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.

1 Introduction

In the BFKL approach [1], impact factors appear as an integral part. Scat-
tering amplitudes of high energy processes are given in this approach by
convolutions of Green functions of interacting Reggeized gluons with the im-
pact factors of scattered particles, therefore the notion of these impact factors
is well known. Less known are the impact factors for Reggeon-particle (in
particular Reggeon-gluon) transitions, where for Reggeon here and in the fol-
lowing we mean Reggeized gluon. They appeared firstly [2] in the proof of the
multi-Regge form of QCD amplitudes. An idea of this form is the basis of the
BFKL approach. It appeared [3, 1] from results of fixed order calculations.
Later it was proved in the leading logarithmic approximation (LLA) [4] with
the use of the s-channel unitarity. The proof of the multi-Regge form in the
next-to-leading approximation (NLA) is based also on the s-channel unitarity
[5]. Compatibility of the unitarity with the multi-Regge form leads to boot-
strap relations connecting discontinuities of the amplitudes with products of
their real parts and gluon trajectories. It turns out [2, 5] that the fulfillment
of an infinite set of these relations guarantees the multi–Regge form of scat-
tering amplitudes. On the other hand, all bootstrap relations are fulfilled if
several conditions imposed on the Reggeon vertices and the trajectory (boot-
strap conditions) hold true. The most complicated condition, which includes
the impact factors for Reggeon-gluon transition, was proved recently, both in
QCD [6] - [8] and in its supersymmetric generalisation [9].

Recently, the impact factors for Reggeon-gluon transition were used for
the calculation of the high-energy behavior of the remainder function to the
BDS ansatz [10] for multi-particle amplitudes with maximal helicity violation
(MHV amplitudes) in Yang–Mills theory, with maximally extended super-
symmetry (N=4 SYM) in the limit of large number of colours. It was shown
[11] that in the so called Mandelstam kinematical region the BDS amplitude
MBDS

2→4 should be multiplied by the factor containing the contribution of the
Mandelstam cut, and this contribution for the 6-point scattering amplitude
was found in the leading logarithmic approximation (LLA) [12] and in the
next-to-leading one (NLA) [13]-[16].

In the BFKL approach this contribution is given by the convolution of
the Green function of two interacting Reggeons with the impact factors for
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Reggeon-gluon transition. In the NLA the remainder function was calculated
[16] assuming the existence of conformal invariant (in momentum space) rep-
resentations of the modified (i.e. with the subtracted gluon trajectory de-
pending on the total momentum transfer) BFKL kernel for the adjoint repre-
sentation of the gauge group and impact factors for Reggeon-gluon transition.
Later it was shown [17] that indeed the modified BFKL kernel has the con-
formal invariant representation. As for the impact factors, actually not the
impact factors themselves, but the convolution of two impact factors (which
was called for brevity also impact factor) was used. Moreover, the convo-
lution used in Ref. [16] was not calculated in the framework of the BFKL
approach, but was extracted [14] from the two-loop 6-point remainder func-
tion obtained in Ref. [18] by simplification of the results of Refs. [19] and
[20]. In turn, in the derivation of these results it was supposed that the re-
mainder function appears as expectation value of Wilson loops in N=4 SYM.
All this makes the direct calculation of the impact factors for Reggeon-gluon
transition in the BFKL framework and the investigation of their properties
very important.

