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As it was recently shown, the colour singlet BFKL kernel, taken

in Möbius representation in the space of impact parameters, can be

written in quasi-conformal shape, which is unbelievably simple com-

pared with the conventional form of the BFKL kernel in momentum

space. It was also proved that the total kernel is completely defined by

its Möbius representation. In this paper we calculated the difference

between standard and quasi-conformal BFKL kernels in momentum

space and discovered that it is rather simple. Therefore we come to the

conclusion that the simplicity of the quasi-conformal kernel is caused

mainly by using the impact parameter space.
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† e-mail address: fadin@inp.nsk.su
‡ e-mail address: roberto.fiore@cs.infn.it
†† e-mail address: alessandro.papa@cs.infn.it

c©Budker Institute of Nuclear Physics, SB RAS



.

1 Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach [1] was formulated in
the momentum space. In this space the kernel of the BFKL equation was
calculated in the next-to-leading order (NLO) long ago, at first for the forward
scattering (i.e. for t = 0 and colour singlet in the t-channel) [2] and then for
any fixed (not growing with energy) squared momentum transfer t and any
possible two-gluon colour state in the t-channel [3]. Unfortunately, the NLO
kernel is rather complicated. In particular, the colour singlet kernel for t 6= 0
is found in the NLO in the form of an intricate two-dimensional integral.

In the most interesting for phenomenological applications case of colour-
less particle scattering, the leading-order (LO) BFKL kernel has a remarkable
property [4]: it can be taken in the Möbius representation (i.e. in the space of
functions vanishing at coinciding transverse coordinates of Reggeons), where
it turns out to be invariant in regard to conformal transformations of these
coordinates. Moreover, in the coordinate space the Möbius representation
(we will call it “Möbius form”) of the LO BFKL kernel coincides [5] with the
kernel of the colour dipole model [6].

In the NLO the conformal invariance is violated in QCD by the running
coupling. One could hope that the Möbius form of the colour singlet NLO
kernel is quasi-conformal, i.e. conformal invariance is violated only by terms
proportional to the β-function. However, the direct transformation of the
colour singlet kernel found in Ref. [3] from momentum to coordinate space
with the restriction of Möbius representation gives a kernel which is not quasi-
conformal [7, 8, 9]. But in the NLO kernel there is an ambiguity [5, 10],
analogous to the well known ambiguity of the NLO anomalous dimensions,
because it is possible to redistribute radiative corrections between the kernel
and the impact factors. The ambiguity, discussed in details in Ref. [11],
permits to make transformations

K̂ → K̂ − αs[K̂
(B), Û ] (1)

conserving the LO kernel K̂(B) (which is fixed in our case by the requirement
of conformal invariance of its Möbius form) and changing the NLO part of
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the kernel. Note that this transformation must conserve the gauge invariance
properties of the kernel, so that the operator Û must have in this respect the
same properties as K̂(B).

The NLO kernel calculated in Ref. [3] is defined according to the prescrip-
tions given in Ref. [12]. We will call it the “standard kernel”. Recently it was
shown [13] that there exist an operator Û such that the transformation (1)
applied to this standard kernel gives a kernel with quasi-conformal Möbius
form, which agrees with the form obtained in Ref. [14] in the colour dipole
approach. It turns out that this form is quite simple. It is unbelievably sim-
ple in comparison with the form of the standard kernel [3]. Evidently, the
question arose about the relation between these two forms.

This question is not trivial not only because the Möbius form is defined
in the coordinate space, whereas the standard kernel was calculated in the
momentum space. Remind that the Möbius representation is defined on a
special class of functions. Therefore at the first sight it seemed impossible
to reconstruct the complete operator from its Möbius form. However, due
to the gauge invariance of the BFKL kernel, it is not so. It was shown [15]
for any gauge invariant two-particle operator that it is possible to restore the
complete operator from its Möbius form and the restoration is unique up to
terms which do not contribute to the operator matrix elements, because of
symmetry and gauge invariance of the wave functions.

Therefore, it is in principle possible to restore the complete BFKL ker-
nel from its quasi-conformal Möbius form. Since this form is quite simple,
one can hope for simplicity of the complete kernel in the momentum space
too. Evidently this kernel differs from the standard kernel found in Ref. [3],
but is connected with the last one by the transformation (1). However, the
direct restoration is not easy. It includes the Fourier transformation of the
Möbius form from coordinate to momentum space and, although this form
is very compact, the transformation is intricate since it contains complicated
integrals.

Instead, one can try to find the difference between the standard kernel
and the one restored from the quasi-conformal Möbius form. Our paper is
devoted to the solution of this problem. The difference under investigation
is given by the second term in the transformation (1). For the operator
Û , both Möbius form and complete representation in the momentum space
are known now [15]. The same is true for K̂(B). We are looking for the
difference in the momentum space. It can be found using for the calculation
of the commutator in the transformation (1) both Û and K̂(B) in this space.
Alternatively, it is possible to calculate the commutator in the coordinate
Möbius space and then to restore its complete form in the momentum space
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using the method developed in Ref. [15]. We use both these ways, on one side
for cross-checking the obtained result, on the other for a demonstration of
the efficiency of the method of restoration of complete operators from their
Möbius forms, developed in Ref. [15].

The paper is organized as follows. In the next Section we calculate the
commutator in the transformation (1) directly in the momentum space. In
Section 3 this commutator is calculated firstly in the coordinate Möbius space
and then the obtained result is used for restoration of the complete form of the
commutator in the momentum space. The last Section contains our conclu-
sions. The integrals used in the calculations are presented in the Appendix.

