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Abstract 

A model of a neutral beam with geometric focusing and angular divergence 
is described. An algorithm is presented for calculation of a two-dimensional 
current density profile at an arbitrary distance from a flat circular emitter 
with account of multiple plane apertures in a beamline limiting cross-section 
of the beam. Numerical code is applied to calculation of current density pro-
files and power load on circular apertures due to neutral particles. 
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Аннотация 

Рассматривается модель пучка нейтральных атомов с геометрической 
фокусировкой и угловой расходимостью. Представлен алгоритм расче-
та двумерного профиля плотности тока на произвольном расстоянии от 
плоского кругового эмиттера атомов с учетом плоских апертур, огра-
ничивающих поперечное сечение пучка. Написанный численный код 
использован для расчета профилей плотности тока пучка в инжекци-
онном тракте и определения тепловой нагрузки круглых лимитеров за 
счет попадания быстрых атомов. 
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1. Introduction 
 
Low-divergent long-pulse neutral beams are often used in modern magnetic fusion 
devices as a diagnostic tool providing unique information about plasma parameters 
[1]. The most important requirements to these beams are sufficiently large current 
and energy of the particles, so that the beam can penetrate to the plasma core. Also 
the duration of the beams must be long enough, i.e. close to that of a plasma dis-
charge, amounting to at least a few seconds for large fusion devices. In particular, 
this implies limitations on power flux onto the beam limiters and determines the 
necessity of their water cooling.  

Here we describe a model of a circular neutral beam with geometric focusing 
passing through a beamline with plane apertures. The beam profile at desired posi-
tions is calculated as a function of beamlet (elementary cell of an ion-optical sys-
tem) divergence and accelerator focal length. It is assumed that the grid curvature, 
determining the focal length, is uniform and beamlet divergence distribution is of 
Gaussian type. Considering the number of beamlets large enough, the local current 
density of the beam at a distance z can be evaluated by using a simple analytical 
approximation. Namely, we assume that the ion current density is constant over 
the circular plasma emitter and at each point of the emitter the divergence is equal 
to that in a single beamlet. 

The current density distribution of a focused neutral beam at a given distance 
from an ion-optical system with uniform current density and without limiting aper-
tures in the beamline was obtained in [1]. In the presence of apertures absorbing 
the outer part of the beam the task of finding the current density distribution be-
comes more complicated. The current density distribution can be reliably calcu-
lated using the already existing numerical code PADET [3]. In this code the cur-
rent density in a certain point is determined by summing up contributions of many 
elementary beams formed in the beamlets of the ion-optical system. This proce-
dure includes possible absorption of the elementary beams by the apertures. The 
current density profile and absorption of the beam by the apertures can be also 
calculated by Monte Carlo method taking sufficiently large number of random 
trajectories starting from the surface of the plasma emitter. 

In this work the analytical expressions are obtained for calculation of the cur-
rent density profile of a focused beam of fast neutral atoms with the account of the 
limiting apertures. Specific current density profiles needed for practical applica-
tions can be calculated from these analytical formulas using computing software 
like Mathcad or Mathematica. 
 



2. Model of a neutral beam 
 
Geometry of the beam is shown in Fig.1. A circular emitter of radius a at  
produces a neutral beam with uniform equivalent current density, and every ele-
mentary beam is aimed at the point 

0=z

Rz =  on the z axis, where R is the curvature 
radius of grids or the focal length of the accelerator. Atom current density profile 
is of primary practical importance for neutral beam application in plasma devices 
and other purposes. On the way to the target the elementary beam is subject to 
geometrical focusing and angular spreading which is assumed of the Gaussian 
form, )exp( 2

0
2 θθ− , a typical approximation used for experimental data. Let us 

use cylindrical coordinates and find current density at radius r of the observation 
plane at distance z produced by the elementary current from the emitter infinitesi-
mal area φρρ dd  with the polar coordinates ),( ϕρ . Since the beam emitter is 
axisymmetric we can without loss in generality place the point  at the obser-
vation plane at the x axis. The axis of the elementary beam due to focusing is di-
rected to the point 

),( zr

Rz =  and crosses the observation plane at the point with polar 
coordinates ),( ϕr ′  where RzRr )( −=′ ρ  from geometry.  

 
Fig. 1. Geometry of a beam and observation plane. 

