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Abstract

Inter-relation of the BFKL approach and the colour dipole model
is discussed. In the case of scattering of colourless objects the colour
singlet BFKL kernel can be taken in the special representation called
Möbius form. In the leading order (LO) it coincides with the kernel of
the colour dipole model. In the next-to-leading order (NLO) the quark
parts of the Möbius form and the colour dipole kernel are in accord
with each other, but the gluon parts do not agree. Possible sources of
this discrepancy are analyzed.
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.

In papers [1] – [4] with my collaborators R. Fiore, A.V. Grabovsky and
A. Papa we investigated coordinate representation of the colour singlet BFKL
kernel. The motivations were: to analyze relation between the BFKL ap-
proach and the dipole picture of high-energy scattering, to understand confor-
mal properties of the BFKL kernel and to search more simple representations
for it in the NLO.

The BFKL approach [5] gives the most common basis for the theo-
retical description of small-x processes. The approach is based on the re-
markable property of QCD – gluon Reggeization. The high-energy QCD
can be reformulated in terms of the gauge-invariant effective field theory for
Reggeized gluon interactions [6], so that the primary Reggeon in QCD is not
the Pomeron, but the Reggeized gluon. Now the BFKL approach is well
developed in the NLO. The BFKL kernel for the forward scattering (i.e. for
t = 0 and color singlet in the t-channel) is known for a long time [7]. Several
years ago the kernel was found also for any fixed (not growing with energy)
momentum transfer t and any possible color state in the t-channel [8]. All
these results were obtained in the momentum representation.

The most interesting for phenomenological applications is the colourless
exchange (colour singlet channel). Only this channel is considered below.
Just this channel is described by the colour dipole model [9] and its non-
linear generalization (BK equation) [10], formulated in the impact parameter
space, and just in this channel the LO BFKL kernel has the remarkable
property: it can be written in the Möbius form, invariant in regard to the
conformal transformations of the transverse coordinates [11] and coincides
with the kernel of the colour dipole model [1].

Generally speaking, even the colour singlet BFKL kernel K̂ is more gen-
eral than the the dipole one. This is clear, because it can describe scattering
not only of colourless objects, such as colour dipoles. However, when it is
applied to the latter case, one can use the dipole and gauge invariance prop-
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erties of targets and projectiles [11] and omit in 〈~r1~r2|K̂|~r ′1~r ′2 〉 the terms
proportional to δ(~r1′2′), as well as change the terms independent either of ~r1
or of ~r2 in such a way that the resulting kernel becomes conserving the dipole
property, i.e. provides vanishing of cross-sections for scattering of zero-size
dipoles. The coordinate representation of the kernel obtained in such a way
is what we call Möbius form of the BFKL kernel.

In the NLO the Möbius form can be written as

〈~r1~r2|K̂M |~r ′1~r ′2 〉 = δ(~r11′)δ(~r22′)
∫
d~ρ g0(~r1, ~r2; ~ρ)

+δ(~r11′)g(~r1, ~r2;~r ′2 ) + δ(~r22′)g(~r2, ~r1;~r ′1 ) +
1
π
g(~r1, ~r2;~r ′1 , ~r

′
2 ) (1)

with the functions g turning into zero when their first two arguments coincide.
The first three terms contain ultraviolet singularities which cancel in their

sum, as well as in the LO, with account of the dipole property of the target
impact factors. The coefficient of δ(~r11′)δ(~r22′) is written in the integral
form in order to make the cancellation evident. The function g(~r1, ~r2;~r ′1 , ~r ′2 )
is absent in the LO because the LO kernel in the momentum space does not
contain terms depending on all three independent momenta simultaneously.

