

q2
qµ
)(

lν − (lq)

q2
qν
)
, (2.6)

where
x = Q2/(2(lq)) (2.7)

is the Bjorken variable and Fi(x,Q
2) are the electron structure functions. They are

expressed in terms of the convolutions Wi of the tensor W µν(l, q)

Wg = Wµν(l, q)g
µν , Wl = Wµν(l, q)l

µlν (2.8)

using the relations

F1(x,Q2) =
1

2

(
Q2 Wl

Q2m2 + (ql)2
−Wg

)
, (2.9)
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F2(x,Q2) =
1

2

Q2(ql)

(Q2m2 + (ql)2)

(
3Q2 Wl

Q2m2 + (ql)2
−Wg

)
. (2.10)

Calculating the tensor Jµν ,

Jµν = G2
M(Q2)

(
gµνq

2 − qµqν
)

+
Q2G2

M(Q2) + 4M2G2
E(Q2)

4M2 +Q2
P µP ν , (2.11)

where P = p+p′, GE(Q2) and GM(Q2) are the proton electric and magnetic form factors,

GM(Q2) = f1(Q2) + f2(Q2), GE(Q2) = f1(Q2)− Q2

4M2
f2(Q2) , (2.12)

performing tensor convolution and using

d3p′

2E ′p
=
π

4

Q2dQ2dx

x2
√

(pl)2 −m2M2
, (2.13)

we obtain

dσ

dQ2dx
=

π(α(Q2))2

2x2Q2((pl)2 −m2M2)

[
(2Q2G2

M − 4M2G2
E)F1(x,Q2)+(

−G2
M(m2Q2 + (ql)2) +

Q2G2
M + 4M2G2

E

4M2 +Q2
(Pl)2

)
F2(x,Q2)

(ql)

]
.

(2.14)

Here

(ql) =
Q2

2x
, (Pl) = 2(pl)− Q2

2x
, (pl) = MEl , (2.15)

where El is the energy of the incident electron in the rest frame of the initial proton.
In the Born approximation, the cross section dσB

dQ2 is determined by (2.14) with α(Q2) =

α, F2(x,Q2) = 2F1(x,Q2) = δ(1− x):

dσB
dQ2

=
πα2M2

Q4

(4(pl)−Q2)2 + (Q2 + 4M2)(Q2 − 4m2)

(Q2 + 4M2)((pl)2 −m2M2)
(εG2

E + τG2
M) , (2.16)

ε =
(4(pl)−Q2)2 −Q2(Q2 + 4M2)

(4(pl)−Q2)2 + (Q2 + 4M2)(Q2 − 4m2)
, τ =

Q2

4M2
. (2.17)

Formula (2.14) gives the exact expression for the cross section of electron-proton scattering
taking into account all processes of electron-photon interaction. The radiation correction
due to this interaction is determined by the equation

δeγ =

∫ 1

0
dx dσ

dQ2dx

dσB
dQ2

− 1 (2.18)

and can be written as
δeγ =

1 + δe

(1− P(q2))2
− 1 , (2.19)
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where δe is the correction associated with the electron structure, that is, with the difference
F2(x,Q2) and 2F1(x,Q2) from δ(1− x).

Our main goal here is to calculate just this correction. As for he vacuum polarisation
P(q2), it is well known and we have nothing new to say about it. For completeness, we
provide the necessary information in Appendix A.

In the proposed experiments to measure the proton radius, the momentum transfers
are large compared to the electron mass, Q2 � m2. Below, we will be mainly interested
in this particular area. Here, it is convenient to use the following representation of the
cross sections (2.14) and (2.16)

dσ

dQ2dx
=

4π(α(Q2))2

Q4

[
F2(x,Q2)

x
R(x,Q2)

+
Q2(2Q2G2

M − 4M2G2
E)

8x2(pl)2

(
F1(x,Q2)− F2(x,Q2)

2x

)]
,

(2.20)

where

R(x,Q2) =

(
1− Q2

2x(lp)

)
Q2G2

M + 4M2G2
E

4M2 +Q2

+
Q2

8x2(pl)2

Q2(2M2 +Q2)G2
M − 8M4G2

E

4M2 +Q2
,

(2.21)

and
dσB
dQ2

=
4πα2

Q4
R(1, Q2) . (2.22)

3 Elastic scattering
For the elastic scattering, when |X〉 in (2.5) are the one-electron states with the momen-
tum l′, we have

〈X|j(e)
µ (0)|l〉 = 〈l′|j(e)

µ (0)|l〉 = ū(l′)

(
f e1 (Q2) γµ − f e2 (Q2)

[γµ, γ
ν ]qν

4m

)
u(l) , (3.1)

where f ei (Q2) are the electron form factors. Using (2.9), (2.10) and (2.8), one obtains for
the elastic contributions F el

i to the electron structure functions Fi

F el
1 (x,Q2) =

1

2
δ(1− x)

(
f e1 (Q2) + f e2 (Q2)

)2
,

F el
2 (x,Q2) = δ(1− x)

[(
f e1 (Q2)

)2
+

Q2

4m2

(
f e2 (Q2)

)2
]
.

