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Abstract

The spectral distribution of positron created by photon and the
spectral distribution of photons radiated from electron in an oriented
single crystal of intermediate thickness is calculated at intermediate
energies. The energy loss of charged particles as well as photon ab-
sorption are taken into account. The used basic probabilities of pro-
cesses include the action of field of axis as well as the multiple scatter-
ing of radiating electron or particles of the created pair (the Landau-
Pomeranchuk-Migdal (LPM) effect).
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1 Introduction

1. In crystals oriented along main axes the probabilities of photon emission
from an electron and e+e− pair creation by a photon are strongly enhanced
comparing to the corresponding amorphous media. The example is shown in
Fig.1, where the crystal radiation length L(ε) = ε/I(ε), I(ε) is the intensity
of electron radiation, and the pair creation length Lpr(ω) = 1/W (ω), W (ω)
is the pair creation probability, are plotted as a function of the correspond-
ing energy. The both functions I(ε) and W (ω) are calculated in frame of the
new method, developed recently by authors [1, 2], which permits inseparable
consideration of both coherent and incoherent mechanisms of the process.
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Fig. 1. The radiation length L(ε) = ε/I(ε) (curve 1)and the pair creation
length Lpr(ω) = 1/W (ω) (curves 3) in the tungsten crystal, axis < 111 >,
temperatures T=100 K. The values L(ε) (curve 2) and Lpr(ω) (curve 4) in
the germanium crystal, axis < 110 >, temperatures T=293 K vs the electron
(ε) or photon (ω) energy.

It is seen that there are two regions of Lpr(ω). In the first one Lpr(ω) is
almost constant. This is the incoherent contribution (or, in other words, the
Bethe-Maximon contribution with the crystal corrections). It is seen that in
this region L ≪ Lpr, what means that the probability of pair creation pro-
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Table Parameters of the pair photoproduction and radiation processes in
the tungsten crystal, axis < 111 > and the germanium crystal, axis < 110 >
for two temperatures T (ε0 = ω0/4, εm = ωm, εs = ωs)

Crystal T(K) V0(eV) x0 η1 η ω0(GeV) εm(GeV) εs(GeV) h

W 293 417 39.7 0.108 0.115 29.7 14.35 34.8 0.348

W 100 355 35.7 0.0401 0.0313 12.25 8.10 43.1 0.612

Ge 293 110 15.5 0.125 0.119 592 88.4 210 0.235

Ge 100 114.5 19.8 0.064 0.0633 236 50.5 179 0.459

cess is still close to the probability in the corresponding amorphous medium
while the radiation length L(ε) (connected with the electron energy loss) is
strongly enhanced (mostly due to the soft photons emission) comparing with
the corresponding amorphous medium and the energy loss of electrons and
positrons is strongly influenced on the processes. This is true in the first re-
gion where to one can add the vicinity of the turn point of the function Lpr(ω)
at ω ≃ ωm ≡ εm (see Table) where L(εm)W (ωm) ≪ 1, e.g. in tungsten at
ε = 20 GeV Lpr ≃ 4.9L and in germanium at ε = 200 GeV Lpr ≃ 5.5L.
In this (intermediate) electron and photon energy region it is impossible to
separate the coherent and incoherent contributions to the probability of basic
processes. In particular, one can’t represent the probability as the sum of
contribution in the crystal field and the Bethe-Maximon contribution. This
is because one has to include action of the crystal field on the incoherent
process as well as the multiple scattering of emitting electron or particles
of created pair for the process in field. These items were discussed in the
authors recent paper [3].

2. Basing on Eqs.(16) and (17) of [1] (see also Eq.(7.135) in [5]) one get
the general expression for the spectral distribution of particles created by a
photon

dW (ω, y) =
αm2

2πω

dy

y(1 − y)

x0
∫

0

dx

x0
G(x, y), G(x, y) =

∞
∫

0

F (x, y, t)dt + s3
π

4
,

F (x, y, t) = Im
{

ef1(t)
[

s2ν
2
0(1 + ib)f2(t) − s3f3(t)

]

}

, b =
4κ2

1

ν2
0

, y =
ε

ω
,

f1(t) = (i − 1)t + b(1 + i)(f2(t) − t), f2(t) =

√
2

ν0
tanh

ν0t√
2
,

f3(t) =

√
2ν0

sinh(
√

2ν0t)
, (1)
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where

s2 = y2 + (1− y)2, s3 = 2y(1− y), ν2
0 = 4y(1− y)

ω

ωc(x)
, κ1 = y(1− y)κ(x),

(2)
ε is the energy of one of the created particles.

