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Abstract 

 
Space charge effect is ever of fundamental importance for low-energy parts of 
accelerators. The technique known as emittance compensation allows analyzing 
and optimizing of this kind of beamlines effectively. Simple and robust 
estimations of the emittance degradation in various space charge affected 
beamlines and guns have been obtained analytically and numerically. 
Nonuniform longitudinal and transverse distributions of current, accelerating 
and bunching were taken into account. The parameters of optimal beamlines 
and guns for space charge affected beams have been estimated. 
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Аннотация 

 
Эффект собственного заряда всегда играет важную роль в инжекторах 
ускорителей, где энергия частиц относительно невелика. Техника 
"emittance compensation" позволяет эффективно анализировать и 
оптимизировать такие каналы. В работе получены аналитически и 
численно простые и надежные оценки роста эмиттанса в каналах с 
превалирующим эффектом собственного заряда и пушках. Учитывались 
продольная и поперечная неоднородности плотности заряда, ускорение и 
группировка. Приведены оценки параметров оптимальных каналов и 
пушек. 
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__________________________________________________________________ 
 
 
 
 

1. Introduction 
Space charge effect may cause significant emittance degradation in a beamline 

and even change the behavior of beam motion in a beamline. Kapchinsky-
Vladimirsky equations [1] are very convenient to estimate the effect and also to 
analyze its results: 
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where a and b are the envelopes in x an y directions; k is normalized focusing; 
3

0 )(/ βγ= IIj , normalized current; and ε is canonical emittance. We shall use the 
equations rewritten for rms-values 
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(1.2) 

where x and y mean horizontal and vertical rms-sizes and, in indexes, the 
appropriate coordinates respectively; " means second derivative by the 
independent coordinate z; ε, I, G, e and p are the emittance, the current, the 
focusing gradient, the particle charge and its longitudinal momentum respectively. 

eZmcI 0
2

0 4 ⋅π= , kA 17≈  for electrons; GGG yx =−=  for a horizontally 

focusing quadrupole, peBGG yx 42==  for a solenoid, and 

0,2 == yx GepgG  for a dipole, where g is the trajectory curvature. 

If the terms with current in (1.2) are comparable or greater than ones with 
emittance, one has to take into account space charge effect. So the following 
inequation is to be met to neglect space charge effect [2]: 
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Space charge also changes the phase of small vibration of a beam. If this is 
significant, one should estimate the effect before usage of a single-particle model. 
The equilibrium size of a beam is 
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The equation of small vibration around this equilibrium is 
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Its wavenumber is 

( )

.
)(

12
)(

413
)(

3

24
0

2
2
02

4
0

2

24

2
2

yx
j

x
k

yx
j

G
p
e

xyx
jG

p
e

x
k

x

x
x

x
x

+
+δ

ε
−=

+
+

++δ−
ε

≅
+

++
ε

≅

 

 

(1.6) 

Space charge changes the wavenumber by 
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( ) 10 <<− xxx  is assumed here. If yx ≈ , than 
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Thus, the second ("phase") criterion of the validity of a single-particle model is 
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A similar criterion for the vertical plane is obtained substituting x ↔ y. If yx ≈ , 
one can simplify this condition 
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where L is the total length of the beamline. One can also consider the betatron 
phase advance. The space charge effect is than 
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Estimates (1.10) and (1.11) are very close. 
Term "emittance compensation" was probably put forward in [3] in analysis of 

processes in RF photoelectron guns. Really, the author found that the normalized 
emittance oscillates along a gun due to space charge effect and the optimal phase 
advance can be chosen to minimize the emittance at the gun exit. The explanation 
was that the phase portraits of bunch slices diverge and converge periodically. The 
method was significantly formalized and developed in [4] and further works. Some 
of the results being discussed here have been presented in [5] - [7]. 

 
2. Basics 

2.1. Longitudinal inhomogeneity: basic effect and equations 
First of all, consider a bunch as a set of uniformly charged and independently 

moving slices with zero emittance. This is a good approximation if a bunch is long 
enough in the moving frame rc >>τβγ . Substituting 

hpeGgpeGjII yx ===βγ /  ,/  ,)(/ 3
0  in (1.2) one obtains 
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The longitudinal momentum and j are considered constant for the present. Suppose 
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 is a solution for the system (2.1), given j, and some starting conditions. 

Let's name this solution as principal. Then the motion of another slice with the 
current jj δ+  (all the values with δ are considered as small) is homothetic if its 

sizes are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ δ
+≅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛δ+
y
x

j
j

y
x

j
jj

2
11 . It's obvious, as the substitution 

,jjj δ+→  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛δ+
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
y
x

j
jj

y
x

 keeps (2.1) valid. This is the principal solution 

for the latter slice. Thus, the emittance of a bunch doesn't degrade if all its slices 
are homothetic. If one shapes a bunch in that way, the effect of longitudinal 
inhomogeneity is perfectly compensated. 
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If the starting conditions of the two mentioned slices are the same, the sizes of 
the second one will oscillate near the principal solution. The equations 
(linearized!) for a small deviation from the principal solution are then 
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x  at z = 0. This is a system of linear equations with 

variable coefficients. Its local eigen solutions are 
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In the case of axially symmetric focusing (g = h > 0) and quasistationary motion 
( gyxjyx =+= 2)/(2  ; ) these are a dipole mode and monopole one respectively 
Fig. 2.1: 
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Fig. 2.1. Dipole (left) and monopole (right) charge vibration modes. 

The wavenumber of the latter is 2  bigger. If both focusing and initial 
conditions are axially symmetric, the dipole mode is not excited and only the 
phase of the monopole mode (chare phase or phase for the sake of simplicity 
further) is to be nπ= , where n is an integer to minimize the emittance. One can 
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say that small monopole vibrations of different slices are perfectly coherent so the 
phase portraits coincide periodically Fig. 2.2. 

x'

x

 
Fig. 2.2. Spread and narrowing of phase portraits of slices. 

In the case of non-symmetrical motion both modes are to be phased that seems to 
be impossible. 

2.2. Transverse inhomogeneity: basic effect and equations 
The effect of transverse inhomogeneity is principal for steady beams and can 

affect significantly transient ones. Consider a slice of a transient beam or, that is 
similar, a steady beam with non-uniform transverse charge distribution. Let's 
assume the whole system as axially symmetric. Then the equation for a particle at 
a distance x from the axis is 
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where I~  is the current inside a cylinder of radius x, and all other symbols are as in 
(2.1). Let's suppose that the motion is perfectly laminar, that is if 21 xx >  for two 
particles at some place, it is valid everywhere. This condition is not always valid, 
but is violated only in the low-density halo of a beam, so almost doesn't affect 
estimation of emittance. 

If the charge distribution of a beam (slice) is not uniform, j~  is not 
proportional to x2, and particle trajectories are not homothetic. The situation looks 
like in Fig. 2.3. 

Space charge

Focusing

Σ

Matching
point

x'
x

⇒

 
Fig. 2.3. Motion of Gaussian slice. 

Similar to the case of longitudinal inhomogeneity, one can consider a set of 
homothetic principle trajectories for different particles and their oscillations 
around the trajectories. The linearized equation for small deviation is then 
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In the linear approximation, the phase portrait of a slice is straightened twice per a 
period of oscillation and the emittance is zeroed. 

If there is Gaussian distribution of current within a slice of the rms-size r and 
current j, then 
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Wavenumbers of oscillations of a slice in total and a particle inside it coincide if 
( ) rxrxrx 1.78528662/2/exp1 2222 ≅⇒=−− . 

2.3. General dimensionless equations of small oscillations 

It is more convenient to analyze a dimensionless deviation xx /δ=δ . If a 
round beam is uniform in the transverse plane and its energy and current are 
conserved, its rms-size is given by 
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For a small deviation δ from the principle trajectory, the linearized equation is 
then 
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If the energy and/or the current are variable, the equation for the rms-size is 
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where xx ′βγ=1  is the normalized slope. The linearized equation for a small 
deviation is then 
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Note that the coefficient at δ in the right part is ever negative, that is the motion is 
ever stable, and doesn't depend explicitly on the focusing. All the principle 
trajectories are homothetic, that is 2211 // xxxx ′=′  for any two of them. So the 
phase portraits of the slices are aligned if 
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Considering terms with δ as small one obtains 

21 δ′=δ′ . (2.13) 
Property xxxxx /δ′+δ′=′δ  has been used here. Consider the situation in more 
details. Assume that some slice moves along the principle trajectory ( )00 , xx ′ . 
Adjacent slices have principal trajectories ( )00 , xx ′⋅ξ , where ξ is a parameter, and 
deviations ( )( )00 ,1 xx ′δδ−ξ , that are small. Applying (2.13) to all the slices one 
obtains (Fig. 2.4) 

xxxx ′′δ=δ⇔=δ′ //00 . (2.14) 
Thus, it is necessary to find the points where 0=δ′  to minimize emittance. 