(3.2)

Eq. (2.14) then gives

dσel

dQ2
=

π(α(Q2))2

4Q2((pl)2 −m2M2)

[
(4(pl)−Q2)2 (Q2G2

M + 4M2G2
E)(Q2g2

M + 4m2g2
E)

Q2(Q2 + 4M2)(Q2 + 4m2)

+
(
Q2G2

M − 4M2G2
E

)
g2
M − 4m2G2

Mg
2
E]
]
,

(3.3)
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where

gM = f e1 (Q2) + f e2 (Q2), gE = f e1 (Q2)− Q2

4m2
f e2 (Q2) . (3.4)

Formally, Eq. (3.3) gives the exact expression for the cross section of elastic electron-
proton scattering with one-photon exchange. But essentially it has no physical meaning
due to the infrared singularity. Taking into account all terms of the expansion in terms
of the coupling constant α makes it zero, and each term of the expansion requires the
regularization of this singularity. If the infrared divergency is regularised by the photon
mass λ, in the one-loop approximation one has [31]

f e1 (Q2) = 1− α

πβ

[(
ln ξ − β

)(
ln
m

λ
− 1
)
− 1

4
ln2 ξ + ln ξ ln(1 + ξ) +

π2

12

+ Li2(−ξ) +
β(ξ − 1)

ξ + 1
ln ξ

]
,

(3.5)

f e2 (Q2) =
α

2π

√
1− β2

β
ln ξ , (3.6)

where β is the velocity of one of the electrons in the rest frame of the other,

β =

√
Q2(Q2 + 4m2)

Q2 + 2m2
, ξ =

√
1 + β

1− β
, Li2(x) = −

∫ x

0

dt

t
ln(1− t) . (3.7)

The part δevertex of the associated with the electron structure correction δe introduced
by elastic scattering is determined by the difference between the vertex (3.1) and the Born
one, in which f e1 (Q2) = 1 and f e2 (Q2) = 0. At Q2 � m2 the Pauli form factor f e2 (Q2) is
suppressed by a power-law, f e2 (Q2) ∼ m2/Q2, so that in the one-loop approximation we
have

δevertex = 2
(
f e1 (Q2)− 1

)
=
α

π

[
−
(

ln
Q2

m2
− 1

)
ln
m2

λ2
− 1

2
ln2 Q

2

m2
+

3

2
ln
Q2

m2
+
π2

6
− 2

]
.

(3.8)

4 One photon emission
For one photon emission, when the states |X〉 in (2.5) are states of an electron with
momentum l′ and photon with momentum k, we have

Wµν(l, q) = − e
2

8π

∫
Kµν(2π)4δ(4)(q + l − l′ − k)

d3l′

(2π)32E ′l

d3k

(2π)32ω
, (4.1)

where
Kµν = gρσtr[(l̂′ +m)Lµρ(l̂ +m)γ0L†νσγ

0] ,

Lµρ = γµ
l̂ − k̂ +m

−2κ
γρ + γρ

l̂′ + k̂ +m

2κ′
γµ , κ = (kl) , κ′ = (kl′) = Q2 1− x

2x
. (4.2)
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Moving on to integration over κ, we obtain from (4.1) for the convolutions (2.8) ofWµν(l, q)

Wi(lq, q
2) = − α

8π

∫ κ+

κ−

dκ√
IC
Ai , (4.3)

where
IC = (Q2 + 2κ′)2 + 4m2Q2 , Ag = Kµνg

µν , Al = Kµνl
µlν , (4.4)

and
κ± =

κ′

2(m2 + 2κ′)

(
2m2 + 2κ′ +Q2 ±

√
IC

)
. (4.5)

The integration limit κ− (κ+) corresponds to forward (backward) virtual Compton scat-
tering.

Direct calculation of the convolutions Ai (4.4) with use of (4.2) gives

Ag = 4

(
m2

κ′ 2
+
m2

κ2
− 2m2 +Q2

κκ′
+

2

κ′
− 2

κ

)
(2m2 −Q2) + 8

(
κ

κ′
+
κ′

κ

)
, (4.6)

Al = 2m2

[(
m2

κ′ 2
+
m2

κ2
− 2m2 +Q2

κκ′
+

2

κ′
− 6

κ

)
(4m2 +Q2)

+
4m2κ′

κ2
+

2(2m2 + κ)

κ′
+

2(4m2 − 3κ′)

κ
+ 4

]
− 4(Q2 + 2κ′ − 2κ) .

(4.7)

Note that Ai should be obtained from Eqs.(7.39) of [32] with the substitutions

w2 → m2 + 2κ′ , q2 → m2 − 2κ , ∆2 → −Q2 , ∆2
1 → 0 . (4.8)

Unfortunately, in the expression for A( 1
2

)

2 in Eqs.(7.39) there is a misprint; it contains the
extra term 8(p1p2)m4/(q2 −m2)2.