2 Direct calculation of the difference

in momentum space

We adopt the notation used in Ref. [15] and put the space-time dimension D
equal to 4, so that states |~q〉 with definite two-dimensional transverse Reggeon
momentum ~q and states |~r〉 with definite Reggeon impact parameter ~r are
normalized as follows:

〈~q|~q ′〉 = δ(~q − ~q ′) , 〈~r|~r ′〉 = δ(~r − ~r ′) , 〈~r|~q〉 =
ei~q ~r

2π
. (2)

As it was shown in Ref. [13], the quasi-conformal kernel K̂QC can be obtained
from the kernel calculated in Ref. [3] by the transformation (1), namely,

K̂QC = K̂ − αs[K̂
(B), Û ] . (3)

It is worthwhile to note here that the kernel K̂ is defined in such a way that
in the LO its Möbius form is conformal invariant. Therefore one has (see
Ref. [15] for details)

〈~q1, ~q2|K̂|~q ′
1 , ~q

′
2 〉 = δ(~q1 + ~q2 − ~q ′

1 − ~q ′
2 )

1

~q 2
1 ~q 2

2

K(~q1, ~q
′
1 ; ~q) , (4)

where ~q = ~q1 + ~q2 = ~q ′
1 + ~q ′

2 and K(~q1, ~q
′
1 ; ~q) is the symmetric kernel

K(~q1, ~q
′
1 ; ~q) = K(~q ′

1 , ~q1; ~q) , (5)

defined in Ref. [12] and calculated in Ref. [3]. Its real part Kr satisfies the
gauge invariance conditions

Kr(~0, ~q
′
1 ; ~q) = Kr(~q1,~0; ~q) = Kr(~q, ~q

′
1 ; ~q) = Kr(~q1, ~q; ~q) . (6)
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Our goal is to find in the momentum space an explicit form for the commu-
tator in Eq. (3). In this Section it is done using the known expressions in
this space for the LO kernel K̂(B) and the operator Û .

The kernel K̂(B) can be presented as follows

〈~q1, ~q2|K̂
(B)|~q ′

1 , ~q
′
2 〉 = δ(~q11′+~q22′)

αsNc

2π2

[

R(~q1, ~q2;~k)− δ(~k)

∫

d~l V (~q1, ~q2;~l)

]

,

(7)

where ~k = ~q11′ = −~q22′ (here and below ~aij′ = ~ai − ~a ′
j , ~aij = ~ai − ~aj ,

~ai′j′ = ~a ′
i − ~a ′

j ),

R(~q1, ~q2;~k) =
2

~k 2
− 2

~q1~k

~k 2~q 2
1

+ 2
~q2~k

~k 2~q 2
2

− 2
~q1~q2
~q 2
1 ~q 2

2

(8)

and

V (~q1, ~q2;~l) =
2

~l 2
−

~l(~l − ~q1)

~l 2(~l − ~q1)2
−

~l(~l − ~q2)

~l 2(~l − ~q2) 2
. (9)

Note that the term 2/~l 2 in V (~q1, ~q2;~l) leads to the divergence of the integral

over d~l in the second term of Eq. (7), which represents the virtual part of
the kernel. It is a well known infrared divergence which cancels with the
divergence coming from the term 2/~k 2 in the part with R(~q1, ~q2;~k) in Eq. (7)
(real part), when K̂(B) acts on some state. In the commutator [K̂(B), Û ] there
are no problems with these divergences at all, because they cancel separately
in the virtual and real parts.

The gauge invariance properties for R look as follows:

R(~q1, ~q2; ~q1) = R(~q1, ~q2;−~q2) = 0,

(~q 2
1 ~q

2
2 R(~q1, ~q2;~k))|~q1=0 = (~q 2

1 ~q 2
2 R(~q1, ~q2;~k))|~q2=0 = 0 . (10)

An explicit form of the operator Û in the momentum space was found
in Ref. [15]. Omitting terms which do not contribute to the commutator in
Eq. (3), we have

〈~q1, ~q2|αsÛ |~q ′
1 , ~q

′
2 〉 = δ(~q11′ + ~q22′)

αsNc

4π2
Ru(~q1, ~q2;~k)

−
αsβ0

8π
ln
(

~q 2
1 ~q

2
2

)

δ(~q11′)δ(~q22′) , (11)

where β0 is the first coefficient of the Gell-Mann–Low function,

β0 =
11

3
Nc −

2

3
nf (12)
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and

Ru(~q1, ~q2;~k) =
1

~q 2
1

ln

(

~q ′ 2
1 ~q 2

2

~k 2~q 2

)

+
1

~q 2
2

ln

(

~q ′ 2
2 ~q 2

1

~k 2~q 2

)

+
1

~k 2
ln

(

~q ′ 2
1 ~q ′ 2

2

~q 2
1 ~q

2
2

)

−2
~q1~k

~k 2~q 2
1

ln

(

~q ′ 2
1

~k 2

)

+ 2
~q2~k

~k 2~q 2
2

ln

(

~q ′ 2
2

~k 2

)

− 2
~q1~q2
~q 2
1 ~q 2

2

ln

(

~q 2

~k 2

)

. (13)

Note that Ru has the same gauge invariance properties as R:

Ru(~q1, ~q2; ~q1) = Ru(~q1, ~q2;−~q2) = 0,

(~q 2
1 ~q 2

2 Ru(~q1, ~q2;~k))|~q1=0 = (~q 2
1 ~q 2

2 Ru(~q1, ~q2;~k))|~q2=0 = 0 . (14)

Indeed, these properties are required to conserve the gauge invariance in the
transformation (1).

Another important property of Ru is the absence of either infrared, or
ultraviolet non-integrable singularities, thus leading to convergence of the
integral

∫

d~k1d~k2
π

δ(~k−~k1−~k2)Ru(~q1−~k1, ~q2+~k1;~k2) = − ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
2

~q 2

)

. (15)

The calculation of this integral and of the integrals appearing below is de-
scribed in the Appendix. The result (15) follows from (A.1) and (A.4) with
a subsequent elementary integration over l.

