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.

1 Introduction
Talking about the BFKL kernel one usually has in mind the kernel of the
BFKL equation [1] for the case of forward scattering, i.e. for the momentum
transfer t = 0 and vacuum quantum numbers in the t-channel. However, the
BFKL approach is not limited to this particular case and, what is more, from
the beginning it was developed for arbitrary t and for all possible t-channel
colour states. Initially it was done in the leading logarithmic approximation
(LLA), which means summation of terms of the type [αs ln s]n (αs is the QCD
coupling constant and s is the squared c.m.s. energy). This approximation
can provide only qualitative results, since it does not fix scales, neither for
energy nor for transverse momenta determining the running coupling con-
stant αs. Therefore calculation of radiative corrections to LLA seems to be a
daily need. Unfortunately, till now it is not completed, although the forward
BFKL kernel in the NLO was found already five years ago [2].

The problem of the development of the BFKL approach in the next-to
leading approximation (NLA) is naturally divided into two parts, in compli-
ance with the representation of scattering amplitudes in this approach by the
convolution of the impact factors of interacting particles with the Green’s
function of two Reggeized gluons in the t-channel. The impact factors de-
scribing the scattering of particles by the Reggeized gluons contain all the
dependence on the nature of the particles and are energy independent. All
the dependence on energy is defined by the universal (i.e. process indepen-
dent) Green’s function, which is determined by the BFKL kernel. For a
consistent description of scattering amplitudes one needs to know the impact
factors with the same accuracy as the kernel. Especially interesting is the
highly virtual photon impact factor, because it can be calculated from the
“first principles" in perturbative QCD. Unfortunately, this calculation turned
out to be a very complicated problem, which is not yet solved, although a
noticeable progress has been reached here [3]. Recently an important step
was done finding the solution of a related problem: the NLO impact factor
for the transition of a virtual photon in a light vector meson was calculated in
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the case of t = 0 and longitudinal polarizations [4]. The NLO impact factors
are known also at parton level (i.e. for quarks and gluons) [5].

The calculation of the NLO BFKL kernel for the non-forward scattering
was not completed until recently. We remind that for any colour group rep-
resentation R in the t-channel the kernel is given by the the sum of “virtual"
and “real" parts [6]. The “virtual" part is universal (i.e. it does not depend on
R) and is expressed through the NLO gluon Regge trajectory [7]. The “real"
part is related to the particle production in Reggeon-Reggeon collisions and
consists of one-gluon, two-gluon and quark-antiquark contributions. The first
contribution is expressed through the effective Reggeon-Reggeon-gluon NLO
vertex [8]. Apart from a colour coefficient, it also is universal and known
[10]. Each of last two contributions is written as a sum of two terms with de-
pending on R coefficients, at that only one of these terms enters in the kernel
for the antisymmetric colour octet representation R = 8a (gluon channel),
whereas the kernel for the colour singlet representation R = 1 (Pomeron
channel) contains both terms. For the case of quark-antiquark production
both these terms are known [9]. Instead, only the piece related to the gluon
channel was known for the case of two-gluon production [10]. Note that for
scattering of physical (colourless) particles only the Pomeron channel exists.
Nevertheless the gluon channel plays an important role. It is caused by the
possibility to use this channel for a check of self-consistency, and, finally, for
a proof of the gluon Reggeization (see Ref. [11] and references therein).

Thus, the two-gluon production contribution was the only missing piece
in the the non-forward BFKL kernel. Now it is calculated and the Pomeron
kernel is known [12]. Here we present the details of the calculation of the
two-gluon contributions and the non-forward BFKL kernel at NLO for all
possible colour states in the t-channel. Since the quark contribution to the
non-forward kernel is known [9] for any R, we shall consider in the following
only the gluon contribution, i.e. we shall work in pure gluodynamics.

In the next Section we present the gluon piece of the gluon trajectory,
the general form of the “real" contribution to the kernel and its part related
to one-gluon production. In Section 3 we derive the contribution to the ker-
nel from the two-gluon production and define the “symmetric” part of this
contribution. The colour group relations used in this Section are given in
Appendix A. The “symmetric” part of the two-gluon contribution is consid-
ered in Section 4. The three pieces contributing to this part are calculated in
Appendices B, C and D, respectively. Finally, in Section 5 the non-forward
kernel is discussed.
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2 The “virtual” and “one-gluon” parts of the
kernel