Calculation of Wi(lq, q
2) (4.3) is performed using the integrals∫ κ+

κ−

dκ√
IC

=
κ′

m2 + 2κ′
,

∫ κ+

κ−

κdκ√
IC

=
κ′2(2m2 + 2κ′ +Q2)

2(m2 + 2κ′)2
,∫ κ+

κ−

dκ

κ2
√
IC

=
1

m2κ′
,

∫ κ+

κ−

dκ

κ
√
IC

= L ,
(4.9)

where

L =
1√

(Q2 + 2κ′)2 + 4m2Q2
ln

(
2m2 + 2κ′ +Q2 +

√
IC

2m2 + 2κ′ +Q2 −
√
IC

)
. (4.10)

It gives

Wg = − α

2π

[
(Q2 − 2m2)

[(Q2 + 2m2

κ′
+ 2
)
L −

(m2

κ′2
+

2

κ′

) κ′

m2 + 2κ′
− 1

κ′

]
+
κ′(2m2 + 2κ′ +Q2)

(m2 + 2κ′)2
+ 2κ′L

]
,

(4.11)
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Wl = − α

2π

[
m2

2

(
8m2 − 6κ′ − (Q2 + 4m2)

(Q2 + 2m2

κ′
+ 6
))
L+m2

(
2 +

Q2 + 4m2

2κ′

)
+

(
m2
(

(Q2 + 4m2)(
m2

κ′2
+

2

κ′
) +

4m2

κ′
+ 6
)
−Q2 − 2κ′

)
κ′

2(m2 + 2κ′)

]
.

(4.12)

The region of variation of x at fixed Q2 is determined by the conditions M2
X = (m2 +

2κ′) ≥ m2 and (lq) ≤ Elq0 +
√
E2
l −m2

√
q2

0 +Q2 with q0 = M − E ′p = −Q2/(2M), i.e

1 ≥ x ≥ x− , x− =
MQ2√

E2
l −m2

√
Q2(4M2 +Q2)− ElQ2

. (4.13)

But expressions (4.11) and (4.12) can not be used arbitrarily close to x = 1 (i.e. for suffi-
ciently small κ′) because of the infrared divergency. The divergency must be regularised
in the same way as in the vertex correction (3.8), i.e. by the photon mass λ. Taking into
account the photon mass changes both the measure and the limits of integration in (4.3):

IC → IC(λ) = (Q2 + 2κ′ + λ2)2 + 4m2Q2 , (4.14)

κ± →= κ±(λ) =
(κ′ + λ2)(2m2 + 2κ′ +Q2 + λ2)±

√
(κ′ 2 −m2λ2)IC(λ)

2(m2 + 2κ′ + λ2)
. (4.15)

In the region m2 � κ′ > mλ at λ→ 0 they can be taken as

I0 = Q2(Q2 + 4m2) , (4.16)

κ0
± =

(
κ′(2m2 +Q2)±

√
(κ′ 2 −m2λ2)I0

)
2m2

. (4.17)

The singular terms in Ai are

Ag = 4(2m2 −Q2)

(
m2

κ′ 2
+
m2

κ2
− 2m2 +Q2

κκ′

)
, (4.18)

Al = 2m2(4m2 +Q2)

(
m2

κ′ 2
+
m2

κ2
− 2m2 +Q2

κκ′

)
. (4.19)

Corresponding integrals become∫ κ0+

κ0−

dκ√
I0

=

√
(κ′ 2 −m2λ2)

m2
,

∫ κ0+

κ0−

dκ

κ2
√
I0

=
4κ′
√

(κ′ 2 −m2λ2)

4m2κ′2 + λ2Q2(4m2 +Q2)
,∫ κ0+

κ0−

dκ

κ
√
I0

= L0 ,

(4.20)

where

L0 =
1√

Q2(4m2 +Q2)
ln

(
κ′(2m2 +Q2) +

√
(κ′2 −m2λ2)Q2(4m2 +Q2)

κ′(2m2 +Q2)−
√

(κ′2 −m2λ2)Q2(4m2 +Q2)

)
. (4.21)
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It gives for Wi (4.3) in the region m2 � κ′ > mλ

Wg =
2m2 −Q2

2

dw

dκ′
, Wl = m2 4m2 +Q2

4

dw

dκ′
, (4.22)

where mdw/dκ′ is the spectral probability density for soft photon emission with account
of photon mass in the rest frame of the final electron,

dw

dκ′
=
α

π

1

κ′

[
(2m2 +Q2)L0 −−

√
κ′2 −m2λ2

κ′
− 4m2κ′

√
κ′2 −m2λ2

4m2κ′2 + λ2Q2(4m2 +Q2)

]
. (4.23)

Using (2.9), (2.10) and (4.22), one obtains

F2(x,Q2) = 2F1(x,Q2) =
Q2

2

dw

dκ′
, (4.24)

so that (2.14) gives for the soft photon emission cross section

dσγsoft
dQ2dx

=
dσB

dQ2

Q2

2

dw

dκ′
. (4.25)

Integration (4.25) over the region κ0 > κ′ > mλ (1 −mλ/Q2 > x > 1 − 2κ0/Q
2 , dx =