 
Fig. 2.4. Alignment of phase portraits. 

One should substitute jj ~4←  in (2.11) to obtain the appropriate equation for 
the effect of transverse inhomogeneity 
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2.4. Transformation matrix and phase 
As any linear ordinary differential equation (ODE) of the second order, (2.11) 

(also (2.15)) defines the transformation matrix between two arbitrary points of a 
beamline z0 and z1 
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zzM , (2.16) 

where (C, C') and (S, S') are the values of (δ, δ') at z1, if at z0 they were (1, 0) and 
(0, 1) respectively. They are well-known cos- and sin-like trajectories. In general, 
the coefficient at δ' in (2.11) and (2.15) is not zero, so Mdet  is not necessary 
unity [8] 
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The transformation matrix of a uniform beamline with x and βγ = const is 
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where xjzz )( 01 −=ϕ . One can obtain the inverse matrix substituting φ → -φ. 
Probably, this is the only case when the charge phase advance can be defined 
absolutely correctly, that is the phase advances of two parts are (i) additive and (ii) 
commutative. Nevertheless, we are interesting in cos-like trajectories most of all 
(δ' = 0 in the birth-place of a beam), so the phase advance of a beamline can be 
defined by equating it with the "appropriate" uniform beamline. A uniform 
beamline is appropriate to the given one if the values x, j and βγ in the former and 
at the end of the latter are equal and the ratio of C and C' elements of the 
transformation matrices and their signs coincide. In this case the phase advance in 
the beamline is 
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where the quadrant is selected so that the signs of cosφ and -sinφ coincide to the 
ones of C and C' respectively. This phase is not ever additive and commutative, 
but gives an idea on the most important beamline parameters and possesses several 
useful properties. If a uniform beamline with the phase advance π – φ is added to 
the end of an arbitrary one with the phase advance φ, and x, j and βγ in the former 
and at the end of the latter are equal, then the total phase advance of the combined 
beamline is π: 
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The analogous situation occurs for addition 2π – φ. A set of beamlines with the 
phase advances divisible by π has the phase advance also divisible by π. It follows 
from the fact that the product of two superdiagonal matrices is also a 
superdiagonal matrix 
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Moreover, if the number of the parts the with phase advance π is odd, the total 
phase advance is π, otherwise it is 2π. It is due to the resulting C is the product of 
C of partial matrices. Of course, x, j and βγ at the end of the previous part and the 
beginning of the next one must be equal. 

It must be emphasized that (i) the mentioned charge vibration phase is not 
the same as the well-known betatron phase. The analogy is only due to the same 
type of the generating equations. Further, (ii) its definition (2.19) is proper for 
analysis of emittance compensation, but is not solely possible. 

 
3. Beamlines 
3.1. Uniform beamline: longitudinal inhomogeneity 

Let's estimate emittance dilution owing to the longitudinal inhomogeneity 
effect in a uniform axially symmetric beamline with constant energy and current. 
Apparently, this is the simplest case. The matter is that only small oscillation is 
linear that is harmonic, but if the amplitude is not zero, the wavenumber of this 
oscillation differs from the harmonic one. It disturbs the coherence of the different 
slices.  The linearized equation (2.11) gives the same phase for all the slices, so we 
need to use next approximations 
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where terms higher than cubic were omitted. An analogous equation was analyzed 
in [9] (28,9) 
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and the frequency shift due to nonlinearity was found (28,13) 
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where a is the amplitude. In our case 

ggg =β−=α=ω ,,20 . (3.4) 

Substituting (3.4) into (3.3) one obtains 
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ω
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Thus, the linearly increasing phase shift is 

2

12
1 aϕ≅ϕΔ , (3.6) 

where φ is the total phase advance. Consider a bunch emitted with equal x = r and 
zero  x'  for  all  the  slices  and  having  Gaussian  distribution of current along the 
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 longitudinal axis: 
)exp( 2

0 ς−= jj . (3.7) 

Let the stationary condition grj 22
00 2)exp( =ς−  is valid for some slice at ς0, and 

its phase advance through the beamline nLg π= 22 , where n is integer. Then the 
sizes of all the neighbour slices at the end are approximately equal and their phases 
are not equal due to the effect of the cubic (and higher) terms in (3.1). The 
principal size (also stationary) of any slice is 

( )( )2exp 22
0 ς−ς= rxS , (3.8) 

and the relative charge vibration amplitude is 
( ) ( )( ) 12exp/ 2

0
2 −ς−ς=−= SS xxra . (3.9) 

At the end of the beamline 

( ) ( )( )( ) .2exp1exp2
12
1

2
12
12)1(

322
0

2
0

2

3

ς−ς−ς−ςϕ−=

=ϕ−≅ϕΔ−≅δ+′+δ′=′

gr

gxagaxxxx SSSS

 
 

(3.10) 

If one substitutes this expression into the integrals for >′< 2x  and >′< xx , they 
diverge. x′  in  
(3.10) grows exponentially with ς, while in fact ( )( )( )2exp12 22

0 ς−ς−<′ grx . 
So let's bound x′  as 

( ) ( )( )( )2exp1
12

cos12
2
1 22

0
2
0

2 ς−ς−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ς−ς

ϕ
−≅′ grx . (3.11) 

The lowest terms of the series expansions of both expressions at zero by ( )22
0 ς−ς  

coincide. Emittance is calculated as 

.

,)exp()exp(

,)exp()exp(

,

222

0

2

0

2

0

2

0

222

22

>′<−>′><<=ε

ςς−ςς−′>=′<

ςς−ςς−′>=′<

>=<

∫∫

∫∫
∞∞

∞∞

xxxx

ddxxxx

ddxx

xx

x

. 

 

 

(3.12) 

Final expressions are bulk enough, so are not placed here. ε and optimal ς0 for 
j = 1, r = 1, and n from 1 to 15 are placed in Fig. 3.1. 
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Fig. 3.1. ε (red solid) and 0ς  (blue crosses) vs. number of periods. 

 Blue dashed is 1.084n-0.170. 

The emittance grows with n from 0.049 up to the asymptotic value 0.12. Optimal 
170.0

0 084.1 −≈ς n . Thus, in the first 2π-minimum 

jr049.0≈ε , (3.13) 

and it grows up to  

jr12.0≈ε , (3.14) 

when n → ∞. Every time g is optimal for given n and approximately equals to 
2340.0 2/)175.1exp( xnj −− . 

Let's estimate this effect if the phase is not optimal. Then assume the phase 
portraits of the slices, except of ς0, uniformly distributed over ellipses 

( )( ) ( )( )( )( )
( )( )( ),2exp1sin2

,2exp1cos2exp
22

0

22
0

22
0

ς−ς−ψ=′

ς−ς−ψ+ς−ς=

grx

rx
 (3.15) 

where ψ is the arbitrary phase. For each slice 

( )( ) ( )( )( )( )

( )( ) ( )( )( )( )
( )( )( )( ) ( )( )( )

.0~~

,2exp12exp1sin~

,2exp32exp21
2

                            

2exp1cos2exp
2

~

222
0

2
2

0

222
0

2
2

222
0

22
0

2

2

0

222
0

22
0

2
2

>=′<

ς−ς−=ψς−ς−ψ
π

>=′<

ς−ς+ς−ς−=

=ψς−ς−ψ+ς−ς
π

>=<

∫

∫

π

π

xx

grdgrx

r

drx

 

 

 

(3.16) 
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For the total bunch 

( ) ( )

( ) ( )

.