In QCD the NLO kernel contains quark and gluon contributions. In
ones turn, the quark contribution is divided into two pieces: non-Abelian
(leading in Nc) and Abelian (suppressed by N−2

c ). The non-Abelian piece
is the simplest one. In the BFKL framework it is known for a long time
[12]. Two years ago it was found in the colour dipole model [13, 14]. A
short time later we have found [1] its Möbius form which agrees with the
results of Refs. [13, 14]. The Abelian part was calculated in the momentum
representation many years ago in the framework of QED [15] and is very
complicated. It turns out, however, that its Möbius form [2] is quite simple.
This part contributes only to g(~r1, ~r2;~r ′1 , ~r ′2) and coincides with corresponding
part of the quark contribution to the linearized BK kernel [14]. Moreover, it is
conformal invariant. It could be especially interesting for the QED Pomeron.

The most important contribution to the BFKL kernel is the gluon one. In
the momentum representation in the NLO for arbitrary momentum transfer
it is extremely complicated [8]. The Möbius form of this contribution [3]
turned out strikingly simple. It was found when the NLO gluon contribution
to the dipole kernel was not yet known, so that comparison was impossi-
ble at that time. Therefore investigation of conformal properties became
the first-priority problem. Evidently, in the NLO one can expect conformal
invariance only in theories with non-running coupling constant. In [4] we
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found momentum representation of the BFKL kernel and its Möbius form
in Supersymmetric Yang-Mills theories. These theories contain gluons and
nM Majorana fermions in the adjoint representation of the colour group. For
N–extended SUSY nM = N . At N > 1 besides fermions there are nS scalar
particles; nS = 2 at N = 2 and nS = 6 at N = 4. In the momentum
representation generalization of the BFKL kernel to SUSY Yang-Mills [4] in
many respects is similar to the case of forward scattering [16]. The gluon
contribution to the BFKL kernel is the same as in QCD. The fermion one
can be obtained by change of the flavour coefficients: nf → nMNc for the
non-Abelian part, and nf → −nMN3

c for the Abelian part. It appeared that
the scalar analog of the non-Abelian quark contribution also can be obtained
from this contribution by the same substitutions as in [16]. The only piece
which can not be obtained by substitutions is the scalar analog of the Abelian
quark contribution. For the Möbius form we obtained

g(~r1, ~r2;~r ′2 ) =
αs( 4e−2C

~r 2 )Nc
2π2

~r 2
12

~r 2
22′~r

2
12′

[
1 +

αsNc
2π

(
67
18
− ζ(2)− 5nM

9
− 2nS

9

+
β0

2Nc
~r 2
12′ − ~r 2

22′

~r 2
12

ln
(
~r 2
22′

~r 2
12′

)
− 1

2
ln
(
~r 2
12

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

)
+

~r 2
12′

2~r 2
12

ln
(
~r 2
12′

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

))]
,

g0(~r1, ~r2; ~ρ) = −g(~r1, ~r2; ρ) +
3
2

~r 2
12

~r 2
1ρ~r

2
1ρ

ln

(
~r 2
1ρ

~r 2
12

)
ln

(
~r 2
2ρ

~r 2
12

)
, (2)

where

β0 =
(

11
3
− 2nM

3
− nS

6

)
Nc , αs(~q 2) = αs(µ2)

(
1− β0

αs(µ2)Nc
4π

ln
(
~q2

µ2

))
.

(3)
At N = 4 the first coefficient of the β–function β0 = 0, and αs does not
run. Nevertheless, cancelation of terms violating conformal invariance is not
complete.

The function g(~r1, ~r2;~r ′1 , ~r ′2 ) is not so simple (although it is incomparably
simpler than the kernel in the momentum representation):
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g(~r1, ~r2;~r ′1 , ~r
′
2 ) =

α2
sN

2
c

4π3

[
1

2~r 4
1′2′

(
~r 2
12′ ~r

2
21′

d
ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)
− 1
)(

1− nM +
nS
2

)
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(

(4− nM )
4~r 4

1′2′

~r 2
12 ~r

2
1′2′

d
− 1

4~r 2
11′ ~r

2
22′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′
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ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)

+
ln
(
~r 2

12
~r 2

1′2′

)
4~r 2

11′~r
2
22′

+
ln
(
~r 2

12 ~r
2
1′2′

~r 2
11′~r

2
22′

)
2~r 2

12′~r
2
21′

(
~r 2

12

2~r 2
1′2′

+
1
2
− ~r 2

22′

~r 2
1′2′

)
(4)