The situation is considered when the photon angle of incidence ϑ0 (the
angle between photon momentum k and the axis) is small under condition
ϑ0 ≪ V0/m. The axis potential (see Eq.(9.13) in [5]) is taken in the form

U(x) = V0

[

ln

(

1 +
1

x + η

)

− ln

(

1 +
1

x0 + η

)]

, (3)

where

x0 =
1

πdnaa2
s

, η1 =
2u2

1

a2
s

, x =
̺2

a2
s

, (4)

Here ̺ is the distance from axis, u1 is the amplitude of thermal vibration,
d is the mean distance between atoms forming the axis, as is the effective
screening radius of the potential. The parameters in Eq.(3) were determined
by means of fitting procedure, see Table.

The local value of parameter κ(x) which determines the probability of
pair creation in the field Eq.(3) is

κ(x) = −dU(̺)

d̺

ω

m3
= 2κsf(x), f(x) =

√
x

(x + η)(x + η + 1)
, κs =

V0ω

m3as
≡ ω

ωs
.

(5)
For an axial orientation of crystal the ratio of the atom density n(̺) in the
vicinity of an axis to the mean atom density na is (see [1])

n(x)

na
= ξ(x) =

x0

η1
e−x/η1 , ω0 =

ωe

ξ(0)
, ωe = 4εe =

m

4πZ2α2λ3
cnaL0

. (6)

The functions and values in Eqs.(1) and (2) are

ωc(x) =
ωe(na)

ξ(x)gp(x)
=

ω0

gp(x)
ex/η1 , gp0 = 1 − 1

L0

[

1

42
+ h

(

u2
1

a2

)]

,

gp(x) = gp0 +
1

6L0

[

ln
(

1 + κ2
1

)

+
6Dpκ

2
1

12 + κ2
1

]

,

h(z) = −1

2
[1 + (1 + z)ezEi(−z)] , L0 = ln(ma) +

1

2
− f(Zα),

a =
111Z−1/3

m
, f(ξ) =

∞
∑

n=1

ξ2

n(n2 + ξ2)
, (7)
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where where Z is the charge of nucleus, f(ξ) is the Coulomb correction,
the function gp(x) determines the effective logarithm using the interpolation
procedure, Dp = Dsc−10/21 = 1.8246, Dsc = 2.3008 is the constant entering
in the radiation spectrum at χ/u ≫ 1 (or in electron spectrum in pair creation
process at κ1 ≫ 1), see Eq.(7.107) in [5], Ei(z) is the integral exponential
function.

The expression for dW (ω, y) Eq.(1) includes both the coherent and inco-
herent contributions as well as the influence of the multiple scattering (the
LPM effect) on the pair creation process (see [1]).

3. The expression for the spectral probability of radiation used in
the above derivation can be found from the spectral distribution Eq.(1)
(dW/dy = ωdW/dε) using the standard QED substitution rules: ε →
−ε, ω → −ω, ε2dε → ω2dω and exchange ωc(x) → 4εc(x). As a result
one has for the spectral intensity dI = ωdW

dI(ε, yr) =
αm2

2π

yrdyr

1 − yr

x0
∫

0

dx

x0
Gr(x, yr),

Gr(x, yr) =

∞
∫

0

Fr(x, yr, t)dt − r3
π

4
,

Fr(x, yr, t) = Im
{

eϕ1(t)
[

r2ν
2
0r(1 + ibr)f2(t) + r3f3(t)

]