As usual, we utilize the Sudakov decomposition of momenta, denoting p1

and p2 the light-cone vectors close to the initial particle momenta pA and
pB respectively, so that 2p1p2 = (pA + pB)2 = s. We use the conventional
dimensional regularization with the space-time dimension D = 4 + 2ε and
the normalization adopted in Ref. [6]. The BFKL equation for the Mellin
transform Gω of the Green’s function G is written as

ωG(R)
ω (�q1, �q2; �q ) = �q 2

1 �q
′ 2
1 δ(D−2) (�q1 − �q2)

+
∫

dD−2r

�r 2(�r − �q)2K
(R) (�q1, �r; �q)G(R)

ω (�r, �q2; �q ) . (2.1)

Here qi and q′i ≡ qi − q , (i = 1 ÷ 2) are the Reggeon (Reggeized gluon)
momenta, q � q⊥ is the momentum transfer; q2 � q2⊥ = −�q 2 = t; the
vector sign is used for denoting components of momenta transverse to the
p1p2 plane. The BFKL kernel K(R) has the form

K(R) (�q1, �q2; �q ) =
[
ω
(−�q 2

1

)
+ ω

(−�q ′ 21

)]
�q 2
1 �q
′ 2
1 δ(D−2) (�q1 − �q2)

+K(R)
r (�q1, �q2; �q) , (2.2)

i.e. it is given by the sum of the “virtual" part, determined by the gluon
Regge trajectory ω(t) (actually the trajectory is j(t) = 1 + ω(t)), and the
“real" part, related to particle production in Reggeon-Reggeon collisions. In
the limit ε→ 0 [7] the trajectory is given by

ω(t) = ω(1)(t)
{

1 +
ω(1)(t)

4

[
11
3

+
(

2ζ(2)− 67
9

)
ε+

(
404
27
− 2ζ(3)

)
ε2
]}

,

(2.3)
where ω(1)(t) is the one-loop contribution, whose expression is

ω(1)(t) =
g2Nct

2(2π)D−1

∫
dD−2r

�r 2�r ′ 2
= −g2NcΓ(1− ε)

(4π)D/2

Γ2(ε)
Γ(2ε)

(�q 2)ε . (2.4)

Here and in the following �r ′ = �r− �q , Nc is the number of colors, Γ(x) is the
Euler function, ζ(n) is the Riemann zeta function, (ζ(2) = π2/6) and g is the
bare coupling constant, concerned with the renormalized coupling gµ in the
MS scheme through the relation

g = gµµ
−ε
[
1 +

11
3
ḡ2

µ

2ε

]
; ḡ2

µ =
g2

µNΓ(1− ε)
(4π)2+ε

. (2.5)
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The “real" part K(R)
r of the kernel is related to real particle production in

Reggeon-Reggeon collisions. It can be presented in the form [6]

K(R)
r (�q1, �q2; �q) = K(R)Λ

r (�q1, �q2; �q)− 1
2

∫
dD−2r

�r 2�r ′ 2
K(R)B

r (�q1, �r; �q)

×K(R)B
r (�r, �q2; �q) ln

(
s2Λ

(�q1 − �r)2(�q2 − �r)2
)
, (2.6)

where the “non-subtracted" kernel K(R)Λ
r is

K(R)Λ
r (�q1, �q2; �q) =

〈bb′|P̂R|aa′〉
nR

∑
J

∫
γJ

ab (q1, q2)
(
γJ

a′b′ (q′1, q
′
2)
)∗ dφJ

2(2π)D−1
.

(2.7)
Here P̂R is the operator for projection of two-gluon colour states on the
representationR; a, a′ and b, b′ are Reggeon colour indices; nR is the number
of independent states in R; γJ

ab (q1, q2) is the effective vertex for production of
the state J in the collision of Reggeons with momenta q1 = βp1 + q1⊥, q2 =
−αp2 + q2⊥; dφJ is the corresponding phase space element; the sum is over
all possible states J . For a state J consisting of particles with momenta ki,
with the total momentum k = q1 − q2, we have

dφJ =
dk2

2π
θ(sΛ − k2)(2π)DδD(k −

∑
i

ki)
∏

i

dD−1ki

(2π)D−1 2εi
. (2.8)

The intermediate parameter sΛ in Eq. (2.6) must be taken tending to infinity.
The second term in the R.H.S. of Eq. (2.6) appears only at the NLO and
serves for subtraction of the large k2 contribution, in order to avoid a double
counting of this region. At the leading order (LO) only one-gluon production
does contribute, so that k2 = 0, Eq. (2.7) does not depended on sΛ and gives
the kernel in the leading (Born) order:

K(R)B
r (�q1, �q2; �q ) =

〈bb′|P̂R|aa′〉
2nR(2π)D−1

∑
G

γG
ab (q1, q2)