In this paper we calculate the impact factors for the Reggeon-gluon tran-
sition in the next-to-leading order (NLO) for N = 4 SYM with a large num-
ber of colours, i.e. in the planar approximation. As it is well known, the
NLO impact factors are not uniquely defined (they are scheme dependent)
and must accord with BFKL kernels and energy scales (energy evolution pa-
rameters). Our aim is to find the impact factor which corresponds to the
conformal invariant kernel found in Ref. [17] and to the energy scale used
in Ref. [16]. Just this impact factor, with the deduction of terms contained
in the BDS ansatz, is expected to be invariant under Möbius transforma-
tion in momentum space, according to the conjecture (not yet proved) about
the dual conformal invariance of the remainder function. We reach this aim
starting from the impact factor in the “bootstrap scheme", which was found
in Refs. [6] – [9] in Yang-Mills theories with any number of fermions and
scalars in arbitrary representations of the gauge group. Using these results
and the known relation between the bootstrap scheme and the scheme defined
in Ref. [5], which is called standard scheme, we obtain the impact factor for
N = 4 SYM in the last scheme. In this scheme, however, neither the BFKL
kernel, nor the energy evolution parameter are Möbius invariant. Therefore,
to obtain the impact factor, which is supposed to be Möbius invariant (after
subtraction of terms included in the BDS ansatz), one has to transform the
standard impact factor so as to accord it with the Möbius invariant kernel
found in Ref. [17] and with the Möbius invariant evolution parameter. If the
arguments for the dual conformal invariance of the remainder function are
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correct, the result should be Möbius invariant, up to terms kept in the BDS
ansatz. Below we demonstrate that it is the case.

The paper is organized as follows. In the next section we calculate in
the planar approximation the impact factor in N = 4 SYM in the bootstrap
scheme. In Section 3 this impact factor is transformed into the standard
scheme. In Section 4 the result obtained in Section 3 is transformed into the
scheme with conformal kernel and energy evolution parameter (we call this
scheme Möbius scheme). Conclusions are drawn in Section 5.

2 The impact factor in the bootstrap scheme

In the Born approximation, with the denotations and state normalizations
used in Refs. [5]-[9], the impact factor for the transition of a Reggeon R with
transverse (to the plane of initial momenta pA, pB) momentum ~q1 into a gluon

G with transverse momentum ~k and polarization vector e(k) in interaction
with two Reggeized gluons G1 and G2 is written as

〈GR1|G1G2〉(B) = 2g2δ(~q1 − ~k − ~r1 − ~r2)
(
T aT b

)
c1c2

~e ∗ ~C1. (1)

Here g is the coupling constant, T i are the colour group generators, ~r1, ~r2 and
c1, c2 are the transverse momenta and colour indices of the Reggeized gluons
G1 and G2 correspondingly, a and b are the colour indices of the Reggeon R
and the gluon G, ~e ∗ is the conjugated transverse part of the polarization
vector e(k) in the gauge e(k)p2 = 0 with the lightcone vector p2 close to the
vector pB, and

~C1 = ~q1 − (~q1 − ~r1)
~q 2
1

(~q1 − ~r1)2
. (2)

In N=4 SYM the NLO impact factor contains gluon, fermion and scalar
contributions. These contributions were found in Refs. [7] -[9] for Yang-Mills
theories with any number of fermions and scalars in arbitrary representations
of the gauge group.

In general, the impact factors contain two parts with different colour
structure. In the planar limit, which we are interested in, only parts with
the Born colour structure remain. They are given by Eq. (61) in Ref. [6],
Eq. (61) in Ref. [8] and Eq. (123) in Ref. [9] for fermions, gluons and scalars
correspondingly. Note however that these equations were derived using the
dimensional regularization, which differs from the dimensional reduction used
in supersymmetric theories. To take into account this difference we have to
take the number nS of the scalar fields equal to 6 − 2ǫ (here and below
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ǫ = (D − 4)/2, D being the space-time dimension). With account of this,
we obtain (details will be given elsewhere),

〈GR1|G1G2〉 = g2δ(~q1 − ~k − ~r1 − ~r2)
(
T aT b

)
c1c2

~e ∗

[
2 ~C1 + ḡ2~ΦGG2

GR1∗

]
, (3)

where

~ΦGG2

GR1∗
= ~C1

(
ln

(
(~q1 − ~r1)

2

~k 2

)
ln

(
~r 2
2

~k 2

)

+ ln

(
(~q1 − ~r1)

2~q 2
1

~k 4

)
ln

(
~r 2
1

~q 2
1

)
− 4

(~k 2)ǫ

ǫ2
+ 6ζ(2)

)

+ ~C2

(
ln

(
~k 2

~r 2
2

)
ln

(
(~q1 − ~r1)