,exp
4
22exp

3
6

2
12)exp(~2

,exp
4

232exp
3
6

2
1)exp(~2

22

2
0

2
0

2

0

222

2
0

2
0

2

0

222

>′><<=ε

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ς+ς−=ςς−>′<

π
>=′<

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ς+ς−=ςς−><

π
>=<

∫

∫
∞

∞

xx

grdxx

rdxx

x

 

 

(3.17) 

εx reaches the minimum at 0.5400 ≅ς , the value is ≈ 0.144 if j = 1 and x = 1. 
Thus, if the phase is not optimized, the emittance can be 

jr144.0≈ε , (3.18) 

that is triple larger than in the 2π-minimum. 
Let's verify these estimations numerically now. Code "Butterfly" has been 

developed for this purpose. The code simulates the motion of an axially symmetric 
bunch with uniform charge distribution in the transverse plane and Gaussian one 
along the longitudinal axis through an axially symmetric uniform beamline. The 
motion equation 

gx
x
jx −=′′

2
 (3.19) 

derived from (2.1) is solved by Dormand-Prince 5(4) scheme [10] within 
0 < z < 100 for each slice independently. Initial data are ever x = 1, x' = 0, the peak 
current is ever 1, g is varied. Dense output of x and x' with the step 0.05 is 
performed. The emittance and the rms-size of the bunch are calculated using these 
data in the nodes of the mentioned grid. Necessary mean values are ever calculated 
as 

( )2

21

0 11
exp

1
2

ϑ−
ϑ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

ϑ−
ϑ

−⎟
⎠
⎞

⎜
⎝
⎛

ϑ−
ϑ

ξ
π

>=ξ< ∫
d  (3.20) 

to avoid the infinity limits in the integrals. Change of variable )1/( ϑ−ϑ=ς  is used 
for this purpose. The integrand is limited within the mentioned limits, so no 
problems with numerical integration occur. The integrals are calculated with code 
"DLobatto" described in [11] and [12].  

Problems occur when slices carrying small currents pass waists. For example, 
the minimal radius of a slice with the current 0.0183 (ς = 2) in g = 0.168 
(ς0 = 1.044, the optimum for the 2π-minimum) is 

410)/exp( −≈−= jgxc , (3.21) 
so the integration step must be too small ~ xc and the integration procedure is 
ineffective. As a bunch ever contains small-current slices, the problem ever occurs. 
To solve it, consider the canonical form of (3.19). Its Hamiltonian is 
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xpxgxjpH ′≡+−= ,
2

ln
22

2
2

. (3.22) 

Of course, it preserves. Then the order of the equation can be reduced 

0
2

2

2
ln

22
Hxgxjx

=+−
′

. 
 
(3.23) 

In a crossover 
( )jxxxc

2
00 exp ′−= . (3.24) 

The advance of z in passing it from (x0, x'0) to (x0, –x'0) is 

( )∫
′+χ

χ
=Δ

0

2
00ln

2
x

xc xxj

dz . 
 
(3.25) 

Unfortunately, the integrand has an integrable singularity at the lower limit. Let's 
substitute cx−χ=ξ2  to avoid it: 

( )∫
−

′++ξ

ξξ
=Δ

cxx

c xxxj

dz
0

0
2

00
2 )(ln

4 . 
 
(3.26) 

The integrand is limited within the integration limits and its value at the lower one 
is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
−

j
x

j
x 2

00 exp . 
 
(3.27) 

This value must be used if 

Tol
j

x
x

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′ξ 2
0

0

2

exp
4
1 , 

 
(3.28) 

where Tol is the claimed accuracy. The same "DLobatto" code is used here. 
Calculated Δz is added to z, x' is inverted, and the integration procedure goes on. If 
a node of the dense output grid occurs at the crossover, its value is calculated from 
the interpolation polynomial of the next integration step. 

The integrator can ignore a crossover as the right part is evaluated only in a 
few nodes within a step. In this case the transition doesn't affect the accuracy. The 
sign of x is ever checked and, if necessary, inverted together with the one of x'. 

Let's examine numerical results. Analytical estimation above yields the 
optimal 044.10 =ς  and the focusing 168.0)exp(5.0 2

0 ≅ς−=g  for 2π-minimum. 
The results for this case are placed in Fig. 3.2. First 2πn-minimum of the emittance 
occurs at z ≈ 10.6 ( π≈=ϕ 96.12 zg ), and its value is ε ≈ 0.036. The analytical 
result is ε ≈ 0.049 at z ≈ 10.84. It was found that the optimal g for 2π-minimum in 
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the numerical model is ≈ 0.09 ( 310.10 ≈ς ). The results for this case are placed in 
Fig. 3.3. First 2πn-minimum of the emittance occurs in this case at z ≈ 14.2 
( π≈=ϕ 92.12 zg ), its value is ε ≈ 0.023. An obvious difference between the two 
cases is that the values in 2πn-minima differ not so much in the former (it 
corresponds well to Fig. 3.1), while they increase almost linearly with n in the 
latter. In both cases values in (2n+1)π-minima are bigger than in 2πn ones. At 
lower g the beats of ε and the rms-size increase and ε in minima increases too. 
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Fig. 3.2. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.168. 
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Fig. 3.3. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.09. 
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Optimal parameters for maxima are 540.00 =ς  and 374.0)exp(5.0 2
0 ≅ς−=g . 

The results for this case are placed in Fig. 3.4. 
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Fig. 3.4. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.374. 

One can see the size beating is small enough, that is the focusing is near 
matched (g ≈ 0.40 gives a little lower beating). The emittance beating is also small. 
Its value in all the maxima except of first and third ones is ≈ 0.15. The analytical 
estimate (3.18) gives 0.144 that is in good agreement. 

It should be mentioned also that g = 0.2…0.3 are optimal for 2πn-minima with 
large n. The typical minimal value is ε ≈ 0.07. The analytical estimate Fig. 3.1, 
(3.14) gives ε ≈ 0.12 and g ≈ 0.3. 

Thus, the derived analytical estimate is verified in toto by numerical 
experiments. The optimal numerical emittance value in the 2π-minimum is 
significantly lower than the analytical one and the optimal focusing is weaker. The 
analytical result for 2πn-minima is valid while the focusing is overestimated a 
little. For maxima, the estimate is in good agreement with the numerical results. 

3.2. Uniform beamline: transverse inhomogeneity 
Let's estimate the effect of transverse inhomogeneity now. Consider Gaussian 

transverse distribution with the current j and the rms-size r. The beam moves 
through a uniform beamline with focusing g. The initial radius of a particle is y 
and y' = 0. Then 

( )( )22 2/exp1~ ryjj −−=  (3.29) 

and, if 1/2 <jgr , an immovable particle exists, which radius x0 satisfies the 
equation 
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( )( ) jgxrx 2/2/exp1 2
0

22
0 =−− . (3.30) 

The principal (equilibrium) radius of another particle is 

( )( )
g

ryj
xe

22 2/exp12 −−
= . (3.31) 

The relative charge vibration amplitude is 

( ) ( )
( ) .1

2/exp1
2/exp1

22

22
0

0

−
−−
−−

=
−

=
ry
rx

x
y

x
xy

a
e

e  (3.32) 

In 2πn-minima the transverse coordinate of a particle and its derivative are 
yx ≅ , (3.33) 

( )
( )

( )
( ) .1

2/exp1
2/exp1

2/exp1
2/exp1

2
12
1

2
3

22

22
0

0
22

0

22

0 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−−
−−

−−

−−
ϕ≅

≅ϕΔ−≅′

ry
rx

x
y

rx
ry

xg

gaxx e

 

 

(3.34) 

Dephasing here is because of the same nonlinearity as in the above case. Average 
values necessary for the emittance are 

22 rx >=< , (3.35) 

( )

( )( )

( )( ) ( )

( )
( )

( )( ) ,2/exp18137.252348

2/exp1385.4860663

2/exp1

125.87982177

2/exp1
1

2
1302/exp13144.246828

2/exp1557.6987313
288
1

2/exp
2
1

2/322
03

0

3

22
0

0

22
0

0

22
0

2

2
022

02
0

2

222
04

0

4
2

0

222
2

2

⎟⎟
⎠

⎞
−−−

−−−−

−
−−

−

−−
++−−+

⎜⎜
⎝

⎛
+−−ϕ≅

≅−′>=′< ∫
∞

rx
x
r

rx
x
r

rxr
x

rxr
x

rx
x
r

rx
x
rj

dyryyx
r
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(3.36) 
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( )

( )
( )

( )( ).2/exp169.61645522

2/exp1512.82290996

2/exp1

1530.97997029-

24
12/exp
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1

22
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∞

 

 

 

 

(3.37) 