Having Eqs. (7) and (11), it is quite straightforward to write the commu-

tator
[

K̂(B), Û
]

in the form

〈~q1, ~q2|αs

[

K̂(B), Û
]

|~q ′
1 , ~q

′
2 〉 = δ(~q11′+~q22′)

α2
sN

2
c

8π3

[

β0

2Nc

ln

(

~q 2
1 ~q

2
2

~q ′ 2
1 ~q 2

2

)

R(~q1, ~q2;~k)

+

∫

d~l

π

(

V (~q ′
1 , ~q

′
2 ;
~l)− V (~q1, ~q2;~l)

)

Ru(~q1, ~q2;~k) + F (~q1, ~q2;~k)

]

, (16)

where

F (~q1, ~q2;~k) =

∫

d~k1d~k2
π

δ(~k − ~k1 − ~k2)F(~q1, ~q2;~k1, ~k2) , F(~q1, ~q2;~k1, ~k2) =

= R(~q1, ~q2;~k1)Ru(~q1 − ~k1, ~q2 + ~k1;~k2)−Ru(~q1, ~q2;~k1)R(~q1 − ~k1, ~q2 + ~k1;~k2) .
(17)
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The infrared divergent pieces in the virtual parts entering the integral over
d~l in Eq. (16) cancel, and one can easily obtain (see (A.5))

∫

d~l

π

(

V (~q ′
1 , ~q

′
2 ;
~l)− V (~q1, ~q2;~l)

)

= ln

(

~q ′ 2
1 ~q ′ 2

2

~q 2
1 ~q

2
2

)

. (18)

Unfortunately, the calculation of F (~q1, ~q2;~k) is not so easy, both because

of the presence of a great number of terms in F(~q1, ~q2;~k1, ~k2) and of the
complexity of the integration. One of the reasons of this complexity is the
singularity of R(~q1, ~q2;~k) at ~k 2 = 0. Of course, this singularity disappears in

F (~q1, ~q2;~k), Eq. (17). To make this evident, let us write

R(~q1, ~q2;~k) =
2

~k 2
+Rf (~q1, ~q2;~k),

Rf (~q1, ~q2;~k) = −2
~q1~k

~k 2~q 2
1

+ 2
~q2~k

~k 2~q 2
2

− 2
~q1~q2
~q 2
1 ~q 2

2

, (19)

and divide F (~q1, ~q2;~k), Eq. (17), into three pieces:

F (~q1, ~q2;~k) =

3
∑

i=1

Fi(~q1, ~q2;~k), (20)

where

F1(~q1, ~q2;~k) =

∫

d~k1
π

Rf (~q1, ~q2;~k1)Ru(~q1 − ~k1, ~q2 + ~k1;~k − ~k1) , (21)

F2(~q1, ~q2;~k) = −

∫

d~k1
π

Ru(~q1, ~q2;~k1)Rf (~q1 − ~k1, ~q2 + ~k1;~k − ~k1) , (22)

F3(~q1, ~q2;~k) =

∫

d~k1
π

2

~k 2
1

(

Ru(~q1 − ~k1, ~q2 + ~k1;~k − ~k1)−Ru(~q1, ~q2;~k − ~k1)
)

.

(23)
Now all the three pieces have no infrared singularities, the first two of them
because of the absence of singularities in the integrands, and the last one
because of the evident cancellation between the two terms with Ru in Eq. (23)

at ~k1 = 0. The integration of the first piece can be performed with the help
of Eqs. (15), (A.8), (A.9) and (A.10) and gives
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F1(~q1, ~q2;~k) =

(

~q1~q2
~q 2
1 ~q

2
2

−
1

~q 2
1

)

ln

(

~q 2~q 2
1

~q ′ 2
2

~k 2

)

ln

(

~q ′ 2
1 ~q 2

2

~q 2~k 2

)

+
~q1~q2
~q 2
1 ~q

2
2

ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
2

~q 2

)

+ 4

(

[~q2 × ~k]

~q 2
2
~k 2

−
[~q1 × ~k]

~q 2
1
~k 2

)

[~q1 × ~k]I~k,~q ′

1

+2
[~q1 × ~q2]

2

~q 2
1 ~q

2
2

I~q1,~q2 + 2
[~q1 × ~q2][~q

′
1 × ~q ′

2 ]

~q 2
1 ~q

2
2

I~q ′

1
,~q ′

2
+ ~q1 ↔ −~q2 . (24)

Here

I~p,~q =

∫ 1

0

dx

(~p+ x~q)2
ln

(

~p 2

x2~q 2

)

(25)

is the di-logarithmic function with high symmetry,

I~p,~q = I−~p,−~q = I~q,~p = I~p,−~p−~q . (26)

The representation exhibiting these properties [16] is

I~p,~q =

∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1− x1 − x2 − x3)

(~p 2x1 + ~q 2x2 + (~p+ ~q)2x3)(x1x2 + x1x3 + x2x3)
. (27)

Other useful representations are

I~p,~q =

∫ 1

0

dx

a(1− x) + bx− cx(1 − x)
ln

(

a(1− x) + bx

cx(1 − x)

)

=

∫ 1

0

dx

∫ 1

0

dz
1

cx(1− x)z + (b(1− x) + ax)(1 − z)
, (28)

where a = ~p 2, b = ~q 2, c = (~p+ ~q)2.
Note that F1 must turn into zero at ~q ′

1 = 0 or ~q ′
2 = 0 due to the gauge

invariance of Ru. It is easy to see from Eq. (24) that this property is fulfilled.
Unfortunately, neither F2 nor F3 possess such property. Moreover, the

separation (20) destroys the good behaviour of R(~q1, ~q2;~k) in the ultraviolet

region, so that the integrals (22) and (23) diverge at large ~k 2
1 and we have

to introduce an ultraviolet cut-off Λ2 for them. The loss of gauge invari-
ance and ultraviolet convergence of the integrals makes them more complex.
Using (A.9)–(A.14) we obtain

F2(~q1, ~q2;~k) =
1

~q 2
1

(

ln

(

~q 2
2

~q 2

)

ln

(

Λ4~q 4~q 2
1

~q ′ 6
1 ~q ′ 2

2 ~q 2
2

)

+ ln

(

~q ′ 2
1

~k 2

)

ln

(

~q 2
1 ~q

2
2

~k 2~q ′ 2
2

))

+
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+
~q1~q2
~q 2
1 ~q

2
2

(

ln2
(

Λ2

~q 2

)

− ln

(

~q 2
1

~q 2

)

ln

(

~q 2
2

~q 2

)

− ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
1 ~q ′ 2

2

~q 4

)

− ln

(

~k 2

~q ′ 2
1

)

ln

(

~k 2~q ′ 2
1

~q 4
1

))