2

~r 2
2

)
+ ln

(
~q 2
2

~q 2
1

)
ln

(
~k 2

~q 2
2

))

−2
[
~C1 ×

([
~k × ~r2

]
I~k,~r2 −

[
~q1 × ~r1

]
I~q1,−~r1

)]

+2
[
~C2 ×

([
~k × ~r2

]
I~k,~r2 +

[
q1 × ~k

]
I
~q1,−~k

)]
. (4)

Here ḡ2 = g2Γ(1 − ǫ)/(4π)2+ǫ (note that in the expression (4) and in the
following only terms not vanishing at ǫ → 0 should be kept),

~C2 = ~q1 − ~k
~q 2
1

~k 2
, (5)

Γ(x) is the Euler gamma-function, ζ(n) is the Riemann zeta-function (ζ(2) =

π2/6),
[
~a× c

[
~b× ~c

]]
is a double vector product, and

I~p,~q =

∫ 1

0

dx

(~p+ x~q)2
ln

(
~p 2

x2~q 2

)
, I~p,~q = I−~p,−~q = I~q,~p = I~p,−~p−~q . (6)

Note that the expression (4) is obtained after huge cancellations between
gluon, fermion and scalar contributions. In particular, solely due to these
cancellations only two vector structures (~C1 and ~C2) remain; each of the
contributions separately contains three independent vector structures.

As it was already mentioned, NLO corrections are scheme dependent.
The scheme used in the derivation of 〈GR1|G1G2〉 (given in Eqs. (3 and (4))
was adjusted simplifying the verification of the bootstrap conditions (we call
it bootstrap scheme). It is different from the scheme defined in Ref. [5] (in
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turn, we call it standard scheme). The impact factors in these schemes are
connected by the transformation [7]

〈GR1| = 〈GR1|s − 〈GR1|(B)Ûk, (7)

where the subscript s means the standard scheme and the operator Ûk is
defined by the matrix elements

〈G′
1G′

2|Ûk|G1G2〉 =
1

2
ln
( ~k 2

(~r1 − ~r ′
1 )

2

)
〈G′

1G′
2|K̂B

r |G1G2〉. (8)

Here K̂B
r is the part of the LO BFKL kernel related to the real gluon pro-

duction:

〈G′
1G′

2|K̂B
r |G1G2〉= δ(~r ′

1+~r
′
2−~r1−~r2)

g2

(2π)D−1
T i
c1c

′

1

T i
c′
2
c2

(~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
−~q 2

2

)
,

(9)

where ~l = ~r1 − ~r ′
1 = ~r ′

2 − ~r2, ~q2 = ~r1 + ~r2 = ~r ′
1 + ~r ′

2 .

3 Transformation to the standard scheme

From Eqs. (1)–(3) and (7)–(9) it follows that at large number Nc of colours
we can write

~ΦGG2

GR1s
= ~ΦGG2

GR1∗
+ ~I1,

~I1 =

∫
d~l

Γ(1 − ǫ)π1+ǫ
~C ′
1

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)
ln
(~k 2

~l 2

)
, (10)

where

~C ′
1 = ~q1 − ~q 2

1

(~q1 − ~r ′
1 )

(~q1 − ~r ′
1 )

2
. (11)

When ǫ → 0, the integral ~I1 is infrared divergent at ~l = 0. To calculate this
integral, it is convenient to use the decomposition

~C ′
1 = ~C1 + ~∆1, ~∆1 = ~q 2

1

( (~q1 − ~r1)

(~q1 − ~r1)2
− (~q1 − ~r ′

1 )

(~q1 − ~r ′
1 )

2

)
. (12)

Then, the divergency will appear only in the term with ~C1, which does not
depend on ~l and can be taken outside of the integral sign. After that, using
the basic integrals
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∫
d~l

Γ(1− ǫ)π1+ǫ

1

(~q −~l)2(~p+~l)2
ln

(
~l 2

µ2

)

=
(
(~q + ~p)2

)ǫ−1
[
1

ǫ
ln

(
~p 2~q 2

µ4

)
+

1

2
ln2

(
~p 2

~q 2

)]
+O(ǫ) ,

∫
d~l

Γ(1− ǫ)π1+ǫ

1

~l 2(~q −~l)2
ln

(
~l 2

µ2

)