}

, br =
4χ2(x)

u2ν2
0r

,

yr =
ω

ε
, u =

yr

1 − yr
, ϕ1(t) = (i − 1)t + br(1 + i)(f2(t) − t), (8)

where

r2 = 1 + (1 − yr)
2, r3 = 2(1 − yr),

ν2
0r =

1 − yr

yr

ε

εc(x)
, (9)

where the functions f2(t) and f3(t) are defined in Eq.(1). The local value of
parameter χ(x) which determines the radiation probability in the field Eq.(3)
is

χ(x) = −dU(̺)

d̺

ε

m3
= 2χsf(x), χs =

V0ε

m3as
≡ ε

εs
, (10)

where f(x) is defined in Eq.(5).
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The functions and values in Eqs.(8) and (9) (see also Eqs.(6) and (7)) are

εc(x) =
εe(na)

ξ(x)gr(x)
=

ε0

gr(x)
ex/η1 ,

gr(x) = gr0 +
1

6L0

[

ln

(

1 +
χ2(x)

u2

)

+
6Drχ

2(x)

12u2 + χ2(x)

]

,

gr0 = 1 +
1

L0

[

1

18
− h

(

u2
1

a2

)]

, (11)

where the function gr(x) determines the effective logarithm using the inter-
polation procedure: Dr = Dsc − 5/9=1.7452.

The expression for dI Eq.(8) includes both the coherent and incoherent
contributions as well as the influence of the multiple scattering (the LPM
effect) on the photon emission process (see [2]).

2 Inclusion of energy loss and photon

absorption

Here we consider the processes of interaction of electrons and photons with
oriented crystal when the target thickness l is of the order l ∼ L(ε) in the
intermediate energy region.

Below we will neglect the energy dispersion (see discussion in Sec.17.5
[5]). On this assumption the energy loss equation acquires the form

dt =
L(ε)

ε
dε, t(ε, ε0) =

ε0
∫

ε

dx

x
L(x), ε = ε(ε0, t) (12)

Now the photon spectral distribution taking into account the energy loss can
be written in the form (cp Eq.(20.36) [5] for the total number of photons)

ω
dn

(in)
γ

dω
=

l
∫

0

dI(ε(ε0, t), ω)

dω
ϑ(ε(ε0, t) − ω)dt

=

ε0
∫

εl

L(ε)

ε

dI(ε, ω)

dω
ϑ(ε − ω)dε, εl = ε(ε0, l), (13)

where dI(ε, ω)/dω is radiation intensity spectral distribution (see Eq.(8)).
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For calculation of the photon spectral distribution at the exit from a target
one has to take into account the photon absorption on the length l− t. This
can be done by substitution the additional factor exp(−W (ω)(l− t)) into the
integrand of Eq.(13)):

dn
(out)
γ

dω
=

1

ω

l
∫

0

exp(−W (ω)(l − t))
dI(ε(ε0, t), ω)

dω
ϑ(ε(ε0, t) − ω)dt

=
exp(−W (ω)l)

ω

ε0
∫

εl

L(ε)

ε
exp(W (ω)t(ε, ε0))

dI(ε, ω)

dω
ϑ(ε − ω)dε, (14)

where W (ω) is the probability of pair creation by a photon with the energy
ω per unit time.

In the case ω > εl the lower limit of the integrals in Eqs.(13),(14) becomes
ω because of the function ϑ(ε−ω) in the integrand. In this case, the integral in
Eq.(13) dos’t depend on the target thickness, while the spectral distribution
in Eq.(14) contains the target thickness in the common factor exp(−W (ω)l)
only. The difference of the number of the emitted photon and the number of

outgoing photons gives the number of the created pairs: np = n
(in)
γ − n

(out)
γ .