+ 2
~q1~k

~q 2
1
~k 2

ln

(

~q 2

~q 2
2

)

ln

(

~q 2
1 ~q

′ 2
2

~q ′ 2
1 ~q 2

2

)

+4

(

[~q1 × ~k]

~q 2
1
~k 2

−
[~q2 × ~k]

~q 2
2
~k 2

−
[~q1 × ~q2]

~q 2
2 ~q

2
2

)

[~q1 × ~k]I~k,~q ′

1

−2

(

[~q1 × ~k]

~q 2
1
~k 2

+
[~q2 × ~k]

~q 2
2
~k 2

+
[~q1 × ~q2]

~q 2
2 ~q

2
2

)

×

(

[~q1 × ~q2]I~q1,~q2 − [~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2

)

+ ~q1 ↔ −~q2 . (29)

The result for F3(~q1, ~q2;~k) can be obtained using Eqs. (A.8), (A.13)–(A.16)
and reads

F3(~q1, ~q2;~k) =
1

~q 2
1

(

ln

(

~q 2

~q 2
2

)

ln

(

Λ4~q 2

~q 4
1 ~q

2
2

)

− 2 ln

(

~q ′ 2
1

~k 2

)

ln

(

~q ′ 2
1

~q 2
1

))

−
~q1~q2
~q 2
1 ~q

2
2

×

(

ln2
(

Λ2

~q 2

)

− 2 ln2
(

~q 2
1

~q 2

)

− ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
2

~q 2

)

+ 2 ln

(

~k 2

~q 2
1

)

ln

(

~q ′ 2
1

~q 2
1

)

)

−4
~q1~k

~q 2
1
~k 2

ln

(

~k 2

~q ′ 2
1

)

ln

(

~q ′ 2
1

~q 2
1

)

−
2

~k 2
ln2
(

~q ′ 2
1

~q 2
1

)

+2
[~q1 × ~q2]

~q 2
1 ~q

2
2

(

2[~q1 × ~k]I~k1,~q
′

1

− [~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2

)

+ ~q1 ↔ −~q2 . (30)

From the Eq. (20) and the definitions (21)–(23) it follows

F (~q1, ~q2;~k) =
2

~q 2
1

ln

(

~q 2
1

~q ′ 2
1

)

ln

(

~q ′ 2
1 ~q 2

2

~q 2~k 2

)

+
2~q1~q2
~q 2
1 ~q

2
2

ln

(

~q 2
1

~q ′ 2
1

)

ln

(

~k 2

~q 2

)

+2
~q1~k

~q 2
1
~k 2

(

ln

(

~q 2

~q 2
2

)

ln

(

~q 2
1 ~q

′ 2
2

~q ′ 2
1 ~q 2

2

)

+ 2 ln

(

~q ′ 2
1

~q 2
1

)

ln

(

~q ′ 2
1

~k 2

))

−
2

~k 2
ln2
(

~q ′ 2
1

~q 2
1

)

−2

(

[~q1 × ~q2]

~q 2
1 ~q

2
2

+ 2
[~q1 × ~k]

~q 2
1
~k 2

)

(

[~q1 × ~q2]I~q1,~q2 − [~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2

)

+ ~q1 ↔ −~q2 .

(31)
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The definition (17) and the properties (10) and (14) of R and Ru, respectively,
secure the gauge invariance of F :

F (~q1, ~q2; ~q1) = F (~q1, ~q2;−~q2) = 0,

(~q 2
1 ~q 2

2 F (~q1, ~q2; ~q1))|~q1=0 = (~q 2
1 ~q 2

2 F (~q1, ~q2; ~q1))|~q2=0 = 0 . (32)

The fulfilment of these properties can be easily seen from Eq. (31).
Finally, Eq. (16) together with Eqs. (13), (18) and (31) gives

〈~q1, ~q2|αs[K̂
(B), Û ]|~q ′

1 , ~q
′
2 〉 =

= δ(~q11′ + ~q22′)
α2
sN

2
c

8π3

[

−
β0

2Nc

R(~q1, ~q2;~k) ln

(

~q ′ 2
1 ~q ′ 2

2

~q 2
1 ~q

2
2

)

+
~q ′ 2
1

~q 2
1
~k 2

ln

(

~q 2
1 ~q

′ 2
2

~q 2
2 ~q

′ 2
1

)

ln

(

~q 2
2 ~q

′ 2
1

~q 2~k 2

)

+
~q ′ 2
2

~q 2
2
~k 2

ln

(

~q 2
2 ~q

′ 2
1

~q 2
1 ~q

′ 2
2

)

ln

(

~q 2
1 ~q

′ 2
2

~q 2~k 2

)

−4

(

[~q1 × ~q2]

~q 2
1 ~q

2
2

+
[~q1 × ~k]

~q 2
1
~k 2

+
[~q2 × ~k]

~q 2
2
~k 2

)

(

[~q1 × ~q2]I~q1,~q2 − [~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2

)

]

.

(33)

3 Use of Möbius space

Since the result (33) was derived by means of lengthy and intricate calcu-
lations, we want to obtain it in a quite independent way, starting from the
Möbius forms of the kernel K̂(B) and of the operator Û , calculating their
commutator and restoring the complete commutator (33) in the momentum
space from its Möbius form. Simultaneously, the efficiency of the method of
restoration developed in Ref. [15] will be demonstrated. Here this alternative
derivation is illustrated.