=
(
~q 2
)ǫ−1

[
− 1

ǫ2
+ ζ(2) +

2

ǫ
ln

(
~q 2

µ2

)]
+O(ǫ) , (13)

we obtain

∫
d~l

Γ(1− ǫ)π1+ǫ

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)
ln
(~k 2

~l 2

)

= 2
(~k 2)ǫ

ǫ2
− 2ζ(2)− ln2

( (~r1 + ~r2)
2

~k 2

)

− ln
( ~r 2

1 ~r
2
2

(~k 2)2

)
ln
( ~r 2

1 ~r
2
2

(~r1 + ~r2)4
)
+ ln

( ~r 2
1

(~r1 + ~r2)2
)
ln
( ~r 2

2

(~r1 + ~r2)2
)
. (14)

The integral with ~∆1 is infrared finite and can be calculated at ǫ = 0. It is
convenient to calculte it using “helical" vector components ± instead of the
Cartesian ones x, y ( a± = ax ± iay) and the decomposition

1

~q 2
1

∆+
1

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)

=
1

(q1 − r1)−

[
r−2
k−
( 1

(r1 − l)+
+

1

l+
)( 1

(r2 + l)−
− 1

(q1 − r1 + l)−
)

+
r−1
q−1

( 1
l+

− 1

(r2 + l)+
)( 1

(r1 − l)−
+

1

(q1 − r1 + l)−
)]
. (15)

Note that each term in this decomposition gives an ultraviolet divergent
contribution to the integral (10) (of course, the total integral is ultraviolet
convergent). Therefore, we introduce the ultraviolet cut-off Λ → ∞. Integrals
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with separate terms in the decomposition (15) are calculated using the basic
integral

∫
d~l

π

1

(a− 1)+
1

(b− 1)−
ln

(
~l 2

µ2

)
θ(Λ2−~l 2) = 1

2
ln

(
Λ2

(~a−~b)2

)
ln

(
Λ2(~a−~b)2

µ4

)

+
1

2
ln

(
(~a−~b)2

~b 2

)
ln

(
(~a−~b)2

~a 2

)
+

a+b− − a−b+

2
I
~a,−~b

, (16)

where I
~a,~b

is defined in Eq. (6). With the help of this integral, one has

∫
d~l

π
~∆1

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)
ln
(~k 2

~l 2

)

=
1

2
~C1

(
ln

~q 2
2

~r 2
1

ln
~k 4

~r 2
1 ~r

2
2

+ ln
(~q1 − ~r1)

2

~k 2
ln

~k 4

(~q1 − ~r1)2~r 2
2

)

+
1

2

(
~C1 − ~C2

)(
ln

~q 2
2

~r 2
2

ln
~k 4

~r 2
1 ~r

2
2

+ ln
(~q1 − ~r1)

2

~q 2
1

ln
~k 4

~r 2
1 (~q1 − ~r1)2

)

+
[
~C1× [~k×~r2]

]
I~k,~r2 +

[
~C2× [~r1×~r2]

]
I~r1,~r2 −

[(
~C1− ~C2

)
× [~q1×~r1]

]
I~q1,−~r1 .

(17)
Using Eqs. (14) and (17) we obtain

~I1 =
1

2
~C1

[
ln

(
~r 2
2

~k 2

)
ln

(
~k 4

(~q1 − ~r1)2~r 2
2

)
+ ln

(
~r 2
1

~k 2

)
ln

(
~k 2~q 2

1

(~q1 − ~r1)2~r 2
1

)

− ln

(
~k 2

(~q1 − ~r1)2

)
ln

(
~k 2~q 2

1

(~q1 − ~r1)4

)
+ 4

(~k 2)ǫ

ǫ2
− 4ζ(2)

]

−1

2
~C2

[
ln

(
~q 2
2

~r 2
2

)
ln

(
~k 4

~r 2
1 ~r

2
2

)
+ ln

(
(~q1 − ~r1)