+
~r 2

12 ln
(
~r 2

12~r
2
1′2′

~r 2
12′ ~r

2
21′

)
4~r 2

11′~r
2
22′~r

2
1′2′

+
ln
(
~r 2

22′
~r 2

12

)
2~r 2
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2
12′

+
ln
(
~r 2

12~r
2
1′2′

~r 2
12′~r

2
22′

)
2~r 2

11′ ~r
2
1′2′

+
ln
(

~r 2
12~r

2
11′

~r 2
22′ ~r

2
1′2′

)
2~r 2

12′~r
2
1′2′

+
~r 2

12 ln
(
~r 2

11′
~r 2

1′2′

)
2~r 2

11′~r
2
12′ ~r

2
22′

+
~r 2

21′ ln
(
~r 2

21′~r
2
1′2′

~r 2
12 ~r

2
11′

)
2~r 2

11′~r
2
22′~r

2
1′2′

+ (1↔ 2)

]
,

where d = ~r 2
12′~r

2
21′ − ~r 2

11′~r
2

22′ . It also contains terms violating conformal in-
variance.

Now the gluon contribution to the BK kernel is known [17]. In the linear
approximation it gives:

gBC(~r1, ~r2;~r ′2 ) =
αs( 1

~r 2 )Nc
2π2

~r 2
12

~r 2
22′~r

2
12′

[
1 +

αsNc
2π

(
67
18
− ζ(2)− 5nf

9Nc

+
β0

2Nc
~r 2
12′ − ~r 2

22′

~r 2
12

ln
(
~r 2
22′

~r 2
12′

)
− ln

(
~r 2
12

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

))]
,

g0
BC(~r1, ~r2, ~ρ) = −gB(~r1, ~r2, ~ρ) , (5)

Here, besides the difference in the argument of the running coupling, which
can be attributed to the difference in the renormalization conditions, there
is the difference in g(~r1, ~r2;~r ′2 ) and in the ratio of g and g0. Even larger
difference is in g(~r1, ~r2;~r ′1 , ~r ′2 ):

gBC(~r1, ~r2;~r ′1 , ~r
′
2 ) =

α2
sN

2
c

4π3

[
1

~r 4
1′2′

(
~r 2
12′ ~r

2
21′

d
ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)
− 1
)(

1 +
nf
N3
c

)

−
(
~r 2
12 ~r

2
1′2′

~r 4
1′2′d

(
2 +

nf
2N3

c

)
− 1

4~r 2
11′ ~r

2
22′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

)

− 1
4~r 2

12′ ~r
2
21′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

))
ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)]
. (6)
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Summing up, the results are the following. The Möbius form of the BFKL
kernel is greatly simplified in comparison with the kernel in the momentum
representation. However, one has to remember that each iteration requires
integration over two coordinates instead of one momentum. The quark part of
the Möbius form agrees with corresponding part of the dipole kernel, and its
Abelian piece is conformal invariant. The Abelian piece of the scalar particle
contribution is also conformal invariant. But conformal invariance is broken
even in the N = 4 SUSY Yang-Mills theory and there is the discrepancy
between the Möbius form of the BFKL kernel and the dipole kernel.

However, there is a chance to remove the discrepancy, as well as the
violation of conformal invariance. This chance is concerned with ambiguities
of the NLO kernel. In the BFKL approach scattering amplitudes are invariant
under the operator transformation of the kernel

K̂ → Ô−1K̂Ô (7)

accompanied by corresponding transformations of impact factors. In the
LO the kernel is fixed by the requirement of the conformal invariance of its
Möbius form. But even after this transformations with Ô = 1 + Ô, where
Ô ∼ g2, are still possible. At that K̂ → −[K̂BÔ]. These transformations
rearrange NLO corrections to the kernel and impact factors.

At first sight, there is one more ambiguity of the NLO kernel, related
with a choice of the energy scale. But it was shown [18] that change of the
energy scale can be compensated by corresponding redefinition of the impact
factors. It means that the ambiguity in the energy scale is reduced to the
transformation (7), with a specific form of Ô.