As it is known [5], the Möbius form of the kernel K̂(B) coincides with the
kernel of the colour dipole model [6] and can be written as

〈~r1~r2|K̂
(B)
M |~r ′

1~r
′
2 〉 =

αsNc

2π2

∫

d~r0g(~r1, ~r2, ~r0)

×

[

δ(~r11′ )δ(~r2′0) + δ(~r1′0)δ(~r22′ )− δ(~r11′)δ(r22′ )

]

, (34)

where

g(~r1, ~r2, ~r0) = g(~r2, ~r1, ~r0) =
~r 2
12

~r 2
10~r

2
20

. (35)
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The Möbius form of the operator U was found in Ref. [15]. Omitting the
term with K̂(B), which does not contribute to the commutator in (3), one has

〈~r1~r2|αsÛM |~r ′
1~r

′
2 〉 =

αsNc

4π2

[

δ(~r11′ )V1(~r1, ~r2, ~r
′
2 ) + δ(~r22′)V1(~r2, ~r1, ~r

′
1 )

+
1

π
V3(~r1, ~r2, ~r

′
1 , ~r

′
2 )

]

+
αsβ0

8π2

[

δ(~r11′ )

(

1

~r 2
22′

−
1

~r 2
12′

)

+δ(~r22′)

(

1

~r 2
11′

−
1

~r 2
21′

)

]

,

(36)
where

V1(~r1, ~r2, ~r
′
2 ) =

~r 2
12

~r 2
12′~r

2
22′

ln

(

~r 2
12

~r 2
22′

)

+
1

~r 2
22′

ln

(

~r 2
22′

~r 2
12′

)

, (37)

V3(~r1, ~r2, ~r
′
1 , ~r

′
2 ) = V3(~r2, ~r1, ~r

′
2 , ~r

′
1 ) =

1

~r 2
1′2′

[

2~r11′~r22′

~r 2
11′~r

2
22′

−
~r11′~r12′

~r 2
11′~r

2
12′

−
~r21′~r22′

~r 2
21′~r

2
22′

]

.

(38)
The treatment of the term with β0 in Û can be performed quite easily in the
momentum space (see Eq. (16)), so that in the following we will omit this
term, denoting the remaining part of Û as Ûs. With the notation (34)–(38)
the Möbius form for the commutator [K̂(B), Ûs] can be presented as

〈~r1~r2|αs[K̂
(B), Ûs]M |~r ′

1~r
′
2 〉 =

α2
sN

2
c

8π3

[

δ(~r11′)J(~r1, ~r2, ~r
′
2 ) +

1

π
F (~r1, ~r2, ~r

′
1 , ~r

′
2 )

+
1

π
I(~r1, ~r2, ~r

′
1 , ~r

′
2 )

]

+ 1 ↔ 2 , (39)

where 1 ↔ 2 means the substitution ~r1 ↔ ~r2, ~r
′
1 ↔ ~r ′

2 . The first two terms
in the square brackets in Eq. (39) come from the term with V1(~r1, ~r2, ~r

′
2 ) in

Eq. (36) and are written as

J(~r1, ~r2, ~r
′
2 ) =

∫

d~r0
π

[g(~r1, ~r2, ~r0)V1(~r1, ~r0, ~r
′
2 )− V1(~r1, ~r2, ~r0)g(~r1, ~r0, ~r

′
2 )

−(g(~r1, ~r2, ~r0)− g(~r1, ~r
′
2 , ~r0))V1(~r1, ~r2, ~r

′
2 )] (40)

and

F (~r1, ~r2, ~r
′
1 , ~r

′
2 ) = g(~r2, ~r1, ~r

′
1 )V1(~r

′
1 , ~r2, ~r

′
2 )−V1(~r1, ~r2, ~r

′
2 )g(~r

′
2 , ~r1, ~r

′
1 ) . (41)

The last term in the square brackets in Eq. (39) related with V3 is presented
in the form

12



I(~r1, ~r2, ~r
′
1 , ~r

′
2 ) =

∫

d~r0
π

[(

1

~r 2
10

−
~r10~r20
~r 2
10~r

2
20

)

V3(~r1, ~r0, ~r
′
1 , ~r

′
2 ) +

(

1

~r 2
20

−
~r10~r20
~r 2
10~r

2
20

)

×

(

V3(~r1, ~r0, ~r
′
1 , ~r

′
2 )− V3(~r1, ~r2, ~r

′
1 , ~r

′
2 )

)

−
1

~r 2
02′

(

V3(~r1, ~r2, ~r
′
1 , ~r0)

~r 2
01′

~r 2
1′2′

−V3(~r1, ~r2, ~r
′
1 , ~r

′
2 )

)

−
~r1′0~r2′0
~r 2
1′0~r

2
2′0

V3(~r1, ~r2, ~r
′
1 , ~r

′
2 )

]

. (42)

Note that each of the J, F, I functions independently turns into zero at ~r12 =
0. In contrast to the function F , which is given explicitly by Eq. (41), the
functions J and I are expressed in terms of the integrals (40) and (42),
respectively. The integrals are not very intricate, although their calculation
is complicated by the ultraviolet divergences existing in separate terms. The
integrands in (40) and (42) are written in such a way so as to make the
cancellation evident. The results of the integration (which can be performed
by the method described in the Appendix) are very simple:

J(~r1, ~r2, ~r
′
2 ) =

(

2(~r12′~r22′)

~r 2
12′~r

2
22′

−
1

~r 2
12′

)

ln

(

~r 2
12′

~r 2
12

)

ln

(

~r 2
22′

~r 2
12

)

−
1

~r 2
22′

ln2
(

~r 2
12′

~r 2
12

)

(43)
and

I(~r1, ~r2, ~r
′
1 , ~r

′
2 ) =

1

~r 2
1′2′

(

(~r11′~r22′ )

~r 2
11′~r

2
22′

ln

(

~r 2
21′~r

2
1′2′

~r 2
12~r

2
12′

)

+
(~r11′~r12′)

~r 2
11′~r

2
12′

ln

(

~r 4
12′~r

2
12

~r 2
11′~r

4
22′

)

+
(~r22′~r21′)

~r 2
22′~r

2
21′

ln

(

~r 2
12

~r 2
21′

)

+
(~r12′~r21′)

~r 2
12′~r

2
21′

ln

(

~r 2
11′~r

2
22′

~r 2
12~r

2
1′2′

))

. (44)

Note that the property of turning into zero at ~r12 = 0 is conserved
after integration. Thus, the Möbius form of the commutator given by
Eqs. (39), (41), (43) and (44) is rather simple and does not contain special
functions. Having this form one can find the complete commutator in the

momentum space 〈~q1, ~q2|αs

[

K̂(B), Û
]

|~q ′
1 , ~q

′
2 〉 according to the prescriptions

of Ref. [15]. We write it in the form

〈~q1, ~q2|αs

[

K̂(B), Û
]

|~q ′
1 , ~q

′
2 〉 = δ(~q11′ + ~q22′)