2

~q 2
1

)
ln

(
~k 4

~r 2
1 (~q1 − ~r1)2

)]

+
[
~C1 ×

([
~k × ~r2

]
I~k,~r2 −

[
~q1 × ~r1

]
I~q1,−~r1

)]

+
[
~C2 ×

([
~r1 × ~r2

]
I~r1,~r2 +

[
~q1 × ~r1

]
I~q1,−~r1

)]
. (18)
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The one-loop correction to the impact factor in the standard scheme is given
by Eqs. (10), (4) and (18) and reads

~ΦG1G2

GR1s
=

1

2
~C1

[
ln

(
~q 2
1

~r 2
1

)
ln

(
~k 2~r 2

1

~q 4
1

)
+ ln

(
(~q1 − ~r1)

2

~k 2

)
ln

(
~k 4~r 2

1

(~q1 − ~r1)4~q 2
1

)

+ ln

(
~r 2
2

~k 2

)
ln

(
(~q1 − ~r1)

2

~r 2
2

)
− 4

(~k 2)ǫ

ǫ2
+ 8ζ(2)

]

+
[
~C1 ×

([
~q1 × ~r1

]
I~q1,−~r1 −

[
~k × r2

]
I~k,~r2

)]

+
1

2
~C2

[
ln

(
~q 2
2

~q 2
1

)
ln

(
~r 2
1 ~r

2
2

~q 4
2

)
+ ln

(
~r 2
2

(~q1 − ~r1)2

)
ln

(
~r 2
2 ~q

2
1

~r 2
1 (~q1 − ~r1)2

)]

+
[
~C2×

([
~r1×~r2

]
I~r1,~r2 +

[
~q1×~r1

]
I~q1,−~r1 +2

[
~k×~r2

]
I~k,~r2 +2

[
~q1×~k

]
I
~q1,−~k

)]
.

(19)

The correction (19) fit the standard kernel [21] and the energy scale |~k1||~k2|,
where ~k1,2 are the transverse momenta of produced gluons in the two impact
factors connected by the Green function of the two interacting Reggeons
(BFKL ladder).

4 The impact factor in the Möbius scheme

The impact factor in the Möbius scheme means the impact factor for Reggeon-
gluon transition which can be used for the calculation of the remainder func-
tion with conformal invariant kernel and energy evolution parameter. Let us
remind here that the kernel used for the calculation of the remainder func-
tion [11]-[16] (which is called modified kernel) is the BFKL kernel in N = 4
SYM for the adjoint representation of the gauge group with the subtracted
gluon trajectory depending on the total momentum transfer (the subtraction
is made to avoid double counting of terms included in the BDS ansatz).

To obtain the impact factor in the Möbius scheme from the correction (19)
we have to perform two transformations, to reconcile the impact factor with
the kernel and the energy scale. As it was shown in Ref. [17], the conformal
invariant K̂c and the standard K̂m forms of the modified kernel are connected
by the similarity transformation

K̂c = K̂m − 1

4

[
K̂B,

[
ln
(
~̂q 2
1 ~̂q

2
2

)
, K̂B

]]
, (20)

10



where K̂B is the usual LO kernel and ~̂q1,2 are the operators of the Reggeon
momenta. Note that in the commutator there is no difference between the
usual and modifided kernels, so that K̂B is taken instead of K̂B

m. The corre-
sponding transformation for the impact factor is

〈GR1|t = 〈GR1|s −
1

4
〈GR1|(B)

[
ln

(
~̂q 2
1 ~̂q

2
2

)
, K̂(B)

]
, (21)

where the subscript t means transformed to fit the conformal kernel. For the
NLO correction we obtain

~ΦGG2

GR1t
= ~ΦGG2

GR1s
+ ~I2,

~I2 =
1

2

∫
d~l

Γ(1− ǫ)π1+ǫ
~C ′
1

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)
ln
( ~r 2

1 ~r
2
2

~r ′ 2
1 ~r ′ 2

2

)
.