We need further to calculate the angle θ between the elementary beam axis and 
direction to the point  which determines the current density. Let us find it 
from a triangle with the sides L, l, h (see Fig.1) 

),( zr

 . (1) θcos2222 lhhlL −+=
From Fig.1 we also find 

( )222222 1)( Rzrzl ρρ +=′−+= , 

ϕρρϕρϕρ cos2)sin()cos( 2222222 rrzrzh −++=+−+= , 

ϕcos2222 rrrrL ′−′+= . 
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Substitution of r′ , l, h, L into (1) yields the exact expression for ),,,( ϕρθ zr  

 ( )( )22222 )cos2(11

)cos(1cos
zrrR

zRr

ϕρρρ
ϕρρθ
−+++

−+= . (2) 

In practice the focal length and distances from the atom emitter to apertures in the 
beamline and to a plasma target are much greater than the emitter radius and char-
acteristic aperture sizes , nb nbz ,ρ>>  and nbR ,ρ>> . Moreover, since the angu-
lar divergence of the beam is usually small, of the order 

, and the current density depends on the angle expo-

nentially, we may consider only small θ angles. For 

1rad107.11~ 2
0 <<⋅≈ −oθ

1<<θ  21cos 2θθ −≈ , so 

we expand (2) into Taylor series and keep only the terms of the order )1( 2zO  to 
obtain 

 ϕρρθ cos11211 2
2

2

2
2 ⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −+≈

Rzz
r

Rzz
r  (3) 

with neglected terms of the order of )1( 4zO . The same approximate result can be 
obtained directly from Fig.1 under condition 1<<θ , when it is sufficient to write  

.cos11211cos2 2
2

2

2

2

222
2 ϕρρϕθ ⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −+=

′−′+=⎟
⎠
⎞

⎜
⎝
⎛≈

Rzz
r

Rzz
r

z
rrrr

z
L  

It is easy to show by straightforward expansion into series that account of the ne-
glected terms of the order of )1( 4zO  (or ) in simplification from (2) to (3) 
becomes important only for relatively large angles 

)( 4θO
10 >>θθ . But for such θ val-

ues the exponent )exp( 2
0

2 θθ−  is negligibly small. For example, for typical diver-

gence of  rad a 1% relative error in the current density arising 

from omitting the 

2
0 107.1~1~ −⋅oθ

)1( 4zO  terms appears only at θ as large as 5.4~0θθ , when 
92

0
2 102~)exp( −⋅− θθ  and for smaller θ angles the error is even less. Therefore, 

the expression (3) can be assumed accurate.  
Let us also consider the influence of the angle χ between the elementary 

beam axis and normal to the observation plane on the current density. In practical 
situation this angle is small, 1)()max(tan <<+= zbaχ , where b is the aperture 
radius. The axial component of the elementary current at the observation plane is 

)21(cos 2χχ −⋅≈⋅= djdjdjz , and correction to the current density is of the or-

der of 22 2)( zba + . In practice, typical values of the emitter radius and aperture 
cross-size are comparable  cm and  cm, therefore, 10~~ ba 100≥z

02.0~2)( 22 zba + , so the maximum relative error is about 2% at  cm at 
large radii . Further we neglect this angle for the sake of simplicity and keep 

100=z
br ~
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in mind that our formulas are correct to within about 2% at all distances of interest, 
and that this systematic error rapidly decreases with distance from the emitter. Of 
the same order is the error from replacing the spherical form of the accelerator grid 
by a flat one. It leads to )1( 2zO  errors which are maximal at the beam periphery. 
However, in numerical calculation there is no problem to include both χ-
dependence and exact expression for ),,,( ϕρθ zr  into the expression for the cur-
rent density.  

The beam current density at the observation plane is calculated by integration 
of elementary currents over the whole emitter surface 

 ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

π

ϕ
θ

ρφθρρ
2

0
2
0

2

0
beam

),,,(exp),( dzrdBzrj
a

, (4) 

where B is a normalization constant to be found later. Integration over ϕ using the 

relation , where I)(00

cos zIdez πθ
π θ =∫ 0(z) is the modified Bessel function, gives  

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

a

d
Rzz

rI
Rzz

rBzrj
0

2
0

0

2

2
0

2

2
0

2

2

beam
11211expexp2),( ρρ

θ
ρ

θ
ρ

θ
π . (5) 

This expression for the current density distribution of a focused neutral beam at a 
given distance from the ion-optical system and without limiting apertures in the 
beamline was obtained in [1]. 