α2
sN

2
c

8π3

[

β0

4Nc

ln

(

~q 2
1

~q ′ 2
1

)

R(~q1, ~q2;~k)

+F (~q2, ~q2;~k) + J(~q2, ~q2;~k) + I(~q2, ~q2;~k) + ~q1 ↔ −~q2

]

. (45)
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Here R(~q1, ~q2;~k) is given by Eq. (8) and

F (~q1, ~q2;~k) =
1

π
<

∫

d~r11′

2π

d~r22′

2π
d~r1′2′e

−i(~q1~r11′+~q2~r22′+
~k~r

1′2′
)F (~r1, ~r2, ~r

′
1 , ~r

′
2 )>

=

(

1

~q 2
1

ln

(

~q 2
1

~q ′ 2
1

)

ln

(

~q 2
2

~q 2

)

+
1

2~k 2
ln

(

~q 2
1

~q ′ 2
1

)

ln

(

~q 2
2

~q ′ 2
2

)

−
(~q1~k)

~q 2
1
~k 2

×

(

ln

(

~q ′ 2
2

~q 2
2

)

ln

(

~q ′ 2
1

~k 2

)

+ ln

(

~q 2

~q 2
2

)

ln

(

~q 2
2 ~q

′ 2
1

~q 2
1 ~q

′ 2
2

))

+ ~q1 ↔ −~q2

)

+
(~q1~q2)

~q 2
1 ~q 2

2

×

(

ln

(

~q 2

~q 2
1

)

ln

(

~q ′ 2
1

~k 2

~q 2
1 ~q

2
2

)

+ ln

(

~q ′2
2

~k 2

)

ln

(

~q 2

~q ′2
1

)

)

− 2
[~q1 × ~q2]

~q 2
1 ~q

2
2

[~q1 × ~k]I~k,~q ′

1

−2

(

[~q1 × ~k]

~q 2
1
~k 2

+
[~q2 × ~k]

~q 2
2
~k 2

+
[~q1 × ~q2]

~q 2
1 ~q

2
2

)

(

[~q1 × ~q2]I~q1,~q2 − [~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2

)

,

(46)

J(~q2, ~q2;~k) =
1

π
<

∫

d~r11′

2π

d~r22′

2π
d~r1′2′e

−i(~q1~r11′+~q2~r22′+
~k~r

1′2′
)δ(~r11′)J(~r1, ~r2, ~r

′
2 )>

(

1

~q 2
2

+ 2
(~q2~k)

~q 2
2
~k 2

)

ln

(

~q 2
2

~q ′2
2

)

ln

(

~q ′ 2
2

~k 2

)

−
1

~k 2
ln2
(

~q 2
2

~q ′2
2

)

, (47)

I(~q1, ~q2;~k) =
1

π
<

∫

d~r11′

2π

d~r22′

2π
d~r1′2′e

−i(~q1~r11′+~q2~r22′+
~k~r

1′2′
)F (~r1, ~r2, ~r

′
1 , ~r

′
2 ) >

=
1

2~q 2
1

ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
2

~q 2

)

+
1

2~q 2
2

(

ln

(

~q ′ 2
1

~q 2

)

ln

(

~q ′ 2
2

~q 2

)

−2 ln

(

~q ′ 2
1

~q 2
1

)

ln

(

~k 2

~q 2
1

))

−
(~q1~q2)

~q 2
1 ~q

2
2

(

ln

(

~q 2

~q 2
1

)

ln

(

~q ′ 2
1

~k 2

~q 2
1 ~q

2
2

)

+ ln

(

~q ′2
2

~k 2

)

ln

(

~q 2

~q ′2
1

)

)

+2
[~q1 × ~q2]

~q 2
1 ~q

2
2

[~q1 × ~k]I~k,~q ′

1

− 2
[~q1 × ~q2]

~q 2
1 ~q

2
2

[~q ′
1 × ~q ′

2 ]I~q ′

1
,~q ′

2
. (48)

In these equalities the symbols < ..... > mean adding to the direct Fourier
transform terms that depend only on ~q1 and ~q2 (and do not depend on ~k)
and terms that are antisymmetric with respect to the substitution ~q1 ↔ −~q2.
These terms are fixed by the requirement of the gauge invariance and the
symmetry of the kernel, according to Ref. [15].

Equalities (46)–(48) can be derived using formulas given in the Appen-
dices of Ref. [8] and of the present paper. The substitution of these equalities
in Eq. (45) gives the same result as Eq. (33).
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4 Conclusion

The simplicity of the Möbius form of the quasi-conformal NLO BFKL kernel
suggested to use just this form for finding the kernel in the momentum space.
The way to do that was not evident, and even the possibility to do it seemed
doubtful, because the Möbius form is defined on a special class of functions in
the coordinate space. However, it was shown [15] that such possibility exists
due to the gauge invariance of the kernel and the way to obtain the kernel in
the momentum space from its Möbius form was elaborated. But technically
obtaining it turned out to be not easy.

In this paper we found in the momentum space the difference between
the standard BFKL kernel, defined according to the prescriptions given in
Ref. [12] and calculated in Ref. [3], and the quasi-conformal BFKL kernel.
This difference turned out to be rather simple. The most natural conclusion
is that the simplicity of the Möbius form of the quasi-conformal kernel is
caused mainly by using the impact parameter space. The other possibility
is that the quasi-conformal kernel can be written in simple form also in the
transverse momentum space. If this is true, the standard kernel of Ref. [3]
could result itself in a much simpler form. We plan to check this possibility
using both the representation of Ref. [3] and the representation in terms of
integrals in the transverse momentum space of Ref. [17].
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Appendix

The two-dimensional integrals of Section 2 were calculated choosing appropri-
ate integration vectors and performing firstly the integration over azimuthal
angles. It is convenient to make this integration using “helical” vector com-
ponents “±” instead of the Cartesian ones “x, y”, a± = ax ± iay. Denoting

the integration vector as ~l, we have l± = le±iφ, where φ is its azimuthal
angle and l is its modulus. The integration over φ can be performed using
the representation 2(~a−~l)(~b−~l) = (a+ − l+)(b− − l−) + (a− − l−)(b+ − l+)
and the expansion of the integrands in positive or negative powers of l± at
various values of l. Thus one can easily obtain