−2dκ′/Q2) at κ0 � m2, κ0 � Q2 provides at λ→ 0

dσγsoft
dQ2

=
dσB
dQ2

δesoft , (4.26)

δesoft =
α

π

[
1

β

(
ln

(
(1 + β)

(1− β)

)(
ln

(
2κ0

mλ

)
+

1

2

)
+

1

2
Li2
(

1− (1 + β)

(1− β)

)

− 1

2
Li2
(

1− (1− β)

(1 + β)

))
− 2 ln

(
2κ0

mλ

)
+ 1

]
,

(4.27)

where β is given by (3.7).
At Q2 � m2 one has

δesoft =
α

π

[
2 ln

(
2κ0

mλ

)(
ln

(
Q2

m2

)
− 1
)
− ln2

(
Q2

m2

)
+ ln

(
Q2

m2

)
− π2

6
+ 1

]
, (4.28)

which together with (3.8) gives

δevertex+ δesoft =
α

π

[
2 ln

(
2κ0

m2

)(
ln

(
Q2

m2

)
−1
)
− 3

2
ln2

(
Q2

m2

)
+

5

2
ln

(
Q2

m2

)
−1

]
. (4.29)

As it should be, the dependence on λ disappeared in the sum of corrections from elastic
scattering and soft photon emission.

To find the contribution of real photons with κ′ > κ0 for arbitrary Q2 is not so easy.
In the following we restrict ourselves to considering the case Q2 � m2. In this case it is
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possible to introduce the intermediate scale κ1, such that Q2 � κ1 � m2, and calculate
the contributions of the regions κ′ < κ1 and κ′ > κ1, simplifying the integrands in them
as it is described in Appendix B. In the sum of these contributions dependence on the
intermediate scale disappears (see (B.17)). The remaining dependence on the boundary
κ0 between soft and hard emission vanishes in the sum of the correction (B.17) due to the
hard emission with δevertex + δesoft (4.29), so that for the total correction δe one has in the
one-loop approximation at Q2 � m2

δeone−loop =
α

2π

[(
x− +

x2
−

2
+ 2 ln(1− x−)

)
ln
Q2

m2
− 2 lnx− ln(1− x−)

− ln2(1− x−)− x−
2

(2 + x−) lnx− − (2 + x− +
x2
−

2
) ln(1− x−)

− 2Li2(x−)− 3

2
x− − x2

−

+
Q2

4(pl)

Q2G2
M + 4M2G2

E

(4M2 +Q2)R(1, Q2)

[
(2 lnx− − (1− x2

−)) ln
Q2

m2
− ln2 x−

+(1− x2
−) ln(x−(1− x−)) + (1− x−)(3 + 2x−)− π2

3
+ 2Li2(x−)

]
+

Q2

16(pl)2

Q2(Q2 + 2M2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)

[(
(1− x2

−)(2 + x−)

x−
− 2 lnx−

)
ln
Q2

m2

+ ln2 x− −
(1− x2

−)(2 + x−)

x−
ln(1− x−)

−
(

2

x−
+ 1− 2x− − x2

−

)
lnx− − (1− x−)(

1

x−
+ 5 + 2x−) +

π2

3
− 2Li2(x−)

]
+

Q2

4(pl)2

Q2G2
M − 2M2G2

E

R(1, Q2)
lnx−

]
.

(4.30)

The only approximation used here is Q2 � m2.
The correction is strongly simplified at small x− (i.e. at small Q2), when we have

δeone−loop =
α

2π(1 + 2ρx−)

[(
− 2x− − x2

−
(
1− lnx− + ρ(3− 2 lnx−)

))
ln

(
Q2

m2

)
+ x−(2 lnx− − 1) + x2

−

(
−1

2
ln2 x− − lnx− −

π2

6
+

1

2
+

ρ
(
− ln2 x− + 3 lnx− −

π2

3

))]
,

(4.31)

where ρ = (pl)/M2. As we can see, only the terms with power smallness in x− remain in
the full correction. The terms that do not have such smallness cancel out not only if they
are strengthened by powers of ln(Q2/m2), but also without such strengthening, as it was
noted in [22].
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5 Parton picture
In the parton picture the structure functions Fi(x,Q2) are expressed through parton
distributions. In the leading logarithmic approximation (LLA)

F2(x,Q2) = 2xF1(x,Q2) = x(f ee (x,Q2) + f ēe (x,Q2)) , (5.1)

where f ee (x,Q2) and f ēe (x,Q2) are the electron and positron distributions in the initial
electron and the first equality is the Callan-Gross relation [33], arising from the fact that
the partons have spin 1/2.

In the LLA the parton distributions can be calculated using the equations [27, 28]

dfae (x,Q2)

d lnQ2
=
α(Q2)

2π

∑
b

∫ 1

x

dz

z
P a
b (
x

z
)f be (z,Q

2), (5.2)

where a, b = e, ē, γ , P a
b (z) are the splitting functions,

P γ
e (z) = P γ

ē (z) =
1 + (1− z)2

z
, P e

γ (z) = P ē
γ (z) = z2 + (1− z)2 ,

P e
e (z) = P ē

ē (z) =
1 + z2

(1− z)+

+
3

2
δ(1− z) .