The expression for the emittance is too bulk to place it here. The emittance gets the 
minimum at x0 ≈ 2.292r, that is the optimal focusing is 

2/353.0 rjg ≅ . (3.38) 
 Its value is then 

jnrjr 0177.000282.0 ≅ϕ≅ε . (3.39) 

Let's verify these estimations numerically. "Hook" code intended for this 
purpose is very similar to "Butterfly". It simulates the motion of a longitudinally 
uniform beam with Gaussian transverse distribution. The basic motion equation 
used is 

gx
x
jx −=′′
~2 , (3.40) 

where j~  is given by (3.29). Necessary mean values are always calculated as 

( )
( )3

21

00

22
2 1

2
1

exp
12

12/exp
2
1

ϑ−
ϑϑ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

ϑ−
ϑ

−⎟
⎠
⎞

⎜
⎝
⎛

ϑ−
ϑ

ξ=−ξ>=ξ< ∫∫
∞ drdyryy

r
, (3.41) 

where )1/( ϑ−ϑ= ry  is substituted to avoid infinite limits of integration. 
Consider simulation results now. It was found that the minimum emittance is 

reached at g = 0.38, that is quite near the analytical estimation. The reached value 
in the 2π-minimum is ε = 0.0079 (z = 7.15), that is twice smaller than the 
analytical result (j = 1 and r = 1 every time). The results for this case are depicted 
in Fig. 3.5. At lower focusing, the emittance grows in both maxima and minima. 
For instance, at g = 0.20 ε = 0.0168 in the 2π-minimum (z = 9.65). 
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Fig. 3.5. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.38. 

g = 0.55 is optimal for maxima Fig. 3.6. At stronger focusing, first maxima 
grow a little while far ones decrease.  
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Fig. 3.6. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.55. 

Analytical estimate of emittance maxima (black dash-dot). 

Thus the analytical estimate is improved numerically. Best emittance in 2πn-
minima achieved is 

3
0 )(

0079.00079.0
βγ

=≅ε
I

Inrjnr  (3.42) 



 21

in focusing field 
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)(
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(3.43) 

The optimal focusing for maxima is 

23
0

2

2max
1

)(
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2
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p
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r
jg

βγ
=⎟⎟
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⎝

⎛
⇔≈ , 

 
(3.44) 

and the emittance in maxima is 

r
I

Irj
3

0 )(
16.016.0

βγ
=≈ε . 

 
(3.45) 

The optimal focusing differs significantly for the cases of the longitudinal 
inhomogeneity and the transverse one, 0.09 and 0.38 respectively. Nevertheless, it 
should be mentioned that j means the peak current of a bunch in the first case, 
while the current of a stationary beam in the second one. One can estimate the 
"mean" current of bunch as 

∫
∫>=<

dzzI

dzzI
I

)(

)(2

. (3.46) 

This mean value is √2/2 of the peak one for a Gaussian bunch. In optimal focusing, 
the emittance dilution due to the longitudinal inhomogeneity is triple bigger than 
due to the transverse one, 0.023 vs. 0.0079. 

3.3. Uniform beamline: combined effect 
Consider the effect of the longitudinal inhomogeneity and the transverse one 

in combination. As above, assume the motion of particles independent in different 
slices and perfectly laminar within one slice. The beam is axially symmetric and 
moves in homogeneous axially symmetric linear focusing field. As the two above 
analytical estimates yielded not so exact results for the 2πn-minimum emittance, 
and the dependencies of the emittance and the optimal focusing are always 

,

,

2r
jconstg

jnrconst

opt ⋅≅

⋅≅ε
 (3.47) 

the goal is to find these constants numerically, but not focus on very complicated 
analytical calculations. From the two above estimates one should expect the 
optimal emittance value worse than in both considered cases, and the optimal 
focusing intermediate between above ones. 

"2D" simulation code has been developed for this purpose. It is analogous to 
"Butterfly" and  "Hook",  but uses other equations. The basic motion equation for a 



 22

particle at the distance x from the axis is 

( )
gx

x
jgx

xI
Ix −=−
βγ

=′′
~22~

3
0

, (3.48) 

and coincides with (3.40), but the expression for j~  differs 

( )( )222 2/exp1)exp(~ ryjj −−ς−= . (3.49) 
Mean values for emittance evaluation are calculated as 
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(3.50) 

)1ln(),1ln( ψ−−=ςϑ−−=y  are substituted to avoid infinite integration limits. 
The code uses the two-dimensional Gaussian distribution of particles in a bunch. 
As usually, j = 1 and r = 1 every time.  

It was found that the optimal focusing for 2π-emittance is g = 0.13. Then the 
emittance value is ε = 0.037 at z = 11.85 ( π≈=ϕ 92.12 zg ) Fig. 3.7. At lower 
focusing field both minima and maxima emittances increase. Focusing field 
g = 0.42 is matched to the bunch, that is oscillations of its size are minimal        
Fig. 3.8. Simultaneously it is optimal for maxima emittances. At stronger focusing 
both minima and maxima emittances increase. 
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Fig. 3.7. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.13. 
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Fig. 3.8. ε (red solid) and rms-size (blue dashed) of a bunch in g = 0.42. 

 
Thus, the optimal for minima emittances focusing in this case is 
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(3.51) 

Then the values of emittance in the first several 2πn-minima are 

.
)(
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I

Inrjnr  
 
(3.52) 

For emittances in maxima, the optimal focusing is 
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(3.53) 

Then the maxima values are 

.
)(

2.02.0 3
0 βγ

=≅ε
I

Irjr  (3.54) 

One can see the combined effect is stronger than both above ones separately and 
the optimal focusing for it is intermediate between them. 
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3.4. Nonuniform beamline: longitudinal inhomogeneity 
Uniform focusing considered in the three above sections occurs extremely 

rarely in real beamlines. Separate lenses are typically used to focus beams. Let's 
estimate the mentioned space charge effect in this case. Consider the simplest 
nonuniform beamline that consists of a thin solenoid and two equal empty spaces 
before and after it Fig. 3.9. 

 
Fig. 3.9. Motion of a charged bunch in the simplest nonuniform beamline. 

As in section 3.1, consider a slice with the coordinate ς in a bunch with 
longitudinal Gaussian distribution. The initial rms-size is 1, its derivative is 0, and 
the lengths and the lens strength are chosen so that the state at the exit is the same. 
As usually, j = 1. The motion equation without focusing is then 

.
2

)exp( 2

x
x ς−

=′′  
 
(3.55) 

It is useful to find its analytical solution. Its Hamiltonian 

xpxpH ′≡
ς−

−= ,ln
2

)exp(
2

22

 
 
(3.56) 

doesn't depend on z explicitly and, hence, is preserved. Initially H = 0, so one can 
reduce the order of the equation: 
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(3.57) 

The explicit analytical solution of this equation is not known, but the following 
implicit equation can be derived: 

.
ln)exp(1

2∫
ξς−

ξ
=

x dz  
 
(3.58) 

The slice is matched if x' = 0 at the end of the beamline for it and the neighbours. 
It is equivalent to the condition x'/x = const at the lens. Let's find a matched 
beamline for a slice with the current )exp( 2

00 ς−=j . Consider a neighbour slice 
with the current jjj δ+= 01  for this purpose. For the former slice, the half-length 
of the beamline z0 is bound to the size in the lens x0 as 
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For the latter one 
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(3.60) 

This expression is equivalent to the solution of the ODE: 

].,[,)(:ln 0100000 zjzjzxzjxx
dz
dx

∈==  (3.61) 

Assuming δj as small one can estimate x1 using one step by the simplest second 
order Runge-Kutta scheme known as leapfrog: 

,)2/1,),(2/1( 000001 zzzzzxfxfxx δδ+δ++=  (3.62) 

where f(x,z) is the right part. Substituting f(x,z) one obtains 

( ) ( ) .ln2/1ln 0010010001 zjjzjjxxxxx −−+≅−≡δ  (3.63) 

As the Hamiltonian is preserved, the derivative immediately before the lens is 

.ln 111 xjx =′  (3.64) 
Then the condition of concordance is 
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(3.65) 

Only main terms in series expansion by δj are kept here. The only appropriate 
solution of this equation is 69.54416230  0 ≅x . In this case the integral is 

3.8.16382100
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(3.66) 

The slope immediately after the lens is 
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The Hamiltonian is 