∫ π

−π

dφ

2π
ln(~a−~l)2 = θ(~a 2 −~l 2) ln~a 2 + θ(~a 2 −~l 2) ln~l 2 , (A.1)

∫ π

−π

dφ

2π

1

a± − l±
=

θ(~a 2 −~l 2)

a±
, (A.2)

∫ π

−π

dφ

2π

1

(a± − l±)(b∓ − l∓)
=

θ(~a 2 −~l 2)

a±b∓ −~l 2
+

θ(~l 2 −~b 2)

~l 2 − a±b∓
. (A.3)

In particular, one has from Eq. (A.3)

∫ π

−π

dφ

2π

2(~l(~a−~l))

~l 2(~a−~l)2
= θ(~l 2 − ~a 2)

−2

~l 2
,

∫ π

−π

dφ

2π

2((~a−~l))(~b −~l))

(~a−~l)2(~b−~l)2
=

=
(

θ(~a 2 −~l 2)− θ(~b 2 −~l 2)
)

(

1

a+b− −~l 2
+

1

a−b+ −~l 2

)

. (A.4)

The result (15) follows from Eqs. (A.1) and (A.4) with the subsequent ele-
mentary integration over l. Since the integral consists of several terms, which
are not ultraviolet convergent when taken separately, it is convenient to cal-
culate them introducing an ultraviolet cut-off Λ. Using Eq. (A.4), one can
also easily obtain

∫

d~l

π

(

(~l(~a−~l))

~l 2(~a−~l)2
−

(~l(~b −~l))

~l 2(~b−~l)2

)

= ln

(

~b 2

~a 2

)

, (A.5)

that gives the result (18).
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Though we use the ultraviolet cut-off Λ (which is supposed tending to
infinity) for separate integrals, it is possible to shift the integration vectors
in them, since these integrals have only logarithmic divergence. Therefore,
with an appropriate choice of ~l, in all integrals of Section 2 the integration
over φ can be performed using Eqs. (A.2) and (A.3). But sometimes it is
more convenient to use Eq. (A.1) as, for example, in the integral

∫

d~l

π
θ(Λ2 −~l 2)

1

(~a−~l)2
ln

(

~l 2

~a 2

)

=

=

∫

d~l

π
θ(Λ2 −~l 2)

1

~l 2
ln

(~a−~l)2

~a 2
=

1

2
ln2
(

Λ2

~a 2

)

. (A.6)

Using Eq. (A.3), we obtain:

∫

d~l

π

1

(~a− ~1)+
1

(~b − ~1)−
ln

(

~l 2

µ2

)

θ(Λ2 −~l 2) =

=
1

2
ln

(

Λ2

(~a−~b)2

)

ln

(

Λ2(~a−~b)2

µ4

)

+
1

2
ln

(

(~a−~b)2

~b 2

)

ln

(

(~a−~b)2

~a 2

)

+
a+b− − a−b+

2
I
~a,−~b

, (A.7)

where I
~a,~b

is defined in Eq. (25) (see also Eqs. (27) and (28)). In fact, all
integrals of Section 2 can be calculated using this one. In particular, the
integral (A.6) can be obtained from the integral (A.7) as the limit ~b → ~a at
µ2 = ~a 2. The integrals (A.4) and (A.5) also can be found using the part of
the integral (A.7) proportional to lnµ2. We find also

∫

d~l

π

2

(~a−~l)2

(~b −~l)

(~b−~l)2
ln

(

~l 2

~a 2

)

=
(~a−~b)

(~a−~b)2
ln

(

~a 2

~b 2

)

ln

(

(~a−~b)2

~a 2

)

+2
[(~a−~b)× [~a×~b]]

(~a−~b)2
I
~a,−~b

, (A.8)
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∫

d~l

π

(~c−~l)

(~c−~l)2

2((~a−~l)(~b −~l))

(~a−~l)2(~b−~l)2
ln

(

~l 2

µ2

)

=
(~c−~b)

(~c−~b)2

[

ln

(

~a 2

µ2

)

ln

(

(~c− ~a)2

(~b− ~a)2

)

+
1

2
ln

(

c 2

~a 2

)

ln

(

(~a− ~c)2

~b 2

)

−
1

2
ln

(

b 2

~a 2

)

ln

(

(~a−~b)2

~c 2

)]

+
(~c− ~a)

(~c− ~a)2

[

ln

(

~b 2

µ2

)

× ln

(

(~c−~b)2

(~a−~b)2

)

+
1

2
ln

(

c 2

~b 2

)

ln

(

(~b− ~c)2

~a 2

)

−
1

2
ln

(

a 2

~b 2

)

ln

(

(~b− ~a)2

~c 2

)]

+

(

[(~c−~b)× [~a×~b]]

(~c−~b)2
+

[(~c− ~a)× [~b× ~a]]

(~c− ~a)2

)

I
~a,−~b

+
[(~c−~b)× [~c× ~a]]

(~c−~b)2
I~c,−~a

+
[(~c− ~a)× [~c×~b]]

(~c− ~a)2
I
~c,−~b

. (A.9)

The result (24) for F1(~q1, ~q2;~k) was obtained using Eqs. (15), (A.8) and (A.9)
with its particular cases, such as

∫

d~l

π

(~a−~l)

(~a−~l)2

2(~l(~b −~l))

~l 2(~b−~l)2
ln

(

~l 2

µ2

)

= −
1

2

(~a−~b)

(~a−~b)2
ln

(

~a 2

~b 2

)

ln

(

~a 2~b 2

µ4

)

−
1

2

~a

~a 2
ln

(

~a 2~b 2

µ4

)

ln

(

(~a−~b)2

~b 2

)

−
[~a× [~a×~b]]

~a 2
I
~a,−~b

. (A.10)

To obtain F2(~q1, ~q2;~k), Eq. (29), we used

∫

d~l

π
θ(Λ2 −~l 2)

2((~a−~l)(~b −~l))

(~a−~l)2(~b−~l)2
ln

(

~l 2

µ2

)