(5.3)

Here the generalized function 1
(1−z)+ is defined by the relation∫ 1

0

f(z)

(1− z)+

dz =

∫ 1

0

f(z)− f(1)

(1− z)
dz . (5.4)

The evolution equations must be complemented by the initial conditions, which can be
taken as

fae (x,m2) = δaeδ(1− x) . (5.5)

Presenting parton distributions as the sum of the distributions of valence (v) and sea (s)
partons in electron

f ee (x,Q2) = f ve (x,Q2) + f se (x,Q2) , f ēe (x,Q2) = f se (x,Q2) , (5.6)

we obtain that these distributions obey the equations

df ve (x,Q2)

d lnQ2
=
α(Q2)

2π

∫ 1

x

dz

z
P e
e (
x

z
)f ve (z,Q2), (5.7)

df se (x,Q2)

d lnQ2
=
α(Q2)

2π

∫ 1

x

dz

z

(
P e
e (
x

z
)f se (z,Q2) + P e

γ (
x

z
)fγe (z,Q2)

)
, (5.8)

with initial
f ve (x,m2) = δ(1− x) , f se (x,m2) = 0 (5.9)

and charge conservation ∫ 1

0

f ve (x,Q2)dx = 1 (5.10)
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conditions. Writing with the two-loop accuracy

f ve (x,Q2) = δ(1− x) +
α

2π
L V1(x) +

( α
2π

)2 L2

2
V2(x) , (5.11)

f se (x,Q2) =
( α

2π

)2 L2

2
S2(x) , (5.12)

where L = ln(Q2/m2) , and taking into account in α(Q2) only the one-loop correction
coming from vacuum polarisation by electrons

α(Q2) = α +
α2

3π
L , (5.13)

we have
V1(x) = P e

e (x) =
1 + x2

(1− x)+

+
3

2
δ(1− x) , (5.14)

V2(x) =
2

3
P e
e (x) +

∫ 1

x

dz

z
P e
e

(x
z

)
P e
e (z) =

2

3
P e
e (x) + 8

(
ln(1− x)

(1− x)

)
+

+
1 + 4x+ x2

(1− x) +

− 1 + 3x2

(1− x)
lnx− 4(1 + x) ln(1− x)−

(
2π2

3
− 9

4

)
δ(1− x) , (5.15)

S2(x) =

∫ 1

x

dz

z
P γ
e

(x
z

)
P e
γ (z) = 2(1 + x) lnx+ 1− x+

4(1− x3)

3x
, (5.16)

where the generalized function
(

ln(1−z)
(1−z)

)
+
are defined by the relation analogous to (5.4)

∫ 1

0

(
ln(1− z)

(1− z)

)
+

f(z)dz =

∫ 1

0

(
ln(1− z)

(1− z)

)
(f(z)− f(1))dz . (5.17)

The coefficients of the delta-function terms in (5.14), (5.15) are determined by the re-
quirements ∫ 1

0

dxVi(x) = 0 (5.18)

following from the charge conservation condition (5.10).
Writing the cross section (2.14) at Q2 � m2, F2(x,Q2) = 2xF1(x,Q2) as

dσ

dQ2dx
=

4π (α(Q2))
2

Q4

F2(x,Q2)

x
R(x,Q2) , (5.19)

where R(x,Q2) is given by (2.21), we have for the radiative correction δe in the leading
logarithmic approximation

δeLLA =

∫ 1

x−

dx
R(x,Q2)

R(1, Q2)
(f ve (x,Q2) + 2f se (x,Q2))− 1 , (5.20)

This representation permits to find the radiative correction δe in any order of perturbation
theory.
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With the two-loop accuracy f ve (x,Q2) and f se (x,Q2) are given by Eqs. (5.11) and
(5.12) respectively. Using (2.21) and (5.10), we have

δeLLA = −
∫ x−

0

dxf ve (x,Q2) +

∫ 1

x−

dx

[(
R(x,Q2)

R(1, Q2)
− 1

)
f ve (x,Q2) + 2

R(x,Q2)

R(1, Q2)
f se (x,Q2)

]
.

(5.21)
In the one-loop approximation only f ve (x,Q2) does contribute. Simple integration gives

δeone−loop,LLA =
α

2π
L

[
2 ln(1− x−) + x− +

x2
−

2
+

Q2

2(pl)

Q2G2
M + 4M2G2

E

(4M2 +Q2)R(1, Q2)

(
lnx−

−
1− x2

−

2

)
+

Q2

8(pl)2

Q2(2M2 +Q2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)
(− lnx−

+(1− x−)

(
1

x−
+

3

2
+
x−
2

))]
,

(5.22)

in accordance with (4.30).
The two-loop correction contains contributions of both f ve and f se . Using (5.11)-(5.16)

and (2.21), one obtains from (5.21) the two-loop contribution in the form

δetwo−loop,LLA =
( α

2π

)2 L2

2

[
−
∫ x−

0

dxV2(x) +
Q2G2

M + 4M2G2
E

(4M2 +Q2)R(1, Q2)

×
∫ 1

x−

dx

(
2S2(x)− Q2

2(pl)

(
1− x
x

V2(x) +
2

x
S2(x)

))
+

Q2

8(pl)2

Q2(2M2 +Q2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)

∫ 1

x−

dx

(
1− x2

x2
V2(x) +

2

x2
S2(x)

))]
.