The constant B is determined from total current conservation, i.e. from con-
dition that the total beam current at any z position must be equal to the total emitter 
current  

∫∫ =
∞ a

drjrdrzrj
0

0
0

beam 2)(2),( ρρππ , 

which in the case of the uniform emitter current density J0 yields  

2),( 2
0

0
beam aJrdrzrj =∫

∞

. 

Performing integration in the left hand side using [2] we find 2
0

2
0 θπ zJB = . 

Thus, the elementary current density at the point  from the infinitesimal area 
with coordinates 

),( zr
),( ϕρ  on emitter surface is  

 ( ) ϕρρθρφθθπϕρ ddzrzJzrdj 2
0

22
0

2
0beam ),,,(exp)(),,,( −= . (6) 

At the focus ( Rz = ) the current density distribution follows from (5) and 
becomes a simple Gaussian type  
 ( 2

0
222

0
22

0focus exp)()( θθ RrRaJrj −= ) . (7) 
with the beam half-width at e1  equal to 0θR . 
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Equation (5) can be also obtained in straightforward manner by using a model dis-
tribution function of the beam at the plane at which it starts: 

 ( )22
0

222
0

2
00

2
0

3
00 )(exp)()( zyxz vvvyxaHVvVJf θδθπ +−⎟

⎠
⎞⎜

⎝
⎛ +−−= , (8) 

where V0 is the atom velocity, x0 and y0 are the Cartesian coordinates in the emitter 
plane, and H is the Heaviside step function indicating that the beam particles are 
emitted within a circular aperture with radius a. For  the distribution function 
can be obtained by solving a collisionless kinetic equation. The particle trajectories 
are straight lines, so there are constants of motion, that are essentially initial coor-
dinates at the plane . These constants of motion can be written as 

0>z

0=z
zx vzvxx −=0 , zy vzvyy −=0 . The components of the velocity vector are 

also constants of motion. So, since the distribution function is a function of the 
constants of motion it can be immediately written at a plane at distance z from the 
source as 

 
( ).)(exp

)()()()(

22
0

22

22
0

2
0

3
00

zyx

zyzxz

vvv

vzvyvzvxaHVvVJf

θ

δθπ

+−×

×⎟
⎠
⎞⎜

⎝
⎛ −+−−−=

 (9) 

The current density profile is given by which 
after simple calculations gives the same result as (5), but for , since we did 
not take into account inclination of the particle trajectories due to bending of the 
grids. In order to include the focusing effect, equation (8) should be modified as 
follows 

∫∫∫= zyxzbeam dvdvdvvfzyxj ),,(
∞=R

 
( )22

0
22

2
0

2
00

2
0

3
00

))()((exp

)()(

zzyzx

z

vRyvvRxvv

yxaHVvVJf

θ

δθπ

−+−−×

×⎟
⎠
⎞⎜

⎝
⎛ +−−=

. (10) 

This expression includes the inclination of the particle trajectories, which assum-
ing the facts that  and that the angle of focusing is small, is equal to 12

0 <<θ
Rxvz  or  Ryvz  for the displacements along x and y-axes respectively. Calcula-

tion of the flux density profile using (10) gives the same relationship as (5) for the 
finite R. 

This approach can be applied to obtain the profile of a beam passing through 
a set of circular apertures of different radii. For the case of one aperture of radius b 
placed at , the distribution function of the beam without focusing immedi-
ately after the aperture has the form 

0zz =

( ) ,)(exp

)()()()(

2222
0

22

2
0

2
00

2
0

3
00

⎟
⎠
⎞⎜

⎝
⎛ +−+−×

×⎟
⎠
⎞⎜

⎝
⎛ −+−−−=

yxbHvvv

vzvyvzvxaHVvVJf

zyx

zyzxz

θ

δθπ
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where the last step function describes transmission of the aperture. Using the same 
constants of motion, beyond the aperture, at  the distribution function can be 
written as  

0zz >

( ) .))(())(()(exp

)()()()(

2
0

2
0

22
0

22

22
0

2
0

3
00

⎟
⎠
⎞⎜

⎝
⎛ −−+−−−+−×

×⎟
⎠
⎞⎜

⎝
⎛ −+−−−=

zyzxzyx

zyzxz

vzzvyvzzvxbHvvv

vzvyvzvxaHVvVJf

θ

δθπ
 

The current density profile can be again found by multiplying the distribution 
function by vz and integration over the velocity space. The final result has the fol-
lowing form 