(
γG

a′b′ (q′1, q
′
2)
)∗

=
g2NccR
(2π)D−1

(
�q 2
1 �q
′ 2
2 + �q 2

2 �q
′ 2
1

(�q1 − �q2)2 − �q 2

)
. (2.9)

Here

cR =
Tr
(
P̂RT d

⊗
T d∗

)
NcnR

=
〈bb′|P̂R|aa′〉

NcnR
T d

abT
d
b′a′ (2.10)
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are the group coefficients, T d are the colour group generators in the adjoint
representation, T d

ab = −ifdab, fdab are the group structure constants. The
projection operators and the coefficients cR for all possible representations
R are given, for completeness, in the Appendix A. As it was already noted,
the most interesting representations are the colour singlet (Pomeron chan-
nel, R = 1 ) and the antisymmetric colour octet (gluon channel R = 8a).
Respectively, we have for them

c1 = 1 , c8a =
1
2
. (2.11)

Note that for the symmetric colour octet R = 8s we have c8s = c8a , so
that at LO the BFKL kernels for the symmetric and anti-symmetric octet
representations coincide. Since the trajectory ω(t) is the eigenvalue of K(8a)

(“bootstrap" of the gluon Reggeization), the same is true for K(8s) (trajectory
degeneration). However, generally speaking, it does not mean that ampli-
tudes with R = 8s in the t-channel have the Reggeized form (with the same
trajectory but positive signature), because such a form requires impact fac-
tors proportional to the eigenfunction corresponding to the eigenvalue ω(t).
It turns out that for parton scattering amplitudes in LLA it is just the case.

Having the one-gluon production vertices at NLO [8], one can easily cal-
culate the one-gluon contribution to the kernel with the NLO accuracy. Re-
taining only terms giving non-vanishing contributions in the ε→ 0 limit after
integration of the kernel over dD−2k in a neighbourhood of the singular point
�k = �q1 − �q2 = 0, we have [10]

K(R)
G (�q1, �q2; �q) =

g2NccR
(2π)D−1

{(
�q 2
1 �q
′ 2
2 + �q ′ 21 �q 2

2

�k 2
− �q 2

)

×
(

1
2

+
g2NcΓ(1− ε)

2(4π)2+ε

[
−(�k 2)ε

(
2
ε2
− π2 + 4 ε ζ(3)

)
− ln2

(
�q 2
1

�q 2
2

)])

+
g2NcΓ(1− ε)

6(4π)2+ε

([
�q ′ 21 − �q ′ 22

�q 2
1 − �q 2

2

−
�k 2

(�q 2
1 − �q 2

2 )2
(
�q 2
1 + �q 2

2 + 4�q ′1�q
′
2 − 2�q 2

)]

×
[

2�q 2
1 �q

2
2

�q 2
1 − �q 2

2

ln
(
�q 2
1

�q 2
2

)
− �q 2

1 − �q 2
2

]
+ 11

[
2�q 2

1 �q
2
2

�q 2
1 − �q 2

2

+
�q 2
1 �q
′ 2
2 − �q ′ 21 �q 2

2

�k 2

−�q
2
1 + �q 2

2

�q 2
1 − �q 2

2

�q 2

]
ln
(
�q 2
1

�q 2
2

)
− 2�q ′1�q

′
2

)}
+

(
�qi ↔ �q ′i

)
. (2.12)

For arbitrary D this part of the kernel can be found in the last of Refs. [8]
(see there Eq. (4.10)). Note that the exchange �qi ↔ �q ′i implies also �q ↔ −�q.
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Since the colour structure of the one-gluon production vertex is not changed
at NLO, the coefficients cR here are the same as in Eq. (2.9).

The remarkable properties of the kernel, subsequent from general argu-
ments, are

K(R)
r (0, �q2; �q ) = K(R)

r (�q1, 0; �q ) = K(R)
r (�q, �q2; �q ) = K(R)

r (�q1, �q; �q ) = 0 (2.13)

and

K(R)
r (�q1, �q2; �q ) = K(R)

r (−�q ′1,−�q ′2; �q ) = K(R)
r (−�q2,−�q1;−�q ) . (2.14)

Properties (2.13) mean that the kernel turns into zero at zero transverse mo-
menta of the Reggeons and appear as a consequence of the gauge invariance.
Properties (2.14) are a consequence of the crossing invariance and the gluon
identity.

The symmetry properties (2.14) of K(R)
G (�q1, �q2; �q) are evident from

Eq. (2.12). Instead properties (2.13) are not so evident, but can be easily
checked.