(5.23)

Elementary integration gives∫ x−

0

dx V2(x) = 4Li2(x−)− 4 ln(1− x−) ln
(1− x−)

x−

− (
4

3
+ 4x− + 2x2

−) ln(1− x−) + 3x−(1 +
x−
2

) lnx− −
8

3
x− −

7

12
x2
− ,

(5.24)

∫ 1

x−

dx

(
1

x
− 1

)
V2(x) = 4Li2(x−)− 2

3
π2 +

1

2
ln2 x− + 2(1− x2

−) ln(1− x−)

− (
5

3
− 3

2
x2
−) lnx− +

1

12
(1− x−)(31 + 7x−) ,

(5.25)

∫ 1

x−

dx

(
1

x2
− 1

)
V2(x) = 4Li2(x−)− 2

3
π2 +

1

2
ln2 x−

+ 2(1− x2
−)(

2

x−
+ 1) ln(1− x−)− (

1

x−
+

5

3
− 3x− −

3

2
x2
−) lnx−

+ (1− x−)(
2

3x−
+

13

4
+

7

12
x−) ,

(5.26)
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∫ 1

x−

dxS2(x) = −(
4

3
+ 2x− + x2

−) lnx− −
1

9
(1− x−)(22 + 13x− + 4x2

−) , (5.27)∫ 1

x−

dx
S2(x)

x
= − ln2 x− − (2x− + 1) lnx− +

(1− x−)

3
(

4

x−
− 11− 2x−) , (5.28)∫ 1

x−

dx
S2(x)

x2
= − ln2 x− + (

2

x−
+ 1) lnx− +

(1− x−)

3
(

2

x2
−

+
11

x−
− 4) , (5.29)

so that

δetwo−loop,LLA =
( α

2π

)2 L2

2

[
− 4Li2(x−) + 4 ln(1− x−) ln

(1− x−)

x−

+

(
4

3
+ 4x− + 2x2

−

)
ln(1− x−)− 3x−(1 +

x−
2

) lnx− +
8

3
x− +

7

12
x2
−

+
Q2G2

M + 4M2G2
E

(4M2 +Q2)R(1, Q2)

(
− 2

(
4

3
+ 2x− + x2

−

)
lnx−

− 2

9
(1− x−)(22 + 13x− + 4x2

−)− Q2

2(pl)

(
4Li2(x−)− 2

3
π2 − 3

2
ln2 x−

+ 2(1− x2
−) ln(1− x−)− (

11

3
+ 4x− −

3

2
x2
−) lnx−

+ (1− x−)(
8

3x−
− 19

4
− 3

4
x−)

))
+

Q2

8(pl)2

Q2(2M2 +Q2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)

×
(

4Li2(x−)− 2

3
π2 − 3

2
ln2 x− + 2(1− x2

−)(
2

x−
+ 1) ln(1− x−)

+ (
3

x−
+

1

3
+ 3x− +

3

2
x2
−) lnx− + (1− x−)(

4

3x2
−

+
8

x−
+

7

12
(1 + x−))

)]
.

(5.30)

Note that at small momentum transfer, i.e. at small x−, the valence quark contribution is
suppressed as well as in the one loop due to the charge conservation requirement (5.18).
It is not so for the sea quark contribution [22]. The sea quark distribution is singular
at x = 0 and the lower limit x0 of the integration in (5.27) can not be taken equal to
0. Therefore the two-loop correction is not suppressed at small momentum transfer for
experimental conditions at which production of electron-positron pairs is not forbidden.
For such conditions we have at x− � 1

δetwo−loop,LLA =
( α

2π

)2 L2

2

[
− 8

3
lnx− −

44

9
− 4

3(1 + 2ρx−)

]
. (5.31)

At first glance it seems that more preferable are the conditions at which production of
electron-positron pairs is forbidden. In this case f se must be omitted in Eq. (5.21), and
the term with P e

e (x) must be omitted in its expression for V2(x) in (5.15). However, this
is not the whole truth. The term with P e

e (x) in V2(x) meets contributions from not only
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real, but also virtual pairs, which can not be suppressed, and therefore their contribution
must be restored. It means that the term(α

π

)2
[
− 1

36
L3 +

19

72
L2

]
δ(1− x) (5.32)

must be added to f ve (see for details [30]). Therefore, in this case

δetwo−loop,LLA =
( α

2π

)2 L2

2

[
− 2

9
L+

19

9
− 4Li2(x−) + 4 ln(1− x−) ln

(1− x−)

x−

+ 2x−(2 + x−) ln(1− x−)− 3x−(1 +
x−
2

) lnx− + 2x− +
1

4
x2
−

− Q2

2(pl)

Q2G2
M + 4M2G2

E

(4M2 +Q2)R(1, Q2)

(
4Li2(x−)− 2

3
π2 +

1

2
ln2 x−

+ 2(1− x2
−) ln(1− x−)− (1− 3

2
x2
−) lnx− +

1

4
(1− x−)(9 + x−)

)
+

Q2

8(pl)2

Q2(2M2 +Q2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)

(
4Li2(x−)− 2

3
π2 +

1

2
ln2 x−

+ 2(1− x2
−)(

2

x−
+ 1) ln(1− x−)− (

1

x−
+ 1− 3x− +

3

2
x2
−) lnx−

+
1

4
(1− x−)(9 + x−)

)]
.