ρρϕρρ

ϕ
θ
ρ

θ
ρϕ

θ
θπ

π

drzzzzzrzzzbH

z
r

z
d

z
rzJzrj

a

⎟
⎠
⎞⎜

⎝
⎛ −++−−×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∫∫

cos)1(2)1(

cos2expexp)(),(

00
222

0
2

0
2

0
2
0

222
0

22

02
0

2

2
2
0

2
0beam

. 

 
Addition of other apertures leads to multiplying the distribution function by corre-
sponding step functions. Generalization of this procedure for non-circular aper-
tures and for a focused beam is straightforward. Another, probably more vivid 
approach to calculation of the current density profile of a beam passing through 
apertures is considered in the next section. 
 
3. Account of apertures in the beamline 
 
Consider the system shown in Fig.1 with addition of a singly-connected plane ap-
erture of a general form. The aperture plane perpendicular to the z-axis is located 
at the distance  from the beam emitter, and the shape of the aperture edge is 
described by the plane curve C given in parametric form with  and  being 
functions of parameter t measured along C (Fig.2). We are again interested in the 
current density produced by the beam in an arbitrary point 

0z
)(tx )(ty

),( zr  of the observa-
tion plane at the distance z from the emitter. The elementary current at the point 

),( ϕρ  at the emitter produces the current density at the observation plane only if 
these two points can be connected by a straight line which passes through the aper-
ture. Let us formulate this condition mathematically. The assumed straight line 
passes through two points with the Cartesian coordinates )0,sin,cos( ϕρϕρ  at 
the emitter and  at the observation plane (Fig.2).  ),,( zyx
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Fig. 2. Beam emitter 1, aperture plane 2, and target plane 3. 
 
In projection to the plane  the equation of this line is 0=y

zxZZx )cos(cos)( ϕρϕρ −+=  and in the plane  the equation is 0=x
zyZZy )sin(sin)( ϕρϕρ −+= . Thus, this line crosses the aperture plane 

 in the point  0zz =
 zzxx 00 )cos(cos ϕρϕρ −+= , zzyy 00 )sin(sin ϕρϕρ −+= , (11) 
where coordinates x0, y0 in the aperture plane should not be confused with x0, y0 
temporarily used in (8)–(10) as coordinates in the emitter plane. 
For beam passing through the aperture this point  must lie inside the 
closed curve C, being the edge of the aperture i.e. inequalities 

 and  must be satisfied 
(for simplicity we assume only convex shapes of the curve C which is suitable for 
almost all practical cases). Let us define an “aperture function” A which is equal to 
unity if both of the latter inequalities hold, i.e. if the elementary beam under con-
sideration passes through the aperture and adds to the current density at the obser-
vation plane, and equal to zero otherwise. Using the Heaviside step function  
which is equal to unity for  and zero for , we may write the aperture 
function in the explicit form  

),( 00 yx

)()( 0max,00min, yxxyx CC << )()( 0max,00min, xyyxy CC <<

)(xH
0>x 0<x

=),,,,,( 0 ϕρzyxzA  (12) 
,))(())(())(())(( 00max,0min,000max,0min,0 yxyHxyyHxyxHyxxH CCCC −−−−=  

where ),,,,( 00 ϕρzxzx  and ),,,,( 00 ϕρzyzy  are taken from (11). The current 
density after the aperture is written explicitly using the expression (6) for the cur-
rent density of the freely propagating beam 

),,,,,(),,,(),,,( 0beamafter ϕρϕρϕρ zyxzAzrdjzrdj ⋅= . 
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In practice circular and rectangular apertures are used most often, and we 
will specify conditions of elementary beam passing for these cases in more detail. 
 