.ln
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The size at the waist after the lens is 
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The distance from the lens to the waist is 
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(3.70) 

It differs from z0, so we should evaluate x1 and x1' out of the waist. Use the 
following substitution of the second order of approximation to expand the 
expression above by δj: 
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(3.71) 

Thus, the derivative at the end of the beamline (at z0 from the lens) is 

( ).~~2
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1
1 zz

x
j

x −=′  
 
(3.72) 

Substituting (3.59)-(3.71) and keeping only square term in expansion by δj one 
obtains 

.870.16548520~~
2/3

0

2

1 j
jx δ⋅

−≅′  (3.73) 

The expressions for emittance evaluation are the same as, but one should substitute 

).exp()exp(),exp(,
~~ 2

0
22

001 ς−−ς−=δς−=′=′ jjxx  (3.74) 

The emittance reaches its minimum at 0.6730 ≅ς , and its value (dimensionless) is 
≈ 3.32. Taking into account the current and the size one can estimate the minimal 
emittance as 

.
)(

0245.00245.0 3
0 βγ

=≅ε
I

Irjr  
 
(3.75) 

The half-length of the beamline is then 

,24.100
j

rz ≅  (3.76) 

while the lens strength is 

.251.0
r
j

D ≅  
 
(3.77) 

Let's verify this analytical estimate numerically. Code "Butterfly" has been 
modified for this purpose. The difference of new code "ButterflyN" is that the 
beam moves without focusing and a thin lens is added to the centre of the 
beamline. Simulation was conducted in a wide range of z0. The results are shown 
in Fig. 3.10. 
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Fig. 3.10. Minimal ε (red solid) and optimal lens strength (blue dashed) 

vs. half-length of beamline. 
Obviously, the optimal beamline half-length is z0 ≈ 7.0. Then the emittance 

value is ε ≈ 0.030 and the lens strength is D ≈ 0.381. Note that the optimal length 
(2z0) and the emittance value are quite near to ones in the case of uniform 
focusing, 14.2 и 0.023 respectively. The optimal emittance varies insignificantly in 
the range of half-lengths 6…15. The optimal lens strength is evaluated exactly 
enough by the following expression (rhombs in Fig. 3.10): 

.
7153.0

3.184

0 +
=

z
D  (3.78) 

Motion through the optimal beamline is shown in Fig. 3.11. 
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Fig. 3.11. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 7.0 and lens strength D = 0.381. 
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Fig. 3.12. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 3.0 and lens strength D = 0.842. 

The π-minimum here appears weakly and the bunch is overfocused, that is the 
end of the beamline (and the emittance minimum) is placed after the waist. At 
smaller z0 the π-minimum disappears and the waist moves to the origin of the 
beamline Fig. 3.12. At significantly longer z0 the π-minimum appears abruptly and 
shifts to the beginning of the beamline. It can even occur before the lens that is 
can be obtained in empty space with no focusing Fig. 3.13. The 2π-minimum 
coincides with the waist very exactly. 
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Fig. 3.13. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 20.0 and lens strength D = 0.1236. 
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3.5. Nonuniform beamline: transverse inhomogeneity 
To obtain similar result for the case of transverse inhomogeneity code "Hook" 

has been modified. The only difference of new code "HookN" is that particles 
move without focusing and a thin lens of the strength D is added to the middle of 
the beamline, at the distance z0 from the beginning. As usually, j = 1 and r = 1 in 
all the cases. For each z0, D was optimized to obtain the minimum emittance at the 
exit of the beamline. The results for a wide range of z0 are depicted in Fig. 3.14. It 
is clear that the optimal half-length of the beamline is z0 ≈ 4.0. Then the emittance 
at the exit is ε ≈ 0.0144 and the lens strength is D ≈ 0.688. In contrast to the case of 
longitudinal inhomogeneity, the minimum of emittance is pronounced. If z0 lies in 
the range 3.5…10 and the lens strength is optimal, the emittance value exceeds the 
global optimum not so much. The optimal lens strength can be evaluated as 
(rhombs in Fig. 3.14) 
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Fig. 3.14. Minimal ε (red solid) and optimal lens strength (blue dashed) vs. half-

length of beamline. 

Motion of a beam through the optimal beamline is shown in Fig. 3.15. The π-
minimum appears abruptly, is placed not far from the 2π-one, and its value is only 
a little bigger. The beam is overfocused, so that the beamline exit (and the 
emittance minimum) is situated after the waist. 
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Fig. 3.15. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 4.0 and lens strength D = 0.688. 
 
At shorter z0 the π-minimum disappears Fig. 3.16. 
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Fig. 3.16. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 1.0 and lens strength D = 1.80. 

At significantly longer z0 the π-minimum appears clearly and is shifted to the 
beginning of the beamline Fig. 3.17. It can occur even before the lens that is can be 
obtained in empty space without focusing. The 2π-minimum coincides well with 
the waist. The value in the former can be smaller than in the latter. 
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Fig. 3.17. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 20.0 and lens strength D = 0.122. 

3.6. Nonuniform beamline: combined effect 
Consider the combined effect in the case of non-uniform focusing now. Code 

"2D" has been modified to evaluate the emittance and the parameters of the 
optimal beamline. The only distinction of new code "2DN" is that particles move 
without focusing and a thin lens of the strength D is added to the middle of the 
beamline, at the distance z0 from the beginning. As usually, j = 1 and r = 1. For 
each given z0, D was optimized to minimize the emittance. The results are placed 
in Fig. 3.18. The optimal z0 ≈ 6.0. It is located between the values obtained in the 
two sections above, and closer to the former one. Then the emittance at the exit is 
ε ≈ 0.0461, and the lens strength D ≈ 0.445. The obtained emittance value is worse 
than in both cases above. Note that the optimal beamline length (2z0) and the 
emittance here are close enough to ones obtained with code "2D" for uniform 
focusing, 11.85 and 0.0373 respectively. If z0 lies within 5 and 11, and the lens 
strength is optimal, the emittance value exceeds the optimal one not significantly. 
The optimal lens strength can be evaluated as follows (rhombs in Fig. 3.18) 
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Fig. 3.18. Minimal ε (red solid) and optimal lens strength (blue dashed)  

vs. half-length of beamline. 

 
Beam motion through the optimal beamline is depicted in Fig. 3.19. The π-

minimum appears weakly and the beam is overfocused that is the 2π-minimum is 
situated after the waist. 
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Fig. 3.19. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 6.0 and lens strength D = 0.445. 
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In shorter beamlines the π-minimum disappears and the waist moves to the 
entrance Fig. 3.20. 
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Fig. 3.20. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline with 

half-length z0 = 2.5 and lens strength D = 0.980. 

In significantly longer beamlines π-minimum appears well and shifts to the 
entrance Fig. 3.21. The 2π-one exactly coincides with the waist. The values in both 
are comparable. 

0 10 20 30 40
z

0

0.2

0.4

0.6

0.8

1

ε

0

5

10

15

20

25
r

 
Fig. 3.21. ε (red solid) and rms-size (blue dashed) of a bunch in a beamline  

with half-length z0 = 20.0 and lens strength D = 0.1227. 
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3.7. Matched focusing beamline with bunching 
Bunching is frequently used in injectors, so taking it into account is of great 

interest. During bunching, j in (2.11) and j~ in (2.15) are no longer constants. One 
still can consider a beamline where one slice (longitudinal inhomogeneity) or 
particle (transverse one) is always matched to the focusing. In this case the 
focusing in the beamline is proportional to the current. The obtained linearized 
equations are similar to ones used in sections 3.1 and 3.2, but their coefficients are 
variable. Analytical solutions of these equations in general case are not known, but 
one can use adiabatic approximation and so estimate the solution. The motion 
equation for the case of longitudinal inhomogeneity is then 

,2 δ−=δ ′′
x
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(3.81) 

and its Hamiltonian is 
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Use the property 

z
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to estimate a solution of in adiabatic approximation. If j varies slowly enough so 
that Δj/j << 1 over the period of oscillation, one can approximate 
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where a is the local relative amplitude of charge vibration. The derivative is 
averaged over the period. The full derivative is then 
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Substituting (3.84) and  
(3.85) in (3.83) one can estimate the amplitude 
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It is enough to estimate emittance dilution. One should substitute the integral 
nonlinear phase advance 

∫ ϕ=ϕΔ
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x
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(3.87) 
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in  instead of (3.6). The total phase advance should be 
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(3.88) 