We consider now the hard end (ε0 −ω ≪ ε0, t(ω, ε0) ≪ l) of the spectral
distribution in Eq.(14), where the radiation spectral intensity is defined by
the incoherent contribution only (ε0 −ω ≪ 2εm/3). In this situation one has

dn
(out)
γ

dω
≃ L(ε0)gr0

Lrad
exp(−W (ε0)l)

ε0 − ω

ε2
0

(15)

For soft photons the spectral intensity of radiation depends rather weakly
on the radiating electron energy (see e.g. Fig.3a in [3]). Than using the first
equality in Eq.(13) we get

dn
(in)
γ

dω
≃ l

ω

dI(ε0, ω)

dω
(16)

One can found more accurate expression using the second equality in Eq.(13)
and caring out the averaging procedure given in [2] (see Eqs.(20)-(24)):

dn
(in)
γ

dω
=

l

ω

dĨ

dω
,

dĨ

dω
=

ε̃L(ε0)
dI(ε0,ω)

dω + ε0L(ε̃)dI(ε̃,ω)
dω

ε̃L(ε0) + ε0L(ε̃)
, (17)

ε̃ = ε0 exp

(

− l

L̃

)

, L̃ =
ε0L(ε1) + ε1L(ε0)

ε1 + ε0
, ε1 = ε0 exp

(

− l

L(ε0)

)

.
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The probability of soft photons absorption is determined by the inco-
herent contribution of pair creation W (ω) ≃ 7gp0/9Lrad, where Lrad is the
radiation length in a corresponding amorphous medium, and is small for the
target thickness under consideration l ∼ L ≪ Lrad. In this case using the
difference of the first equalities in Eq.(13) and Eq.(14) we find for the spectral
distribution of created pairs ω = ε+ + ε−

dn
(in)
γ

dω
≃ l2

2ω

dI(ε0, ω)

dω
W (ω) (18)

In the process of pair photoproduction the spectral distribution of created
particles changes due to the radiation energy loss before leaving a target. Let
us introduce the integral with δ-function into the initial distribution. We have
at the distance t before leaving a target

dw(ε, ε′, t) = −dW (ω, ε′)

dε′
exp(−W (ω)(l − t))δ(t(ε, ε′) − t)

dt(ε, ε′)

dε
dεdε′dt,

(19)
where dW (ω, ε′)/dε′ is the spectral distribution over energy of one of the
created particles in the point of creation (see Eq.(1)) at the distance t be-
fore leaving a target, the function t(ε, ε′) is defined in Eq.(12)). The factor
exp(−W (ω)(l − t)) is the probability of the initial photon to survive at the
depth l− t. Caring out the integration in Eq.(19)) over variables ε′ and t we
get

dw(ω, ε)

dε
=

L(ε)

ε
exp(−W (ω)l)

εp
∫

ε

dW (ω, ε′)

dε′
exp(W (ω)t(ε, ε′))ϑ(ω − ε′)dε′,

(20)
In the case ω < εp the upper limit of the integral in Eq.(20) becomes ω

because of the function ϑ(ω − ε′) in the integrand. In this case, the integral
in Eq.(20) dos’t depend on the target thickness, which enters in the external
factor exp(−W (ω)l) only.

Let us consider the hard end (ω − ε ≪ ω, t(ε, ε′) ≪ l) of the spectral
distribution in Eq.(20), where the spectral probability of pair creation is
defined by the incoherent contribution only (ω−ε ≪ 2ωm/3). In this situation
one has

dw(ω, ε)

dε
≃ L(ω)gp0

Lrad
exp(−W (ω)l)

ω − ε

ω2
(21)

This formula has the same structure as Eq.(20).
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Fig. 2. The spectral distribution of radiation at the initial electron energy
ε0 = 20 GeV in the tungsten crystal, axis < 111 >, T=100 K in two targets
with thickness l = 0.032 cm= 0.77 L = 0.16 Lpr (curves 1 and 2) and
l = 0.01 cm= 0.24 L = 0.093 Lpr (curves 3 and 4) vs the photon energy ω.
The curves 2 and 4 are calculated according to Eq.(8), while the curves 1 and
3 are calculated according to Eq.(13) which takes into account the electron
energy loss.