3 The two-gluon production contribution
The new states which appear in the sum over J in Eq. (2.7) at NLO are
the two-gluon ones. For these (and only for these) states the integral in
Eq. (2.7) is logarithmically divergent at large k2. In this region the two-
gluon production vertex factorizes into the product of the one-gluon vertices
(see below), so that the dependence on sΛ in Eq. (2.6) is cancelled [6].

Lorentz- and gauge- invariant representation of the two-gluon production
vertex has been obtained in Ref. [13]. It has the form

γG1G2
ij (q1, q2) = g2 e

∗ µ

1 e
∗ ν

2

[(
T d1T d2

)
ij
Aµν(k1, k2) +

(
T d2T d1

)
ij
Aνµ(k2, k1)

]
,

(3.1)
where ei and di are gluon polarization vectors and colour indices, respectively.
Note that the tensor Aµν(k1, k2) depends not only on k1, k2, as it is explicitly
indicated, but on p1, q1 and p2, q2 as well. The explicit expression of the
tensor is given in Ref. [13]. Its important property is the Abelian-type gauge
invariance

kµ
1Aµν(k1, k2) = kν

2Aµν(k1, k2) = 0 . (3.2)

Another important property of the tensor Aµν(k1, k2) is its transformation
law under simultaneous exchange (p1, q1, q, i)←→ (p2,−q2,−q, j) , which we
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will call L←→ R exchange:

Aµν(k1, k2)|L←→R = Aνµ(k2, k1) . (3.3)

This property and the representation (3.1) guarantee that the vertex
γG1G2

ij (q1, q2) is invariant with respect to the L ←→ R exchange, as it must
be. Taking into account the representation (2.7), this invariance provides
the symmetry of the non-subtracted kernel with respect to the exchange
�q1 ↔ −�q2 , �q ↔ −�q .

We use the Sudakov decomposition for the produced gluon momenta k1

and k2 (k = k1 + k2 = q1 − q2) in the form (i = 1, 2)

ki = βip1+αip2+ki⊥ , sαiβi = −k2
i⊥ = �k 2

i , βi = xiβ , x1+x2 = 1 . (3.4)

We find that it is convenient to use the same light-cone gauge eip2 = eiki = 0
for both gluons, so that we put

e=ei⊥ − (ei⊥ki⊥)
(kip2)

p2 . (3.5)

In this gauge the vertex takes the form

γG1G2
ij (q1, q2) = 4g2 e

∗α
1⊥e
∗β
2⊥

×
[(
T d1T d2

)
ij
bαβ(q1; k1, k2) +

(
T d2T d1

)
ij
bβα(q1; k2, k1)

]
, (3.6)

with the tensor

4bαβ(q1; k1, k2) = (gαµ
⊥ −

kα
1⊥p

µ
2

(p2k1)
)(gβν
⊥ −

kβ
2⊥p

ν
2

(p2k2)
)Aµν(k1, k2) , (3.7)

The explicit form of this tensor in terms of the Sudakov variables has been
found in Ref. [14]:

bαβ(q1; k1, k2) =
1
2
gαβ
⊥

[
1
k2

(
2q1⊥Λ⊥ + q21⊥

Λ⊥(2x1x2k⊥ − Λ⊥(x1 − x2))
Σ

)

−x2
q21⊥ − 2q1⊥k1⊥

t̃1

]
− x2k

α
1⊥q

β
1⊥ − x1q

α
1⊥(q1 − k1)

β
⊥

x1t̃1
− q21⊥k

α
1⊥(q1 − k1)β

k2
1⊥t̃1

−x1q
α
1⊥Λβ

⊥ + x2Λα
⊥q

β
1⊥

x1x2k2
− x1q

2
1⊥k

α
1⊥k

β
2⊥

k2
1⊥Σ

− q21⊥
k2Σ

(Λα
⊥k

β
2⊥ + kα

1⊥Λβ
⊥) , (3.8)
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where gµν
⊥ is the metric tensor in the transverse plane:

gµν
⊥ = gµν − pµ

1p
ν
2 + pµ

2p
ν
1

(p1p2)
. (3.9)

Moreover, the following positions hold:

Λ⊥ = (x2k1 − x1k2)⊥ , Σ = −(x1k
2
2⊥ + x2k

2
1⊥) = −Λ2

⊥ − x1x2k
2
⊥ ,

k2 = − Λ2
⊥

x1x2
, t̃1 = (q1 − k1)2 =

1
x1

(x1(q1 − k1)2⊥ + x2k
2
1⊥) ,

t̃2 = (q1 − k2)2 =
1
x2

(x2(q1 − k2)2⊥ + x1k
2
2⊥) . (3.10)

Note that on account of Eq. (3.7) the tensors bαβ(q1; k1, k2) and bβα(q′1; k2, k1)
contain in the denominators “extra" powers of x1 and x2, in comparison with
“naive" expectations based on the consideration of Feynman diagrams.