(5.33)

The relative magnitude of the corrections (5.23) and (5.33) depends on energy and mo-
mentum transfer.

6 Conclusion
As it was shown in [22], the setting of the experiment with recoil proton detection sug-
gested by A.A. Vorobev [12] for measurement of proton radius, has an interesting feature
– cancellation of main radiative corrections. Here we calculated radiative corrections to
the cross section of electron-proton scattering for experiments of this kind in a wide range
of kinematic parameters using the method of structure functions and parton distributions.
We calculated the one-loop corrections due to electron interaction for momentum transfer
Q limited only by the requirement Q � m, m being the electron mass, and proved that
when at small Q the cancellation of the virtual and real radiative corrections has a power
accuracy.

In the two-loop approximation we calculated these corrections with logarithmic ac-
curacy, again for momentum transfer Q limited only by the requirement Q � m, using
the parton distribution method [25]-[28] developed for the theoretical description of the
deep inelastic electron-proton scattering and adopted in [30] for calculation of radiative
corrections in QED. We calculated the radiation corrections both for such an experiment
setup when the production of additional electron-positron pairs is allowed, and for such
when it is forbidden.
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Appendix A
The vacuum polarisation P(q2) contains lepton (electron, muon, τ -lepton ) and hadron
contributions:

P(q2) = Pe(q2) + Pµ(q2) + Pτ (q2) + Ph(q2). (A.1)

One-loop lepton contribution P(1)
l (q2), (l = e, µ, τ) is well known (see, for example, [31]):

P(1)
l (q2) =

α

π

1

3

√
1− 4m2

l

q2

(
1 +

2m2
l

q2

)
ln


√

1− 4m2
l

q2
+ 1√

1− 4m2
l

q2
− 1

− 4m2
l

3 q2
− 5

9

 . (A.2)

At Q2 = −q2 � 4m2
l

P(1)
l (q2) =

α

3π

(
ln

(
Q2

m2
l

)
− 5

3

)
, (A.3)

and at Q2 = −q2 � 4m2
l

Pl(q2) =
α

15π

Q2

m2
l

. (A.4)

The lepton contributions are known also in higher orders of perturbation theory (see, for
example, [34, 35]). For us it is enough to know that the two-loop contribution contains
only the first degree of ln

(
Q2

m2
l

)
.

The hadron contribution Ph(q2) is expressed in terms of the total cross section of
one-photon electron-positron pair annihilation into hadrons

Ph(q2) =
q2

4π2α

∫ ∞
4m2

π

ds
σe+e→hadrons(s)

s− q2
. (A.5)

This contribution is small compared with α/π at Q2 < 4m2
π, becomes of order of α/π only

at Q2 ∼ 4m2
π and then grows logarithmically with Q2. Recent review is given in [35].

Appendix B
To find the contribution δehard of the one-photon emission with κ′ > κ0 to the radiative
correction δe at Q2 � m2 it is convenient to introduce the intermediate scale κ1 such that
Q2 � κ1 � m2. In the region κ1 > κ′ > κ0 one can put

W1 = − α

2π

[
Q2

κ′

(
ln

(
Q4

m2(m2 + 2κ′)

)
− 2
)

+
Q2κ′

(m2 + 2κ′)2

]
, (B.6)

W2 = 0 , F1 = −1

2
W1 , F2 = 2F1 . (B.7)

Therefore in this region we have from Eqs. (2.20)–(2.22)

dσγ

dQ2dx
= −W1

dσB
dQ2

. (B.8)
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Using that in this region it is possible to put κ′ = Q2(1 − x)/2, it is easy to obtain the
part δ(1)

hard of the correction δehard, defined by Eqs. (2.18) and (2.19), from this region:

δ
(1)
hard =

α

π

∫ κ1

κ0

dκ′

κ′

[
2
(

ln

(
Q2

m2

)
− 1
)
− ln

(
m2 + 2κ′

m2

)
+

κ′2

(m2 + 2κ′)2

]

=
α

π

[
2 ln

(
κ1

κ0

)(
ln

(
Q2

m2

)
− 1
)
− 1

2
ln2

(
2κ1

m2

)
+

1

4

(
ln

(
2κ1

m2

)
− 1
)
− π2

6

]
,

(B.9)

Using (4.29), we obtain

δevert + δsoft + δ
(1)
hard =

α

π

[
2 ln

(
2κ1

m2

)(
ln

(
Q2

m2

)
− 1
)
− 3

2
ln2

(
Q2

m2

)

+
5

2
ln

(
Q2

m2

)
− 1

2
ln2

(
2κ1

m2

)
+

1

4
ln

(
2κ1

m2

)
− π2

6
− 5

4

]
.