In Fig.2 the spectral distribution of radiation ωdn
(in)
γ /dω is shown. The

final electron energies are correspondingly εl = 10 GeV and εl = 16 GeV
for the used thicknesses. It is seen that at ω > 16 GeV the curves 2 and 4
merge. For ε0 − ω ≪ 5 GeV the spectral distribution is in a good agreement
with Eq.(15)(without the factor exp(−W (ε0)l) ) (at ω > 19 GeV it is better
than 5%). This factor, considering the photon absorption with the energy
ω ≃ ε0 when photon is crossing the whole crystal, is 0.85 and 0.91 for the
used thicknesses. The curve 2 and 4 calculated for thin targets differ only
on a scale (ratio of their ordinates coincides with the ratio of thicknesses).
In the soft part of spectrum the difference between the curves 1 and 2 is
not very large. It is in agreement with Eq.(16). This property of spectra
in oriented crystals was indicated in [4]. In the hard part of spectrum the
difference is quite essential and one has to take into account the energy loss
in the case where the crystal thickness l ≃ L(ε). In the case l ≪ L(ε) the
essential distortion of the spectral curve occurs in the hard end of spectrum
only as it is seen from comparison of the curves 3 and 4.

In Fig.3 the spectral distribution of radiation ωdn
(in)
γ /dω is shown. These

parameters are used in the experiment NA63 carried out recently at SPS at
CERN (for proposal see [6]). The final electron energies are correspondingly
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Fig. 3. The spectral distribution of radiation at the electron with energy
ε0 = 180 GeV in germanium crystal, axis < 110 >, T=293 K in two targets
with thickness l = 0.04 cm= 0.38 L = 0.064 Lpr (curves 1 and 2) and
l = 0.017 cm= 0.16 L = 0.027 Lpr (curves 3 and 4) vs the photon energy ω.
The curves 2 and 4 are calculated according to Eq.(8), while the curves 1 and
3 are calculated according to Eq.(13) which takes into account the electron
energy loss.

εl = 124 GeV and εl = 153 GeV for the used thicknesses. It is seen that
at ω > 150 GeV the curves 2 and 4 merge. For ε0 − ω ≪ 60 GeV the
spectral distribution is in a good agreement with Eq.(15)(without the factor
exp(−W (ε0)l) ) (at ω > 170 GeV it is better than 8%). This factor, consid-
ering the photon absorption with the energy ω ≃ ε0 when photon crossing
the whole crystal, is 0.94 and 0.97 for the used thicknesses. The curve 2 and
4 calculated for thin targets differ only on a scale (ratio of their ordinates
coincides with the ratio of thicknesses). In the soft part of spectrum the dif-
ference between the curves 1 and 2 is not very large. It is in agreement with
Eq.(16). In the hard part of spectrum the difference is quite essential and one
has to take into account the energy loss in the case where the crystal thick-
ness l ≃ L(ε). In the case l ≪ L(ε) the essential distortion of the spectral
curve occurs in the hard end of spectrum only as it is seen from comparison
of the curves 3 and 4.

In Fig.4 the spectral distribution of radiation ωdn
(out)
γ /dω in a quite thick

target is shown. The final electron energy at the exit from the target is
εl = 8.1 GeV. The factor, characterizing the additional suppression of the
spectral distribution in the hard end, is exp(−W (ε0)l)=1/4.5. The quite
substantial difference between the solid and dashed curves is connected with
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Fig. 4. The spectral distribution of radiation at the electron initial energy
ε0 = 100 GeV in the tungsten crystal, axis < 111 >, T=100 K in the target
with thickness l = 0.1 cm= 3.15 L(ε0) = 1.505 Lpr(ε0). The dotted curve is
calculated according to Eq.(8), the dashed curve is calculated according to
Eq.(13) which takes into account the electron energy loss and the solid curve
is calculated according to Eq.(14) which takes into account both the electron
energy loss and the photon absorption
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Fig. 5. Spectra of positrons created by the photon with energy ω = 20 GeV
in the tungsten crystals (axis < 111 >, T=100 K) with thickness l =
0, 0414 cm=L(ω) and l = 0, 0207 cm=L(ω)/2. The curves 3 and 4 are cal-
culated for thin targets according to Eq.(1), while the curves 1 and 2 are
calculated according to Eq.(20) which takes into account both the positron
energy loss and the photon absorption
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the relatively large number of e+e− pairs created by radiated photons. The
particles of these pairs emit photons also. However, a consideration of the
next stage of cascade is out of scope this paper.