We use the notations which coincide with those adopted in Ref. [10]. Note,
however, that in Ref. [10] two different gauges were used for the two gluons:
the gauge (3.5) for the second gluon (that with momentum k2), and the gauge
similar to the gauge (3.5) with p2 replaced by p1 for the first one (that with
momentum k1). Therefore our tensors are related to those used in Ref. [10]
by the equalities

bαβ(q1; k1, k2) = Ωαγ(k1)c β
γ (k1, k2) , bβα(q1; k2, k1) = Ωβγ(k2)c′ α

γ (k2, k1) ,
(3.11)

where the tensors

Ωαβ(k) = gαβ
⊥ − 2

kα
⊥k

β
⊥

k2
⊥

, (3.12)

with the property
Ωαγ(k)Ω β

γ (k) = gαβ
⊥ , (3.13)

realize the transformations between the gauges with the gauge fixing vectors
p1 and p2.

Let us consider the behaviour of the vertex (3.6) in the multi-Regge kine-
matics, i.e. in the limits x1 → 1 , x2 → 0 and x1 → 0 , x2 → 1. The first
of them corresponds to the case when the first gluon is much closer to the
particle A in rapidity space than the second gluon. Therefore in this limit
the two-gluon production vertex must be factorized as

γG1G2
ij (q1, q2) = γG1

il (q1, q1 − k1)
1

(q1 − k1)2⊥
γG2

lj (q1 − k1, q2) , (3.14)
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where γG
ij(q1, q2) is the one-gluon production vertex. Indeed, at x1 = 1 , x2 =

0 we have

Σ = −k2
2⊥ , x2k

2 = −k2
2⊥ , t̃1 = (q1 − k1)2⊥ , x2 t̃2 = k2

2⊥ , (3.15)

that gives
bβα(q1; k2, k1)|x1=1 = 0 , (3.16)

so that

γG1G2
ij (q1, q2) = 4g2 e

∗ α

1⊥e
∗ β

2⊥
(
T d1T d2

)
ij
bαβ(q1; k1, k2)|x1=1 , (3.17)

where
bαβ(q1; k1, k2)|x1=1

=
1

(q1 − k1)2⊥

[
q1⊥ − q21⊥

k2
1⊥
k1⊥

]α [
q1⊥ − k1⊥ − (q1⊥ − k1⊥)2

k2
2⊥

k2⊥

]β

. (3.18)

Since in the gauge (3.5) we have

γG1
ij (q1, q1 − k1) = −2g e

∗ α

1⊥ T
d1
ij

[
q1⊥ − q21⊥

k2
1⊥
k1⊥

]
α

, (3.19)

we see that the factorization property (3.14) is fulfilled. Moreover, with
account of the result (3.18), from this property it follows that

(
2g2NccR
(2π)D−1

)2 (
bαβ(q1; k1, k2)bαβ(q′1; k1, k2)

) |x1=1 =

K(R)B
r

(
�q1, �q1 − �k1; �q

)
K(R)B

r

(
�q1 − �k1, �q2; �q

)
(�q1 − �k1)2(�q ′1 − �k1)2

. (3.20)

This equality can be obtained also directly from Eq. (3.18) using the expres-
sion (2.9) for the LO kernel.

In the second limit, i.e. x1 = 0 , x2 = 1 we get

Σ = −k2
1⊥ , x1k

2 = −k2
1⊥ , x1 t̃1 = k2

1⊥ , t̃2 = (q1−k2)2⊥ , bαβ(q1; k1, k2) = 0 ,

bβα(q1; k2, k1)|x2=1

=
1

(q1 − k2)2⊥

[
q1⊥ − q21⊥

k2
2⊥
k2⊥

]β [
q1⊥ − k2⊥ − (q1⊥ − k2⊥)2

k2
1⊥

k1⊥

]α

(3.21)
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and

γG1G2
ij (q1, q2) = γG2

il (q1, q1 − k2)
1

(q1 − k2)2⊥
γG1

lj (q1 − k2, q2) . (3.22)

We have also(
g2NccR

2(2π)D−1

)2 (
bαβ(q1; k2, k1)bαβ(q′1; k2, k1)