The dependencies of j and g on z are necessary to calculate both advances. Let's 
choose the exponential dependency 

),ln/exp( υ⋅∝∝ Lzgj  (3.89) 

where υ = j1/j0 is the ratio of the currents at the exit and the entrance of the 
beamline. Then 

,
ln

12)ln/exp( 0

0

0

υ
−υ

=υ⋅=ϕ ∫ L
x
j

dzLz
x
j L

 
 
(3.90) 
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Hence 

.2/14/14/1 constjar =υυυ∝ϕΔ∝′∝ε −−  (3.92) 
Thus, in adiabatic approximation the compensated emittance doesn't depend on 
bunching. This estimation is valid only if 

,1/ 2/3 <<′ gg  (3.93) 

that is violated frequently. 
To verify this estimation, code "Butterfly" has been modified. New code 
"ButterflyJ" varies the current and the focusing exponentially along the beamline. 
Nonlinear equation (2.10) is solved, but not  

(3.81). As usually, j = 1, x = 1, x' = 0 at the entrance. j and g increase by υ 
times at the exit regardless of the beamline length L. The emittance minima 
structure turned out to be complicated enough, so a search engine for the global 
minimum had to be included. The search was carried out by descent from the 
nodes of a logarithmically equal grid in the given area of g and L. The step of the 
grid was 1.1/1 =ηη + ii . The descent was performed by dual directions scheme [13] 
II.3. The initial focusing was limited g < 0.5, and the phase advance 4.5 < φ < 7.9  
(limits were not stiff, so the values can exceed them). The results are placed in Fig. 
3.22. 

The optimal beamline length decreases as 3/7.15 υ , while the optimal initial 

focusing fluctuates within 0.08…0.11. The emittance grows as 30215.0 υ⋅ . If the 
range of search is significantly widened, g < 5 и 1.5 < φ < 12, the result is 
preserved. Evidently, it means that the 2π-minimum is global. 
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Fig. 3.22. 2π-minimal emittance (triangles; red solid is 0.0215·υ1/3), and optimal 
focusing (blue dashed) and beamline length (green dash-dot) vs. current ratio. 

A homogeneous in the longitudinal direction beam can't be bunched, so the 
effect of transverse inhomogeneity hardly can occur separately. Thus the only 
combined effect should be also considered. For numerical evaluation of the 
emittance, code "2D" has been modified in the same way as described for 
"ButterflyJ". The results obtained with new code "2DJ" are placed in Fig. 3.23. 
The initial focusing was limited g < 0.5, and the phase advance 4.5 < φ < 7.9  
(limits were not stiff). 
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Fig. 3.23. 2π-minimal emittance (triangles; red solid is 0.0349·υ0.28), and optimal 

focusing (blue dashed) and beamline length (green dash-dot) vs. current ratio. 
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The optimal beamline length decreases as 28.07.12 −υ⋅ , while the optimal 
initial focusing fluctuates within 0.10…0.14. The emittance increases as 

28.00349.0 υ⋅ . If the range of search is significantly widened, g < 5 и 1.5 < φ < 12, 
the result is preserved. Seemingly, it means that the 2π-minimum is global. 

3.8. Matched focusing beamline with accelerating 
An accelerating section after the buncher and/or a gun can also affect the 

emittance until the energy where the conditions (1.3) and (1.9) are met. To 
estimate the effect let's consider a beamline with matched focusing, as in 3.7. In 
the case of accelerating, focusing is to be proportional to (βγ)-3. Then the equation 
of small vibration looks as follows 
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where all the coefficients are variable. In the canonical variables it is 
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where δ′βγ=p . Its Hamiltonian is 
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Use (3.83) to estimate a solution of (3.95) in adiabatic approximation. If βγ varies 
slowly enough that is Δ(βγ) / (βγ) << 1 during a period of vibration, one can 
approximate 
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The full derivative is then 
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Substituting (3.97) and (3.98) in (3.83) one can estimate the relative amplitude: 
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To estimate the emittance one should substitute the integral nonlinear phase 
advance (3.87) in (3.10) instead of (3.6). The total phase advance should be (3.88). 
The dependencies of βγ and g on z are necessary to calculate both advances. Let's 
choose the exponential dependency 

),ln/3exp(),ln/exp( α⋅−∝α⋅∝βγ LzgLz  (3.100) 

where ( ) ( )01 βγβγ=α  is the momenta ratio at the end and the beginning of the 
beamline. Then the total phase advance is 
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and the nonlinear part is 
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(3.102) 

Δφ weakly depends on α (as α≈ ln ), so it can be neglected. Then the 
normalized emittance is 

.4/12/34/1 −− α=ααα∝βγϕΔ∝βγ′∝ε jarn  (3.103) 

The formulae above are valid only if 
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that is violated frequently. 
To verify this estimation, code "Butterfly" has been modified. New code 

"ButterflyA" varies the momentum linearly along the beamline. As usually, j = 1, 
βγ = 1, x = 1, x' = 0 at the entrance. βγ, j and g were chosen as follows: 
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For each slice, the following linear ODE system with variable coefficients was 
solved: 
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Normalized slope xx ′βγ≡1  was used to calculate the normalized emittance. Other 
details are similar to code "ButterflyJ". The results for 2π-minima are shown in 
Fig. 3.24. The initial focusing was limited g < 0.5 and the phase advance 
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Fig. 3.24. 2π-minimal emittance (triangles; red solid is 0.0220·α-0.136), and optimal 
focusing (blue dashed) and beamline length (green dash-dot) vs. momenta ratio. 

 
The optimal beamline length grows with α as α+≅ 05.696.11L , while the 

optimal initial focusing fluctuates within 0.1…0.16. The normalized emittance 
diminishes as 136.00220.0 −α⋅ . As in the two cases above, extension of the search 
area doesn't affect the results. 

Consider now the combined effect in an accelerating structure. Code "2D" has 
been modified for this purpose the same way as described for "ButterflyA". The 
results of new code "2DA" at the same conditions as for "ButterflyA" are depicted 
in Fig. 3.25. The optimal beamline length grows with α as α+≅ 5.0310.89L , 
while the optimal initial focusing as 0.2270.115 α⋅≅g . The normalized emittance 
is varies weakly around ≈ 0.035. As in the three cases above, extension of the 
search area doesn't change the results. 



 40

0 4 8 12 16 20
α

0

0.01

0.02

0.03

0.04

ε n

0

0.05

0.1

0.15

0.2

0.25

g

0

40

80

120

L

 
Fig. 3.25. 2π-minimal emittance (red solid), and optimal focusing (blue dashed) 

and beamline length (green dash-dot) vs. momenta ratio. 

 
3.9. Summary 

For the convenience, the formulae for beamlines obtained in Sections 3.1 - 3.8 
are collected here. The appropriate coefficients are accumulated in Table 3.1. The 
2π-minimal normalized emittance at the end of an optimal beamline can be 
estimated as 
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βγ
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The length of the optimal beamline is 
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The distributed focusing gradient in a matched beamline is 
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The lens strength in a simplest non-uniform beamline is 
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If the energy or the peak current is variable, all the parameters belong to the 
beginning of a beamline. The listed formulae and coefficients can be also used to 
estimate the initial approximation for precise simulation and optimization of a 
beamline. 

Table 3.1. Parameters of optimal beamlines. 

Uniform beamline Parameter 
Longitudinal Transverse Combined 

εc 0.023 0.0079 0.037 
gc 0.09 0.38 0.13 
Lc 14.2 7.15 11.85 
 Nonuniform beamline 
εc 0.030 0.0144 0.0461 
Dc 0.381 0.688 0.445 
Lc 14.0 8.0 12.0 
 Distributed focusing : bunching 
εc 30215.0 υ⋅   28.00349.0 υ⋅  
gc 0.08…0.11  0.10…0.14 
Lc 3/7.15 υ   28.07.12 −υ⋅  
 Distributed focusing : accelerating 
εc 136.00220.0 −α⋅   0.035 
gc 0.1…0.16  0.2270.115 α⋅  
Lc α+ 05.696.11   α+ 5.0310.89  
 

4. Electron guns 
4.1. Effect of longitudinal inhomogeneity in guns 

A source of electrons (also protons or ions) always emits particles with quite 
low energy. Thus j and hence the space charge effect are strongest in this area. 
Unfortunately, the model described above doesn't work in this area due to the 
following reasons: 

1. Conducting electrodes ever occur nearby an emitter. Their charge 
distributions depend on the one in the beam and produces fields 
comparable to the ones of the beam charge. Thus the effect of electrodes 
is defining near an emitter. 