In Fig.5 the distortion of the positron spectrum is shown due to the photon
emission from positrons and the initial photon absorption in a rather thick
target. The curves 3 and 4 calculated for the thin target are symmetric with
respect to point ω/2=10 GeV. The area under the curves 1 and 2 divided by
ω = 20 GeV give the total number of created pairs in the interval from 1 to
19 GeV’s. Since at calculation of the curves 3 and 4 the photon absorption
was not taken into account the area under these curves is by 10%(5%) larger
than under the curves 1 and 2 respectively. The hard end of the curves 1
and 2 is in a good agreement with Eq.(21). According to this equation the
difference between these curves is due to difference of the factors exp(−Wl)
equal to 0.8 and 0.9 respectively.

3 Conclusion

In this paper the spectral distribution of particles of electron-positron pair
created by a photon and the spectral distribution of radiation from an electron
in an oriented crystal of the intermediate thickness l ∼ L(ε0) is calculated for
the energy ε(ω) ∼ εm. The theory approach is developed which takes into
account the energy loss due to the photons emission from charged particles
as well as the absorption of photons in a crystal. For the first time the closed
analytical expressions were obtained for description of the starting stage of
the electron-photon cascade in oriented crystal. Since in the energy region
under consideration all the specific mechanisms (coherent and incoherent
radiation(pair creation), the LPM-effect) are essential, we used the recently
developed method which includes all these mechanisms (see Eqs.(1), (8)).
It turn out to be important at the cascade analysis that for the energies
and thicknesses under consideration the probability of secondary processes is
suppressed because of the relatively large photon absorption length Lpr(ω ∼
εm) ≫ L(ε ∼ εm). Some estimates of the number of electrons and photons at
the exit of target are given Sec.20.4 [5], where one can found also the results
of simulation of experimental data.

The results obtained show the substantial variation of the hard photon
spectral distribution comparing with thin target even for the relatively thin
targets (see Figs.2,3). At the same time the deformation of the soft part of
spectra is quite modest. The found positron energy distribution at l ∼ L(ε)
demonstrates the dramatic difference from the spectrum in thin crystal. In
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the relatively thick tungsten crystal l ≫ L(ε0) (Fig.5) and at the high electron
energy ε0 ≫ εm we found the dramatic variation of the emitted photon
spectrum comparing with thin crystal. In this case the appreciable number
of secondary pairs are created and the next stages of cascade process should
be studied.

Acknowledgments

The authors are indebted to the Russian Foundation for Basic Research
supported in part this research by Grant 06-02-16226.

References

[1] V.N. Baier, and V.M. Katkov, Phys. Lett., A 346 (2005) 359.

[2] V.N. Baier, and V.M. Katkov, Phys. Lett., A 353 (2006) 91.

[3] V.N. Baier, and V.M. Katkov, Phys. Lett., A 272 (2008) 2904.

[4] V.N. Baier, V.M. Katkov, Nucl. Instr. and Meth., B 266 (2008) 3828.

[5] V.N. Baier, V.M. Katkov and V.M. Strakhovenko, Electromagnetic Pro-

cesses at High Energies in Oriented Single Crystals, World Scientific
Publishing Co, Singapore, 1998.

[6] J.U. Andersen, K. Kirsebom, S.P. Moller et al, Electromagnetic Processes

in Strong Cristalline Fields, CERN-SPSC-2005-030.

14



V.N. Baier and V.M. Katkov

Spectra of radiation and created particles

at intermediate energy in oriented crystal

taking into account energy loss

В.Н. Байер, В.М. Катков

Спектры излучения и рождённых частиц

при промежуточных энергиях в ориентированных

кристаллах с учётом потери энергии

Budker INP 2008-37

Ответственный за выпуск А.М. Кудрявцев
Работа поступила 24.12.2008 г.

Сдано в набор 25.12.2008 г.
Подписано в печать 26.12.2008 г.

Формат бумаги 60×90 1/16 Объем 1.0 печ.л., 0.8 уч.-изд.л.
Тираж 105 экз. Бесплатно. Заказ № 37
Обработано на IBM PC и отпечатано на

ротапринте ИЯФ им. Г.И. Будкера СО РАН
Новосибирск, 630090, пр. академика Лаврентьева, 11.