) |x2=1

=
K(R)B

r

(
�q1, �q1 − �k2; �q

)
K(R)B

r

(
�q ′1 − �k2, �q2; �q

)
(�q1 − �k2)2(�q ′1 − �k2)2

. (3.23)

With the help of Eqs. (2.7) and (3.6) the two-gluon contribution to the
“non-subtracted" kernel is presented in the form

K(R)Λ
GG (�q1, �q2; �q ) = 8g4N2

c

∫
(aRFa(k1, k2) + bRFb(k1, k2))

dφGG

(2π)D−1
,

(3.24)
where the group coefficients aR and bR are defined as

aR =
Tr
(
P̂R(T d1T d2)

⊗
(T d1T d2)∗

)
N2

c nR
, bR =

Tr
(
P̂R(T d1T d2)

⊗
(T d2T d1)∗

)
N2

c nR
,

(3.25)
and the functions Fa and Fb as

Fa(k1, k2) = bαβ(q1; k1, k2)bαβ(q′1; k1, k2) + bβα(q1; k2, k1)bβα(q′1; k2, k1) ,
(3.26)

Fb(k1, k2) = bαβ(q1; k1, k2)bβα(q′1; k2, k1) + bβα(q1; k2, k1)bαβ(q′1; k1, k2) .
(3.27)

It is easy to see that aR = c2R, since

Tr
(
P̂R(T d1T d2)

⊗
(T d1T d2)∗

)
= Tr

(
P̂R(T d1

⊗
T d1∗)(T d2

⊗
T d2∗)

)
=

= Tr
(
P̂RT d1

⊗
T d1∗P̂RT d2

⊗
T d2∗

)
=

1
nR

Tr
(
P̂RT d1

⊗
T d1∗

)(
P̂RT d2

⊗
T d2∗

)
. (3.28)

This relation is important for the cancellation of the sΛ–dependence in the
kernel (2.6). Due to the result (2.11) it gives, in particular,

a0 = 1 , a8a = a8s =
1
4
. (3.29)
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For the coefficients bR, using the relation

(T d1T d2)
⊗

(T d1T d2)∗ − (T d1T d2)
⊗

(T d2T d1)∗

= ifdd2d1(T d1T d2)
⊗

T d∗ =
Nc

2
T d
⊗

T d∗ , (3.30)

with account of Eq. (2.10) we obtain

bR = aR − 1
2
cR = cR

(
cR − 1

2

)
, (3.31)

i.e. b1 = 1/2, whereas for both symmetric and antisymmetric colour octet
representations the coefficients bR are zero. This is especially important
for the antisymmetric case, since the vanishing of b8a is crucial for the gluon
Reggeization. Note that the vanishing of b8s means that in pure gluodynamics
the kernels for both octet representations coincide at the NLO as well as at
the LO.

In terms of the variables ki⊥ and xi the phase space element dφGG can
be written as

dφGG =
dx1dx2

4x1x2
δ(1−x1−x2)

dD−2k1d
D−2k2

(2π)(D−1)
δD−2(k⊥−k1⊥−k2⊥)θ(sΛ−k2) .

(3.32)
Here the identity of the final gluons is taken into account by the factor 1/2!, so
that integration must be performed over all the phase space; k⊥ = q1⊥−q2⊥ =
q ′1⊥ − q ′2⊥ and k2 must be expressed in terms of xi and ki⊥ (see Eq. (3.10)).
We recall that the parameter sΛ must be taken tending to infinity before the
limit ε → 0. From the expression (3.8) one can see that the tensors bαβ fall
down as 1/�k 2

i at �k 2
i → ∞ at fixed xi. Therefore the integral over �ki in

Eq. (3.24) is well convergent in the ultraviolet region, so that the restrictions
imposed by the theta-function can be written as

xi ≥
�k 2

i

sΛ

. (3.33)

Let us discuss the properties (2.13) and (2.14) of the two-gluon contribu-
tion to the kernel (2.2). As for the subtraction term, its properties (2.13),
related to gauge invariance, follow directly from the corresponding properties
of the “Born" kernel (2.9). Properties (2.14) are provided by the appropri-
ate symmetries expressed by Eq. (2.9) and the invariance of the logarithm
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and the integration measure dD−2r/(�r 2�r ′ 2) in Eq. (2.6) under the exchanges
�qi ↔ −�q ′i , �r ↔ −�r ′, as well as �q1 ↔ −�q2 , �q ↔ −�q , �r↔ −�r .