(22)
This integral is infrared finite and can be calculated in two-dimensional space,
with the help of the decomposition (15), the decomposition

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)

= −
(

1

(r1 − l)+
+

1

l+

)(
1

(r2 + l)−
− 1

l−

)

−
(

1

(r1 − l)−
+

1

l−

)(
1

(r2 + l)+
− 1

l+

)
(23)

and the integral (16). Using the result of integration,

~I2 =
1

4
~C2

[
ln

(
~q 2
2

~r 2
2

)
ln

(
~q 4
2

~r 2
1 ~r

2
2

)
+ln

(
~q 2
1

~k 2

)
ln

(
~r 2
2

~q 2
2

)
+ln

(
(~q1 − ~r1)

2

~q 2
1

)
ln

(
~k 2~q 2

1

~r 2
1 ~r

2
2

)]

−1

4
~C1

[
ln

(
~r 2
1

~r 2
2

)
ln

(
~k 2~r 2

1

~q 2
1 ~r

2
2

)
+ ln

(
~k 2~q 2

1

~r 2
1 ~r

2
2

)
ln

(
(~q1 − ~r1)

4

~k 2~q 2
1

)]

+
[
~C1 ×

([
~k × ~r2

]
I~k,~r2 −

[
~q1 × ~r1

]
I~q1,−~r1

)]

+
1

2

[
~C2×

([
~r1×~r2

]
I~r1,~r2 +

[
~q1×~r1

]
I~q1,−~r1 −

[
~k×~r2

]
I~k,~r2 −

[
~q1×~k

]
I
~q1,−~k

)]
,

(24)
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we obtain the correction to the transformed impact factor:

~ΦG1G2

GR1t
= ~C1

[
ln

(
~q 2
2

~q 2
1

)
ln

(
~q 4
2 (~q1 − ~r1)

4

~q 2
1 ~r

2
2
~k 2~r 2

1

)
−ln

(
~q 2
2 (~q1 − ~r1)

2

~q 2
1 ~r

2
2

)
ln

(
~q 2
2 (~q1 − ~r1)

2

~k 2~r 2
1

)

−3

4
ln2

(
~k 2~r 2

1

~q 2
1 ~r

2
2

)
− ln2

(
~q 2
1

~q 2
2

)
− 2

(~k 2)ǫ

ǫ2
+ 4ζ(2)

]

+
1

4
~C2 ln

(
~q 2
2 (~q1 − ~r1)

2

~q 2
1 ~r

2
2

)
ln

(
(~q1 − ~r1)

4~q 2
1
~k 2~r 2

1

~r 6
2 ~q

4
2

)

+
3

2

[
~C2×

([
~r1×~r2

]
I~r1,~r2 +

[
~q1×~r1

]
I~q1,−~r1+

[
~k×~r2

]
I~k,~r2 +

[
~q1×~k

]
I
~q1,−~k

)]
.

(25)
The Möbius invariant kernel was used for the calculation of the NLO re-
mainder function in Ref. [16] with the Möbius invariant convolution of the
NLO BFKL impact factor (which was called for brevity simply impact factor)
obtained in Ref. [13] from direct two-loop calculations and with the energy
scale s0 chosen in such a way that the ratio (energy evolution parameter)

s/s0 = s~q 2
2 /

√
~q 2
1 ~q

2
3
~k 2
1
~k 2
2 is Möbius invariant. This energy scale differs from

the energy scale used in the correction (19) of the impact factor (see, for

instance, Ref. [5] ) which is equal to |~k1||~k2|. To adjust the correction (19)
to the energy scale used in Ref. [16], we need to perform an additional trans-
formation:

〈GR1|t → 〈GR1|c = 〈GR1|t −
1

2
ln

(
~q 2
2

~q 2
1

)
〈GR1|(B)K̂(B)

m |G1G2〉 , (26)

where the subscript c means transformed to fit the conformal energy scale

and K̂(B)
m is the modified LO kernel. Let us put, in a way similar to Eqs. (10)

and (22),
~ΦGG2

GR1c
= ~ΦGG2

GR1t
+ ~I3, (27)

then the integral for ~I3 can be written as

~I3 = − ln

(
~q 2
2

~q 2
1

)∫
d~l

π

(
~C ′
1 − ~C1

) 1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~l 2
− ~q 2

2

)
. (28)

Here instead of ~C ′
1 the difference

(
~C ′
1 − ~C1

)
is taken and instead of the

full modified kernel only its part related to real gluon production is kept.