1. Rectangular aperture. Consider a rectangular aperture with the sides of length 

 along the x-axis and  along the y-axis, and with the center of the rectangle 
lying at the point with Cartesian coordinates . Conditions for elementary 
beam passing through the aperture are:  and 

, therefore the aperture function takes the form 

12b 22b
),( cc yx

101 bxxbx cc +<<−

202 byyby cc +<<−
.)()()()(),,,,( 02200110 ybyHbyyHxbxHbxxHzyxA cccc −++−−++−=ϕρ  

In the limiting case when, for example, , the rectangle degenerates 
into an infinite slit of constant width , and only one condition remains 

. The aperture function in this particular case becomes 

∞→2b

12b

101 bxxbx cc +<<−
.)()(),,,,,( 01100 xbxHbxxHzyxzA cc −++−=ϕρ  

 
2. Circular aperture. It is quite natural that in practice circular neutral beams are 
used in combination with circular apertures.  

a) Off-axis circular aperture. This is the most general case. Let the center of 
the circle have coordinates , then the edge of the circular aperture of ra-

dius b is given by the equation  and conditions of the 
elementary beam passing through the aperture are 

),( cc yx
222 )()( byyxx cc =−+−

2
0

2
0

2
0

2 ybxxybx cc −+<<−−  and 2
0

2
0

2
0

2 xbyyxby cc −+<<−− , 

or combining them we obtain one condition . The 
aperture function is 

22
0

2
0 )()( byyxx cc <−+−

.  ))()((),,,,,( 2
0

2
0

2
0 cc yyxxbHzyxzA −−−−=ϕρ

b) Concentric circular aperture. In this special case the center of the circular 
aperture lies on the beam axis , the aperture edge equation becomes 

, and conditions of elementary beam passing are 

0== cc yx
222 byx =+

2
0

2
0

2
0

2 ybxyb −<<−−  and 2
0

2
0

2
0

2 xbyxb −<<−−  or combining 

both conditions, . If the system of the beam and apertures is fully 
axisymmetric, it is convenient to use polar coordinates in the aperture plane, and 
this condition using (11) can be rewritten in the form 

22
0

2
0 byx <+

22
2

000
2

2
0

2

1cos1
2

b
z

z
z
z

z
rz

z
zr

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+ ρϕρ . 
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The corresponding aperture function is 
=−−= )(),,,,,( 2

0
2
0

2
0 yxbzyxzA θϕρ  (13) 

.1cos12 2
2

000
2

2
0

2
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −−−= ρϕρ

z
z

z
z

z
rz

z
zrbH  

 
3. Multiple apertures. It is easy to generalize these single-aperture functions to 
the case of several consecutive apertures. The elementary beam would reach a cer-
tain aperture at the distance zn only if it already passed through all previous aper-
tures located at the distances zi between the beam emitter and the given aperture. In 
other words, the straight line of sight from ),( ϕρ  to  must not cross any 
aperture. Thus, the condition of passing through the n-th aperture requires that 

),( zr

1),,,,,( =ϕρzyxzA i  for all i from the interval , and the net aperture 
function for may be written in a compact form as a product  

ni ≤≤1

1+<< nn zzz

∏
=

=
n

i
i zyxzAzyxA

1
total ),,,,,(),,,,( ϕρϕρ . 

The elementary current density at an arbitrary distance from the emitter with the 
account of all apertures between the emitter and the observation plane is 

),,,,(),,,(),,,,( total
22

beam ϕρϕρϕρ zyxAzyxdjzyxdj ⋅+= , 
and finally the two-dimensional current density distribution in x-y plane at the dis-
tance z from the emitter of fast neutrals is given by integration of the elementary 
currents over the emitter surface 

 ϕρρϕρρρ
π

ddzyxdjdzyxj
a

∫∫=
2

00

)),,,,((),,( . (14) 

For practical use it is important to know the portion of the initial beam that passes 
through each aperture. Let us call this value a “transmission coefficient”. It is cal-
culated as a ratio of the total current that passes through the n-th aperture to the 
total beam current at the emitter I0

 0)0( IzI nn +≡η . (15) 
The total current after the aperture is calculated using the current density (14) 

∫∫
∞

∞−

∞

∞−

+=+ dxzyxjdyzI nn )0,,()0( . 

Since immediately after the aperture the current density is nonzero only in over the 
aperture area, the  can be also calculated as an integral over this area )0( +nzI

 . (16) ∫=+
S

nn dSzyxjzI ),,()0(

Hitting of the aperture surface by an energetic beam may lead to melting and 
destruction of the aperture in case of long-pulse powerful beams. It may become a 
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serious concern and would require special measures to cool the apertures in order 
to keep them under acceptable temperature. Power density can be calculated by 
multiplying the current density immediately before the aperture plane by the accel-
erating voltage in the ion-optical system 

]Volt[]cmA[)0,,(]cmWatt[),,( 22 UzyxjzyxP nn ⋅−= . 
 