Turn now to the non-subtracted contribution (3.24). Since its “gauge-
invariance" properties (2.13) are provided (see Eqs. (3.26) and (3.27)) by the
conversion into zero of the tensor bα1α2(q1; k1, k2) at q1⊥ = 0 and at q2⊥ =
(q1 − k1 − k2)⊥ = 0, they can be easily seen from the representation (3.8).
The symmetry with respect to the exchanges �qi ↔ −�q ′i can be also easily
seen from the representation (3.24), taking into account Eqs. (3.26) and
(3.27). As it was already discussed, the symmetry relative to the exchanges
�q1 ↔ −�q2 , �q ↔ −�q follows from the general representation (2.7) and the
invariance of the vertex γG1G2

ij (q1, q2) with regard to the L←→ R exchange.
However, it is not easy to derive this symmetry from the representation (3.24)
using Eqs. (3.26), (3.27) and the tensor bαβ(q1; k1, k2) presented in Eq. (3.8).
The matter is that the gauge (3.5) breaks the symmetry between p2 and p1,
so that a transformation law of this tensor under the L←→ R exchange has
not a simple form like that of Eq. (3.3). Moreover, the choice of the variables
xi also destroys the symmetry between p1 and p2. To restore the symmetry
one has to introduce the variables yi, defined as

yi =
αi

α
, y1 + y2 = 1 , (3.34)

concerned with xi by the relation

y1
y2

=
x2

x1

k2
1⊥
k2
2⊥

. (3.35)

Using this relation and taking into account that

k2 =
(x2

�k1 − x1
�k2)2

x1x2
=

(y2�k1 − y1�k2)2

y1y2
, (3.36)

it is easy to see that the phase space element dφGG (3.32) is invariant under
the exchange xi ↔ yi. Note that in terms of the Sudakov variables the
L←→ R exchange means

βi ↔ αi , q1⊥ ↔ −q2⊥ , q⊥ ↔ −q⊥ (3.37)

or, in terms of xi and yi,

xi ↔ yi , q1⊥ ↔ −q2⊥ , q⊥ ↔ −q⊥ . (3.38)

As it was already mentioned, under this exchange the transformation law for
the tensor bαβ is not the same as for Aµν of Eq. (3.3), because of the choice
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of the gauge (3.5). It is not difficult to understand that the transformation
low must be

bαβ(q1; k1, k2)|L←→R = Ωα
γ(k1)Ω

β
δ(k2)bδγ(q1; k2, k1) , (3.39)

where the tensors Ωαβ (see the definition (3.12)) take into account the gauge
change under the L ↔ R exchange. One can check directly using Eq. (3.8)
that the property (3.39) is indeed fulfilled. Together with that of Eq. (3.13),
this property demonstrates once more that the functions Fa and Fb, defined
by Eqs. (3.26) and (3.27) respectively, are invariant with respect to the L↔ R
exchange. This means that, due to the invariance of the phase space element
discussed above, the contribution (3.24) is symmetric under the replacement
�q1 ↔ −�q2, �q ↔ −�q.

From Eqs. (2.6), (3.20), (3.23) and (3.26) it follows that the subtraction
term can be written as

g4N2
c c

2
R

(2π)D−1

∫
d2+2εk1

(2π)D−1
(Fa(k1, k2)|x1=1 + Fa(k1, k2)|x2=1) ln

(
s2Λ
k2
1k

2
2

)

= 8g4N2
c aR

∫
dφGG

(2π)D−1
(x1Fa(k1, k2)|x1=1 + x2Fa(k1, k2)|x2=1)

+
g4N2

c aR

(2π)D−1

∫
d2+2εk1

(2π)D−1
(Fa(k1, k2)|x1=1 − Fa(k1, k2)|x2=1) ln

(
k2
2

k2
1

)
. (3.40)

Here the equality aR = c2R, the expression (3.32) for the phase space ele-
ment and the restrictions given by the inequality (3.33) on xi were taken into
account. Note that the second integral in the R.H.S of Eq. (3.40) is com-
pletely antisymmetric with respect to the substitution �q1 ↔ −�q2, �q ↔ −�q.
Therefore the subtraction term can be obtained by symmetrization of the
first integral. Consequently, using the definition(

f(x)
x(1 − x)

)
+

≡ 1
x

[f(x)− f(0)] +
1

(1− x) [f(x)− f(1)] , (3.41)

we can write the two-gluon contribution to the kernel (2.6) in the limit sΛ →
∞ in the form

K(R)
GG(�q1, �q2; �q) =

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0

dx

∫
d2+2εk1

(2π)D−1

(
aRFa(k1, k2) + bRFb(k1, k2)

x(1 − x)
)

+

,

(3.42)
where x ≡ x1 and the operator Ŝ symmetrizes with respect to the sub-
stitution �q1 ↔ −�q2, �q ↔ −�q. It was used here that Fb(k1, k2)|x1=0 =
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Fb(k1, k2)|x1=1 = 0, according to the definition (3.27) and the properties
bαβ(q1; k1, k2)|x1=0 = bβα(q1; k2, k1)|x1=1 = 0 .