12



Moreover, the integral is written in two-dimensional transverse space. Indeed,
due to gluon Reggeization the BFKL kernel for the adjoint representation of
the colour group has the eigenvalue which is equal to the gluon trajectory, and
the corresponding eigenfunction in the LO is a constant. It means that for
the modified kernel the same eigenfunction corresponds to zero eigenvalue.
Therefore, in the initial integral with ~C ′

1 and the modified kernel we can

change in the integrand
(
~C ′
1 − ~C1

)
with ~C ′

1 without change of the integral.

After that, the virtual part of the kernel, which conserves Reggeon momenta,
can be omitted, and we come to the integral (28) which is infrared finite and
can be calculated in two-dimensional space. Integration can be done using
the same decomposition as in Eq. (15) and the basic integral (16), and we
get

~I3 = − ln

(
~q 2
2

~q 2
1

)[
~C1 ln

(
~q 4
2 (~q1 − ~r1)

4

~q 2
1 ~r

2
2
~k 2~r 2

1

)
− ~C2 ln

(
~q 2
2 (~q1 − ~r1)

2

~q 2
1 ~r

2
2

)]
. (29)

This result, together with the transformation (27) and the correction (25)
gives

~ΦG1G2

GR1c
= ~C1

[
− ln

(
~q 2
2 (~q1 − ~r1)

2

~r 2
1
~k 2

)
ln

(
~q 2
2 (~q1 − ~r1)

2

~q 2
1 ~r

2
2

)

− ln2
(
~q 2
1

~q 2
2

)
− 3

4
ln2

(
~k 2~r 2

1

~q 2
1 ~r

2
2

)

−2
(~k 2)ǫ

ǫ2
+ 4ζ(2)

]
+

1

4
~C2 ln

(
~q 2
2 (~q1 − ~r1)

2

~q 2
1 ~r

2
2

)
ln

(
~q 4
2 (~q1 − ~r1)

4~r 2
1
~k 2

~r 6
2 ~q

6
1

)

+
3

2

[
~C2×

([
~r1×~r2

]
I~r1,~r2 +

[
~q1×~r1

]
I~q1,−~r1+

[
~k×~r2

]
I~k,~r2 +

[
~q1×~k

]
I
~q1,−~k

)]
.

(30)
This expression gives us the NLO correction to the impact factor for Reggeon-
gluon transition in the scheme with conformal kernel and energy evolution
parameter, which were used for the calculation of the remainder function.
However, it is the impact factor for the full amplitude, not for the remainder
function. To obtain the impact factor for the remainder function we have
to take the impact factor (3) with ΦG1G2

GR1c
instead of ΦG1G2

GR1∗
and with the

polarisation vector ~e ∗ of definite helicity, and to extract from it the piece
included in the BDS ansatz.
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Let us consider, for definiteness, the production of a gluon with positive
helicity, ~e ∗ = (~ex − i~ey)/

√
2. Then,

~e ∗ ~C1 = − q−1 r
+
1√

2(q1 − r1)+
, ~e ∗ ~C2 = − q−1 q

+
2√

2k+
,

~e ∗ ~C2

~e ∗ ~C1

= 1− z, (31)

where z = −q+1 r
+
2 /(k

+r+1 ) is the conformal invariant ratio (invariant
with respect to Möbius transformations of complex variables pi such that
r+1 = p1−p2, r

+
2 = p2−p3,−q+1 = p3−p4, k

+
1 = p4−p1). Chiral components

of the vector ~ΦG1G2

GR1c
(30) can be rewritten using the relations

[
~c×

[
~a×~b

]]−
=

1

2
c−[a, b], (32)

where [a, b] = a−b+ − a+b−, and

∫ 1

0

dx

|x− z|2 ln
|z|2
x2

=
1

z+ − z−

(
2

∫ 1

0

dx

x
ln

1− xz−

1 − xz+
− ln |z|2 ln 1− z−

1− z+

)