4. Numerical calculations for realistic neutral beam system 
 
The model calculation presented below is made for the beam and beamline with 
the following parameters: the beam emitter radius is  cm, the focal length 

 cm, and the angular divergence  rad. The total beam 
current at the emitter is  A, and the accelerating voltage is  kV, 

therefore the power density at the emitter is 

10=a
340=R 2

0 101.22.1 −⋅== oθ
400 =I 400 =U

]cmkW[1.5 22
000 == aUIP π . 

There are four circular apertures in the beamline, all of them concentric with the 
beam (Table 1). 
 
Table 1. Axial positions and radii of circular concentric apertures in the beamline. 
 

Aperture number Distance from emitter 
z, cm 

Aperture radius 
b, cm 

1 79 9.85 
2 210 9.75 
3 263 12.5 
4 312 12.5 

 
Results of numerical calculations are presented in Fig.3 in terms of power 

density profiles immediately before all four apertures and at the focal plane instead 
of current density using the conversion formula , so the current density 
can be easily found by dividing the power density by the accelerating voltage 

 kV.  

0jUP =

400 =U
In the focal plane (curve “5”) the beam half-width at the e1  level found us-

ing (7) is 1.70 =θR  cm. The power load profiles at the apertures are shown in 
Fig.4.  

The power load at the aperture #3 at  cm is relatively small, because 
its radius is larger than the radius of the aperture #2, therefore the beam does not 
manage to spread radially due to angular divergence since the distance from the 
aperture #2 at  cm is not enough for that, 

2633 =z

2102 =z 23023 )( bbzz −<⋅− θ , and 
moreover the beam focusing attempts to decrease the beam diameter with z, the 
maximal focusing angle is 2103 −⋅=Ra  rad.  
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Fig. 3. Power density radial profiles at various positions: 0 – emitter, 1 – 79 cm, 

2 – 210 cm, 3 – 263 cm, 4 – 312 cm, 5 – at the focal plane cm. 340== Rz
 

 
Fig. 4. Power load distribution at the apertures:  
1 – 79 cm, 2 – 210 cm, 3 – 263 cm, 4 – 312 cm. 

 
For the case of concentric circular apertures calculation of the aperture power 

loads and transmission coefficients is particularly simple. Expression (16) for the 
total beam current that passes through the n-th aperture becomes 

, thus the transmission coefficient (15) is ∫ −=+ nb

nn rdrzrjzI
0

)0,(2)0( π

00
)0,(2 Irdrzrjnb

nn ∫ −= πη  and the total power load on the n-th aperture is 
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),(),( 100 nnb nn WrdrzrjUQ
n

ηη −== −

∞

∫  where  is the beam power at 

the emitter.  

000 UIW =

Integral characteristics of the beamline with this specific neutral beam, 
namely the aperture transmission coefficients and the integral power loads are pre-
sented in Table 2. 

Table 2. Transmission coefficients and power loads of the apertures. 

Aperture 
number 

Aperture position 
z, cm 

Transmission  
coefficient,  η , % 

Total aperture power 
load,  Q , kW 

1 79 99.6 6.8 
2 210 97.4 34.7 
3 263 97.4 0.5 
4 312 96.3 16.7 

 
Analyzing the results presented in Table 2, one should be aware of the model limi-
tations discussed in Section 2, which cause some systematic errors due to simplifi-
cations in geometrical expressions. 
 
5. Conclusion 
The physical model of the circular neutral beam with geometric focusing and 
Gaussian angular divergence in the beamline with multiple plane apertures of arbi-
trary shape is described. Formulas for two-dimensional current density profile of 
the beam at any distance from the emitter are derived. Rectangular and circular 
apertures limiting the cross-size of the beam are considered in detail. Numerical 
code based on this model is applied to the case of four circular apertures concen-
tric with the beam. Current density radial profiles, aperture transmission coeffi-
cients and aperture power loads have been calculated. 

The authors are grateful to Dr. G.Fiksel (University of Wisconsin, Madison, 
USA) and Dr. R.Uhlemann (IEF-Plasma Physics, FZ Jülich, Germany) for valu-
able discussions. 
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