= ln

(

Λ2(~a−~b)2

µ4

)

ln

(

Λ2

(~a−~b)2

)

+ ln

(

~a 2

(~a−~b)2

)

ln

(

~b 2

(~a−~b)2

)

, (A.11)

∫

d~l

π

1

~l 2

2((~a−~l)(~b −~l))

(~a−~l)2(~b−~l)2
ln

(

(~c−~l)2

~c 2

)

=

=
1

~a 2~b 2

[

(~a~b)

(

ln

(

(~c− ~a)2

~c 2

)

ln

(

(~c−~b)2

~c 2

)
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− ln

(

(~c− ~a)2

~c 2

)

ln

(

(~a−~b)2

~a 2

)

− ln

(

(~c−~b)2

~c 2

)

ln

(

(~a−~b)2

~b 2

))

+2([~a×~b][~a× ~c])I~a,−~c + 2([~a×~b][~c×~b])I~b,−~c

+2([~a×~b][(~a− ~c)× (~b− ~c)])I
~a−~c,~c−~b

]

, (A.12)

in particular,
∫

d~l

π

1

(~a−~l)2

2(~l(~b −~l))

~l 2(~b−~l)2
ln

(

~l 2

~a 2

)

=

=
1

~a 2(~a−~b)2

[

(~a(~a−~b)) ln

(

~a 2

~b 2

)

ln

(

(~a−~b)2

~b 2

)

−2[~a×~b]2I
~a−~b,−~a

]

,

(A.13)
and Eq. (A.9) with its particular cases (A.10) and

∫

d~l

π

~l

~l 2

2((~a−~l)(~b −~l))

(~a−~l)2(~b−~l)2
ln

(

~l 2

µ2

)

=
~b

~b 2

[

ln

(

~a 2

µ2

)

ln

(

~a 2

(~b− ~a)2

)

+
1

2
ln

(

(~b − ~a)2

~a 2

)

ln

(

~a 2

~b 2

)

]

+
~a

~a 2

[

ln

(

~b 2

µ2

)

ln

(

~b 2

(~a−~b)2

)

+
1

2
ln

(

(~a−~b)2

~b 2

)

ln

(

~b 2

~a 2

)]

+

(

[~b× [~a×~b]]

~b 2
+

[~a× [~b× ~a]]

~a 2

)

I
~a,−~b

.

(A.14)

The result (30) for F3(~q1, ~q2;~k) can be obtained using Eqs. (A.8), (A.13),
(A.14),

∫

d~l

π

1

~l 2(~a−~l)2
ln

(

(~b −~l)2(~a−~b−~l)2

~b 2(~a−~b)2

)

=
1

~a 2
ln2

(

(~a−~b)2

~b 2

)

(A.15)

and
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∫

d~l

π

θ(Λ2 −~l 2)

(~c−~l)2

(

2((~a−~l)(~b −~l))

(~a−~l)2(~b−~l)2
− 2

2((~a− ~c)(~b − ~c))

(~a− ~c)2(~b− ~c)2

)

ln

(

~l 2

µ2

)

=

=
((~a− ~c)(~b − ~c))

(~a− ~c)2(~b− ~c)2

[

ln

(

Λ2

(~a−~b)2

)

ln

(

Λ2(~a−~b)2

µ4

)

+ ln

(

(~a−~b)2

~a 2

)

ln

(

(~a−~b)2

~b 2

)

− ln

(

Λ2

(~a− ~c)2

)

ln

(

Λ2(~a− ~c)2

µ4

)

− ln

(

(~a− ~c)2

~a 2

)

ln

(

(~a− ~c)2

~c 2

)

− ln

(

Λ2

(~c−~b)2

)

ln

(

Λ2(~c−~b)2

µ4

)

− ln

(

(~c−~b)2

~c 2

)

ln

(

(~c−~b)2

~b 2

)]

+2

(

[(~a− ~c)× (~b − ~c)]

(~a− ~c)2(~b − ~c)2

(

[~a×~b]I
~a,−~b

− [~a× ~c]I~a,−~c − [~c×~b]I
~c,−~b

)

)

.

(A.16)
Let us present also the integral

∫

d~l

π

2

(~a−~l)2

li(b−~l)j
~l 2(~b−~l)2

ln

(

~l 2

~a 2

)

=

=
bi(a− b)j + (a− b)ibj − δij(~b(~a−~b))

2~b 2(~a−~b)2
ln

(

~a 2

~b 2

)

ln

(

(~a−~b)2

~a 2

)

+
biaj − aibj + δij(~a(~a−~b))

2~a 2(~a−~b)2
ln

(

~a 2

~b 2

)

ln

(

(~a−~b)2

~b 2

)

+
I
~a,−~b

(~a−~b)2

×

(

1

~b 2

(

[~b× [~a×~b]]i(~a−~b)j + (~a−~b)i[~b× [~a×~b]]j − δij([~b× [~a×~b]](~a−~b))
)

+
1

~a 2

(

(~a−~b)i[~a× [~a×~b]]j − [~a× [~a×~b]]i(~a−~b)j − δij([~a× [~a×~b]](~a−~b))
)

)

(A.17)
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which is more general than the integral (A.10) and can appear in decompo-
sitions of the integrands for Fi different from ours, and the integrals

∫

d~l

π

2

~l 2

(

(~a−~l)

(~a−~l)2

(

(~b−~l)

(~b −~l)2
−

~b

~b 2

))

ln

(

~l 2

~q 2

)

=

=
(~a~b)

~a 2~b 2
ln

(

~a 2~b 2

~q 4

)

ln

(

~b 2

(~a−~b)2

)

+
2[~a×~b]2

~a 2~b 2
I
~a,−~b

, (A.18)

∫

d~l

π

2

~l 2

(

(~b−~l)

(~b −~l)2
−

~b

~b 2

)

ln

(

(~a−~l)2

~l 2

)

=
~b

~b 2
ln

(

~a 2

~b 2

)

ln

(

~b 2

(~a−~b)2

)

+2
[~b× [~a×~b]]

~b 2
I
a,~b−~a

, (A.19)

which also can be useful.
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