To understand if it is possible to remove the discrepancy between the
Möbius form of the BFKL kernel and the linearized BK kernel we considered
forward scattering. Defining

〈~r|K̂M |~ρ〉 =
∫
〈~r1~r2|K̂M |~r ′1~r ′2 〉δ(~r ′1 − ~r ′2 − ~ρ)d2r ′1d

2r ′2 , (8)

where ~r = ~r1 − ~r2, we obtained

〈~r|K̂M | ~r ′〉=
αs( 4e−2C

~r 2 )Nc
2π2

∫
d~ρ ~r 2

(~r − ~ρ)2~ρ 2

{(
2δ(~ρ− ~r ′)− δ(~r − ~r ′)

)[
1 +

αsNc
4π

(
67
9

−2ζ(2)− 10nM
9
− 4nS

9
+
β0

Nc

~ρ 2 − (~r − ~ρ)2

~r 2
ln
(

(~r − ~ρ)2

~ρ 2

)]
+ 3δ(~r − ~r ′) ln

(
~ρ 2

~r 2

)
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× ln
(

(~r − ~ρ)2

~r 2

)}
+
α2
sN

2
c

4π3

~r 2

~r ′2

(
f1(~r, ~r ′) + f2(~r, ~r ′)−

1
(~r − ~r ′)2

ln2

(
~r 2

~r ′2

))
,

(9)
where

f1 (x, y) =

(
x2 − y2

)
(x− y)2 (x+ y)2

[
ln
(
x2

y2

)
ln

(
x2y2 (x− y)4

(x2 + y2)4

)
+ 2Li2

(
−y

2

x2

)

−2Li2

(
−x

2

y2

)]
−

(
1−

(
x2 − y2

)2
(x− y)2 (x+ y)2

) 1∫
0

−
∞∫
1

 du

(x− yu)2
ln
(
u2y2

x2

)
,

f2 (x, y) =
1

8x2y2

{[
(x y)2

(
1− 3

2

(
y2

x2
+
x2

y2

))
+
(
x2 + y2

)2](
1− nM +

nS
2

)

−16x2y2
(
2− nM

2

)} ∞∫
0

dt
ln
∣∣∣ 1+t1−t

∣∣∣
y2 + t2x2

+
3 (x y)2 − 2x2y2

16x2y2

(
ln
x2

y2

(
1
y2
− 1
x2

)

+
2
x2

+
2
y2

)
. (10)

In the case of N = 4 we have

~r ′2

~r 2
〈~r|K̂M |~r′〉 =

~q 2

~q ′2
〈~q|K̂|~~ ′q〉

∣∣∣∣∣
~q→~r

, (11)

where 〈~q|K̂|~~ ′q〉 is the forward BFKL kernel in the momentum space [16]. In
the QCD case, besides the difference in the argument of the coupling constant,
the difference between the Möbius form of the forward BFKL kernel and the
result of [17] is

〈~r|K̂M − K̂BC | ~r ′〉 =
α2
sN

2
c

4π3

[
~r 2

(~r − ~r ′)2~r ′2

(
− ln2

(
~r ′2

~r 2

)

+2 ln
(
~r ′2

~r 2

)
ln
(

(~r − ~r ′)2

~r 2

))
+ δ(~r − ~r ′)2πζ(3)

]
, (12)

that corresponds to the difference in the eigenvalues

ω(n, γ)M − ω(n, γ)BC =
α2
sN

2
c

4π3
[2χ′(n, γ)χ(n, γ) + 2πζ(3)] . (13)
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The first term evidently can be eliminated by the transformation

K̂ → K̂ + 2[K̂B , ln ~̂q 2K̂B ], (14)

corresponding to change of the energy scale. But the term with ζ(3) can not
be eliminated in such a way.

Thus, to remove the discrepancy between the Möbius form of the BFKL
kernel and the linearized BK kernel obtained in [17] using the transformation
(7) was found impossible. We have to add that in the BFKL approach the
term with ζ(3) passed through a great number of verifications.
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