(B.10)

In the region κmax > κ′ > κ1, i.e. 1− 2κ1
Q2 > x > x− at Q2 � m2 one can put

W1 = − α

2π

(1 + x2

1− x
ln

(
Q2

m2x(1− x)

)
+

1− 8x

2(1− x)

)
, (B.11)

W2 =
α

2π

Q2

4x
, (B.12)

and
F1 =

1

2

(
4x2 W2

Q2
−W1

)
, (B.13)

F2 = x

(
12x2

Q2
W2 −W1

)
= 2xF1 +

α

π
x2 . (B.14)

As it is seen, the Callan-Gross relation [33] is violated in this region. It could be expected,
since this relation is valid only in the collinear approximation.

Using Eqs. (2.20)-(2.22), we have for the part δ(2)
hard of the correction δehard from this

region:

δ
(2)
hard =

∫ 1−2
κ1
Q2

x−

dx

[
F2(x,Q2)

x
− Q2

2(pl)

Q2G2
M + 4M2G2

E

(4M2 +Q2)R(1, Q2)

F2(x,Q2)(1− x)

x2

+
Q2

8(pl)2

(
Q2(Q2 + 2M2)G2

M − 8M4G2
E

(4M2 +Q2)R(1, Q2)

)
F2(x,Q2)(1− x2)

x3

− Q2

8(pl)2

(Q2G2
M − 2M2G2

E)

R(1, Q2)

(F2(x,Q2)− 2xF1(x,Q2))

x3

]
.

(B.15)
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Note that in the integral (B.15) the upper limit can be set equal to 1 in all terms except
the first one. It gives

δ
(2)
hard =

α

2π

[(
3 ln

(
Q2

m2

)
− 4 ln

(
2κ1

m2

)
− 5 + x− +

x2
−

2
+ 2 ln(1− x−)

)
ln

(
Q2

m2

)
+ ln2

(
2κ1

m2

)
+

7

2
ln

(
2κ1

m2(1− x−)

)
− ln2(1− x−) + 2Li2(1− x−) +

5

2

− x−
2

(2 + x−) lnx− +
(1− x−)

2
(3 + x−) ln(1− x−)− x−

2
(3 + 2x−)

]

+
Q2

4(pl)

Q2G2
M + 4M2G2

E

4M2 +Q2

(
(2 lnx− − (1− x2

−)) ln

(
Q2

m2

)
− ln2 x− −

π2

3

+ 2Li2(x−) + (1− x−)(3 + 2x−) + (1− x2
−) ln(x−(1− x−))

)

+
Q2

16(pl)2

Q2(Q2 + 2M2)G2
M − 8M4G2

E

4M2 +Q2

×

((
(1− x2

−)
(2 + x−)

x−
− 2 lnx−

)
ln

(
Q2

m2

)
+
π2

3
− 2Li2(x−) + ln2 x−

− (1− x2
−)

(2 + x−)

x−
ln(1− x−)−

(
2

x−
+ 1− 2x− − x2

−

)
lnx−

− (1− x−)(
1

x−
+ 5 + 2x−)

)
+

Q2

4(pl)2
(Q2G2

M − 2M2G2
E) lnx−

]
.

(B.16)
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The intermediate parameter κ1 disappears in the sum δehard = δ
(2)
hard + δ

(1)
hard:

δehard =
α

2π

[(
3 ln

(
Q2

m2

)
− 4 ln

(
2κ0

m2

)
− 5 + x− +

x2
−

2
+ 2 ln(1− x−)

)
ln

(
Q2

m2

)
+ 4 ln

(
2κ0

m2

)
− ln2(1− x−) + 2Li2(1− x−)− x−

2
(2 + x−) lnx− −

3

2
x−

− x2
− − (2 + x− +

x2
−

2
) ln(1− x−)− π2

3
+ 2 +

Q2

4(pl)

Q2G2
M + 4M2G2

E

(4M2 +Q2)R(1, Q2)

×

(
(2 lnx− − (1− x2

−)) ln

(
Q2

m2

)
− ln2 x− −

π2

3
+ 2Li2(x−)

+ (1− x−)(3 + 2x−) + (1− x2
−) ln(x−(1− x−))

)

+
Q2

16(pl)2

Q2(Q2 + 2M2)G2
M − 8M4G2

E

(4M2 +Q2)R(1, Q2)

×

((
(1− x2

−)
(2 + x−)

x−
− 2 lnx−

)
ln

(
Q2

m2

)
+
π2

3
− 2Li2(x−) + ln2 x−

− (1− x2
−)

(2 + x−)

x−
ln(1− x−)−

(
2

x−
+ 1− 2x− − x2

−

)
lnx−

− (1− x−)(
1

x−
+ 5 + 2x−)

)
+

Q2

4(pl)2

Q2G2
M − 2M2G2

E

R(1, Q2)
lnx−

]
.
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