=
1

z+ − z−

(
−2

∫ 1

0

dx

x
ln

1− x/z−

1− x/z+
− ln |z|2 ln (1− z−)z+

(1− z+)z−

)
. (33)

Taking into account these relations and Eq. (6) we have

[~c× [~a×~b]]−I
~a,~b

=
c−

2

(
2

∫ 1

0

dx

x
ln

(1 + xa−/b−)

(1 + xa+/b+)
− ln

(~a 2

~b 2

)
ln

(a+ b)−b+

(a+ b)+b−

)

=
c−

2

(
−2

∫ 1

0

dx

x
ln

(1 + xb−/a−)

(1 + xb+/a+)
− ln

(~a 2

~b 2

)
ln

(a+ b)−a+

(a+ b)+a−

)
. (34)

Then, we transform the sum of dilogarithms which are obtained from the
correction (30) with the help of the relation (34) using the identity

Li2(−
b

a
) + Li2(−

c

a
) + Li2(−

b

d
) + Li2(−

c

d
) = Li2(

bc

ad
)− 1

2
ln2
(a
d

)
, (35)

where a + b + c + d = 0. As result, after some algebra and with account of
Eq. (3) we obtain

〈GR1|G1G2〉 = 〈GR1|G1G2〉(B)

{
1+

ḡ2

8

[
(1− z)

(
ln

( |1− z|2
|z|2

)
ln

( |1− z|4
|z|6

)

14



−6Li2(z)+ 6Li2(z
∗)− 3 ln |z|2 ln 1− z

1− z∗

)
− 4 ln |1− z|2 ln |1− z|2

|z|2 − 3 ln2 |z|2

−4 ln2
(
~q 2
1

~q 2
2

)
− 8

(~k 2)ǫ

ǫ2
+ 16ζ(2)

]}
. (36)

Finally, in order to move to the impact factor for the calcu-
lation of the remainder function, one has to discard the terms

ḡ2
(
−(1/2) ln2

(
~q 2
1 /~q

2
2

)
− (~k 2)ǫ/ǫ2 + 2ζ(2)

)
in the impact factor (36), since

they are already taken into account in the BDS ansatz.

5 Conclusion

In this paper, we have calculated in the next-to-leading order the impact fac-
tor for Reggeon-gluon transition in the maximally extended supersymmetric
Yang-Mills theory (N=4 SYM) with large number of colours. Our final goal
was the impact factor for the calculation of the high energy behaviour of the
remainder function for the BDS ansatz. On the way to this goal we have
obtained several noteworthy intermediate results.

In the next-to-leading order impact factors are scheme dependent. First,
we have found the impact factor in the bootstrap scheme, which was used in
Refs. [6]-[9] for the check of validity of the bootstrap condition, the last and
the most complicate in the set of the conditions, the fulfillment of which pro-
vides the multi-Regge form of production amplitudes. Starting from rather
cumbersome results of Refs. [6]-[9] for Yang-Mills theories with any number
of fermions and scalars in arbitrary representations of the gauge group, af-
ter great simplifications we have obtained a simple expression for the impact
factor in the bootstrap scheme for N = 4 SYM with large number of colours.
Then, we have transformed it in the standard scheme. To reach our goal,
we needed to have the impact factor in the scheme with conformal invariant
kernel and energy evolution parameter (Möbius scheme). The impact factor
in the Möbius scheme was obtained by the transformation from the stan-
dard scheme. Finally, the impact factor for the calculation of the remainder
function was obtained from the impact factor in the Möbius scheme by sub-
traction of the terms contained in the BDS ansatz. It turns out that this
impact factor is invariant with respect to Möbius transformations in momen-
tum space. Definitely, it is the reaffirmation of justice of the conjecture about
dual conformal invariance of the remainder function. From the other side, it
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can be considered as a cross-check of a large number of calculations in the
BFKL theory.
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