2. If a beam is transient (consists of bunches), then an area always exists 
where its energy is low enough and the bunch length in the moving frame 
is comparable or smaller than its transverse sizes. In this case coupling 
between different slices is significant. 
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3. The head and the tail of a bunch move in different conditions: when the 
head is being born, the bunch is absent, while when the tail is being born, 
the bunch has been already emitted. Moreover, during acceleration, a 
lower energy bunch is situated behind the head, while a higher energy one 
passes ahead of the tail. The transverse forces are different in this case due 
to non-locality of interaction. Hence the gained transverse momentum 
depends not only on the local current, but also on the longitudinal 
coordinate in a bunch. 

If the emitter is circular and the beam is stationary, the gun geometry can be 
optimized so that space charge effect doesn't cause emittance dilution. Well-known 
Pierce gun [14] is an example. At the same time longitudinal inhomogeneity ever 
corrupts the emittance as a gun can be optimal for a given current only, and the 
phase portraits of slices with different currents are distorted and rotated with 
respect to the optimal one. 

The trajectories of particles in a gun preserve if its voltage and current meet 
Child-Langmuir law 2/3UI ∝  (only if nonrelativistic). In this case the emittance 
(not normalized!) doesn't depend on the current. The quality factor of a gun is 

( )jrε . Let's determine its dependency on the voltage and the current in the 
nonrelativistic case. 

( )
,2 2/3

2/3
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=⇒∝≅βγ  (4.1) 

that is it depends only on the geometry (ε and r = const). At the same time, the 
brightness is UI n ∝ε2 . If all the sizes are varied proportionally and the current 

density from the emitter is preserved, 3/42 ,, rUrIr ∝∝∝ε , so the quality factor 
is 
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(4.2) 

The brightness in this case is proportional to 2rU , but the increase of the 
voltage and the current density is restricted by the electric strength and the 
emissive ability. 

As the basic scaling is derived, one should only determine the coefficient 
at jr  in the expression for the emittance and the optimal ratio of the gun length 
to the emitter radius. Another important parameter is the charge phase at the gun 
exit as the further beamline should add a 2πn's complement to minimize the final 
emittance. 

SAM [15], a 2D steady-state code, was used to simulate guns. The phase 
portraits of the beam at the exit were calculated for a set of homogeneously 
emitted currents. Each result was considered as the state of the slice with the given 
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current. A diode gun similar to used in [16] has been simulated first Fig. 4.1. The 
emitter radius was 5 mm, the distance between the electrodes was 123 mm, while 
the beam was observed at 200 mm from the cathode. The optimal current was 2 A 
at 300 kV that corresponds well to the "natural" perveance. 

 
Fig. 4.1. The geometry of the basic gun, red solid lines are electrodes. 

The calculated beam parameters depending on the beam current are depicted 
in Fig. 4.2. They were calculated by the following formulae: 
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 (4.3) 

 
Fig. 4.2. Beam parameters vs. beam current: rms-size, 

its derivative and emittance. 
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Let's calculate the charge phase and the relative charge amplitude from these 
data now. The beam size at the cathode preserves, but its homothetic size Ix ∝  
(section 2.1), so that 
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Than the initial charge vibration amplitude is 
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The dimensionless deviation from the homothetic trajectory at the gun exit is 
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and its derivative by the longitudinal coordinate is 
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As I∂δ∂ 0  is negative at the emitter, the significant matrix elements are 
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and the charge phase at the gun exit is 
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The quadrant should be selected so as the signs of sinφ and cosφ coincide to the 
ones of the numerator and the denominator respectively. 

To calculate the relative charge amplitude one should compare I∂δ∂  with 
the same derivative for a beam starting at the same point with fixed initial 
conditions, that is II 21−=∂δ∂ , and I∂δ′∂  with the latter multiplied by the 

local wavenumber, that is xjII ⋅−=∂δ′∂ 21 . The root of the sum of the 
squares of these ratios gives the relative amplitude: 
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(4.10) 

The dependencies of the phase and the amplitude on the current for the mentioned 
gun are shown in Fig. 4.3. 
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Fig. 4.3. Charge phase and relative amplitude vs. beam current. 

It is seen that the phase is almost constant within current limits from 1 to 3 A 
and its value is ≈ 2.5 ≈ 0.8π. Thus, if an ideal uniform beamline (where the phase 
advance doesn't depend on the amplitude) with the phase advance ≈ 1.2π is placed 
after the gun, one should expect the minimal emittance. The following questions 
are still left: (i) what peak current of a bunch gives the minimum emittance in this 
system, (ii) which slice should be matched to the compensation beamline, and (iii) 
what is the optimal phase advance of the latter. The dependency of the 
compensated emittance of a 2.2 A (peak current) Gaussian bunch on the matched 
slice current  and  the charge phase  is  placed in  Fig. 4.4.  An ideal compensation  

 
Fig. 4.4. Compensated emittance of Gaussian bunch of 2.2 A peak current vs. 

charge phase and matched current. 
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beamline (equation (2.11)) with the phase advance 2π – φ and matched with the 
given current was added after the gun. The global minimum 1.52 mm·mrad is 
reached at the matched current 1.144 A and the phase advance π≅−π 207.149.22  
in the compensation beamline. Without the beamline, the emittance due to phase 
portraits fanning (pure longitudinal inhomogeneity effect) is 6.14 and the full one 
(combined effect) 6.89 mm·mrad at the same peak current. The dependencies of 
the emittance and the quality factor jε  (all the sizes are preserved) on the peak 
current without compensation are shown in Fig. 4.5. Upper curves include slice 
emittances. The non-compensated emittance is proportional to the peak current in 
both cases if Ip > 0.7 A. Hence Ij ∝ε . 
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Fig. 4.5. Non-compensated emittance of Gaussian bunch (solid) and jε  
(dashed) vs. peak current. Upper (red) curves include slice emittance. 

Similar compensated values one can find in Fig. 4.6. The phase advance and 
the matched current of an ideal compensation beamline were optimized for each 
given peak current. The addition due to the slice emittances was calculated as 

,2
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2
2

2
34 ε−ε+ε=ε  (4.11) 

where ε1 and ε2 are the lower curve and the upper one in Fig. 4.5 while ε3 and ε4 
are the same in Fig. 4.6. In other words, the differences of squares of the curves in 
Fig. 4.5 and Fig. 4.6 are equal. The matter is that some slices have a crossover at 
the end of the beamline, so the calculated rms derivative 
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 is unrestrictedly large. Thus, a more proper method is hardly possible in this 
model. 
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Fig. 4.6. Compensated emittance of Gaussian bunch (solid) and jε  (dashed) 

vs. peak current. Upper (red) curves include slice emittance. 

jε  in this case almost doesn't depend on the peak current in the range 
1…3 A and amounts to ≈ 2·10-4 m without slice emittances and ≈ 4·10-4 m with 
them. As the rms size at the emitter is x = r/2 = 2.5 mm, the quality factor is ≈ 0.08 
and ≈ 0.16 respectively. The effect of the imperfection of the compensation 
beamline can be estimated as ((3.6), (3.13), (3.108), Fig. 3.3 and Table 3.1) 

,27.0
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023.0 31 ≈
π

ϕa
x
x

 (4.13) 

where x1 is the size of the matched slice at the gun exit, a is the relative amplitude 
of charge vibration Fig. 4.3, and φ is the phase advance in the beamline. In this 
case the beamline contains a thin lens (as typically x' > 0 for the matched slice at 
the gun exit) and uniform focusing further. So the effect of longitudinal 
inhomogeneity in the gun is about the same in a uniform beamline with the same 
amplitude and phase advance. The combined effect is approximately twice 
stronger that also corresponds to a uniform beamline. 

Four other guns have been simulated in the same way to investigate the 
influence of the gun geometry. The emitter radius was equal while the length was 
varied. The electrodes were shaped to make perfect electric field. Additional 
electrodes were added to the guns "Short 2" and "Long 2" to equalize their 
perveance to the primary one. The optimal current in all the cases was ≈ 2 A. The 
plots for these guns are similar to Fig. 4.2 - Fig. 4.6 and were omitted here. The 
results for all the simulated guns are placed in Table 4.1. The observation point 
position is measured from the cathode. The last column considers the slice 
emittances. All the calculated values are valid for the range of peak current 
1…3 A. 



 48

Table 4.1. Simulated gun parameters. 

Gun Length, 
mm 

Observation 
point, mm 

U, 
kV 

φ jε , 
m 

jε  
(slices), m 

Basic 123 200 300 2.5 2·10-4 4·10-4 
Short 61.5 100 150 2.2 7.5·10-5 4.8·10-4 
Short 2 61.5 100 300 2 2.5·10-4 5·10-4 
Long 246 400 850 2.5 4·10-4 5.4·10-4 
Long 2 246 400 300 3.1 1.2·10-4 4.6·10-4 

 
It should be mentioned that the charge phase at the gun exit varies from 2 to 

3.1 only while the gun length is quadrupled. Note that the observation point is ever 
placed beyond the electric field area and a beam moves through some empty space 
proportional to the gun length. jε  ratios with slice emittances of all the 

considered guns are almost equal, ( ) m107.07.4 4−⋅±=ε j . 
Thus, emittance compensation applied to an electron gun always improves 

emittance several times. The expected compensated normalized emittance of a 
well-designed gun with an ideal compensation beamline is 
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Ir
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where re is the emitter radius and xe is the rms beam size at the emitter. A non-
ideal optimal compensation beamline worsens this value to 
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The charge phase advance of the compensation beamline should be 1.05…1.35π. 
The compensation beamline should be matched to the 0.5…0.75 of the peak 
current. 

4.2. Grid effects 
At least three grid effects should be taken into account: 

1. Scattering on the cells (not connected to space charge directly). 
2. Focusing in cells at non-optimal current. 
3. Space charge inhomogeneity owing to thinning out. 

Let's estimate scattering first Fig. 4.7. 
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Fig. 4.7. Scattering on grid. 

 
If U is the cathode-to-grid voltage, then the normalized transverse momentum of 
scattered electrons is 

,2 2mc
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and the portion of the scattered electrons is 
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where eUmcWWW 22
0

2
0 ⋅≈β≈  is the ionization loss (see [17], Bethe formula 

(1.16) and Table 1.6), W0 ≈ 2 MeV/g·cm2 = 2·105 eV/kg·m2; and l is the ratio of the 
area of a cell to its perimeter. Flammersfield formula [18], (25b) yields a little 
smaller penetration depth. It is taken into account that (i) not more than a half of 
electrons fly out the left edge (Fig. 4.7) and (ii) not more of the latter have the 
momentum directed upwards, all the others can't move beyond the grid. Then the 
added normalized emittance can be calculated as 
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For example, for cathode-grid unit Y-824 made by CPI/Eimac (the cathode 
diameter 16 mm, the cathode-to-grid distance 0.2 mm, the size of a square cell 
0.55 mm) this value is ≈ 2.9·10-8 m at the cathode-to-grid voltage 100 V. 
Apparently, this effect doesn't contribute to the total emittance, but generate a very 
small amount of electrons with large transverse momentum. 

Let's estimate the emittance on account of focusing in cells of a grid. In a 
round cell (also not a bad approximation for a square one), the flux incoming to 
the grid is 

,
2

22 ERdzEdzERER RR
Δ

=⇒π=Δπ=ΔΦ ∫∫  (4.19) 

where R is the cell radius, ΔE is the field difference on the grid surfaces, and ER is 
the radial field. The gained transverse momentum of a particle is 
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and the normalized tilt at the cell edge is 
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Thus the gained emittance is 
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where r is the emitter radius. Properties 4/22 rx >=<  and 4/22
nn Xx ′>=′<  were 

used. 
For slit-like cells Fig. 4.8 that often occur in grids the appropriate formulae 

are: 
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2/22
nn Xx ′>=′<  for a slit, but only a half of cells focus in the selected direction. 

 
Fig. 4.8. Slit-like cells grid. 

The field between the grid and the cathode is 
.3/22/3 IEUI ∝⇒∝  (4.26) 

The field outside the grid depends also on the gun geometry. Consider the basic 
gun from Section 4.1 and assume that the matched current (ΔE = 0) coincides with 
the optimal one. Then one can calculate the field at the grid and plot the 
dependency of ΔE on I Fig. 4.9: MV/(m·A) -0.467/ ≈Δ dIEd  with good accuracy.  
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Then the normalized emittance depending on the peak current of a Gaussian bunch 
can be calculated (a grid of mentioned Y-824 was taken) Fig. 4.10. 
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Fig. 4.9. Field step across grid vs. current. 
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Fig. 4.10. Normalized emittance vs. peak current. 

The compensated emittance of the same gun grows as square root of the peak 
current in the range 1…3 A (Fig. 4.6) and is ε ≈ 3.3 → εn ≈ 4.1 mm·mrad at 2 A. 
Thus, at peak current exceeding 2 A the grid emittance is smaller than the space 
charge one. The results for other considered guns are very close to this. 

Now it would be very useful to find a scaling formula for grid emittance. 
Independent variables are: the emitter radius r, the peak current I, the cell size d, 
and the cathode-to-grid distance D. U depends on these parameters as 
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The field on the grid on the cathode side is 
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while on the other side 
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On the assumption that the effect of E1 is dominant, the emittance is 
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If, on the contrary, the outside field E2 determines ΔE, then 
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As the effects of both fields are comparable, the truth lies in the middle: 
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Coefficient 0.01 is dimensional, so one should take the values in meters and 
Amperes. 

Owing to thinning out a beam by the grid, the current density becomes 
inhomogeneous Fig. 4.11. The effect can be considered as in Sections 2.2 and 3.2. 
Assuming the motion of a slice as the principal trajectory, one can treat the motion 
of an area with current as its disturbance. 

 
Fig. 4.11. Thinning out beam by grid. 

In contrast to Fig. 4.11, the real phenomenon is 2D and the current areas are 
not concentric circles. After a slit-like grid, the motion approximates to 1D. The 
areas move independently until their edges do not cross. After that, the disturbing 
transverse force oscillates around zero for a given particle and the mean disturbed 
momentum of the latter preserves. It is owing to crossing of more and more edges 
of primary current areas. If the cells are square, crossing of the edges occur not 
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simultaneously over the perimeter, but the basic phenomenon remains. Thus, the 
emittance is effected by: 

1. The beam size x. 
2. The local wavenumber of charge vibration xj . 
3. The relative amplitude of charge vibration A. 
4. The cell size χ. 
5. The transparency of the grid ν. 
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As usually, rms values are presumed: one should take 4/d=χ  for square cells 

and 22/d=χ  for slit0like ones, where d is the period of a square cells grid and 
the slit width for a slit-like one. In the latter case, only a half of cells contribute to 
x', so the result should be divided by 2 . So the result is 
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For the guns considered in Section 4.1 and a square-cell grid of period 0.55 mm 
and the transparency 0.8, the considered effect gives the additional normalized 
emittances are 0.35, 0.44, 0.64, 0.40 and 0.24 π mm·mrad respectively. In all the 
cases the effect of thinning out is much smaller than the ones of transverse 
inhomogeneity and of focusing in grid cells. 
 
5. Conclusions 

1. The emittance at the end of a space charge dominated circular-symmetric 
beamline can be reduced greatly if the parameters of the latter are 
optimized. Emittance compensation takes place for various current 
distributions of bunches and types of beam optics. 

2. The compensation is strongest if the charge vibration phase advance 
through a beamline is ≈ 2π. The value of emittance increases as n in 2nπ-
minima. The values of emittance in (2n+1)π-minima are ever worse than 
in 2nπ ones. 

3. Longitudinal inhomogeneity typically stronger affects the emittance than 
transverse one. The combined effect is the strongest. 

4. Lumped and distributed focusing produce almost equal effects. 

5. The effect weakly depends on bunching and accelerating: as υ0.28…0.33 and 
α-0.136…0, where υ and α are the bunching and accelerating coefficients. 
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6. The effect of longitudinal inhomogeneity is typically strongest in electron 
guns. The emittance from a gun can be improved significantly by adding 
an optimal compensation beamline. 

7. Focusing in the grid cells usually weakly affects the emittance. This 
effect can be significant at peak currents lower than optimal one. 

8. The two other effects in guns, scattering on a grid and thinning out, are 
apparently negligible. 
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