Since the coefficient bR is equal to zero for an octet representation, the first
term in Eq. (3.42) is determined by the two-gluon contribution to the octet
kernel, which is already calculated [10]. Therefore, our task is to calculate
the second term. However, we have found that to calculate just this term
is not the most convenient way because of the rather complicated form of
the convolution Fb. Instead of this we find more convenient to calculate the
“symmetric" contribution

K(s)
GG(�q1, �q2; �q) =

2g4N2
c

(2π)D−1
Ŝ
∫ 1

0

dx

∫
d2+2εk1

(2π)D−1

(
Fs(k1, k2)
x(1 − x)

)
+

, (3.43)

where the function

Fs(k1, k2) = Fa(k1, k2) + Fb(k1, k2) (3.44)

is given by the convolution

(bαβ(q1; k1, k2) + bβα(q1; k2, k1))(bαβ(q′1; k1, k2) + bβα(q′1; k2, k1)) . (3.45)

Taking into account that a8 = 1/4, we can present the two-gluon contribution
to the kernel for any representation R as

K(R)
GG(�q1, �q2; �q) = 4(aR − bR)K(8)

GG(�q1, �q2; �q) + bRK(s)
GG(�q1, �q2; �q). (3.46)

4 The “symmetric" contribution to the kernel

Calculation of K(s)
GG(�q1, �q2; �q) seems to be more convenient since the sum

bαβ(q1; k1, k2) + bβα(q1; k2, k1) =
q21⊥k

α
1⊥k

β
2⊥

k2
1⊥k

2
2⊥

−1
2
gαβ
⊥ x2

q21⊥ − 2q1⊥k1⊥
t̃1

− x2k
α
1⊥q

β
1⊥ − x1q

α
1⊥(q1 − k1)

β
⊥

x1 t̃1
− q

2
1⊥k

α
1⊥(q1 − k1)

β
⊥

k2
1⊥t̃1

−1
2
gαβ
⊥ x1

q21⊥ − 2q1⊥k2⊥
t̃2

−x1q
α
1⊥k

β
2⊥ − x2(q1 − k2)α

⊥q
β
1⊥

x2 t̃2
−q

2
1⊥(q1 − k2)α

⊥k
β
2⊥

k2
2⊥t̃2

,

(4.1)
looks simpler than bαβ(q1; k1, k2) and bβα(q1; k2, k1) taken separately. Note,
however, that Fs(k1, k2) does not turn into zero at the points x1 = 0 and
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x2 = 0, in contrast to Fb(k1, k2), so that the prescription (3.41) is necessary
in Eq. (3.43) to remove the “Regge divergencies", i.e. the divergencies at
x ≡ x1 = 0 and x = 1. We shall use the decompositions

bαβ(q1; k1, k2) + bβα(q1; k2, k1) = bαβ
0 + bαβ

1 + bαβ
2 ,

bαβ(q′1; k1, k2) + bβα(q′1; k2, k1) = b′ αβ
0 + b′ αβ

1 + b′ αβ
2 , (4.2)

with

bαβ
0 =

q21⊥k
α
1⊥k

β
2⊥

k2
1⊥k

2
2⊥

, (4.3)

bαβ
1 = −1

2
gαβ
⊥ x2

q21⊥ − 2q1⊥k1⊥
t̃1

− x2k
α
1⊥q

β
1⊥ − x1q

α
1⊥(q1 − k1)

β
⊥

x1t̃1

−q
2
1⊥k

α
1⊥(q1 − k1)

β
⊥

k2
1⊥t̃1

(4.4)

and

bαβ
2 = −1

2
gαβ
⊥ x1

q21⊥ − 2q1⊥k2⊥
t̃2

− x1q
α
1⊥k

β
2⊥ − x2(q1 − k2)α

⊥q
β
1⊥

x2t̃2

−q
2
1⊥(q1 − k2)α

⊥k
β
2⊥

k2
2⊥t̃2

. (4.5)

The tensor bαβ
0 does not depend on x at all; as far as bαβ

1,2 is concerned, it is
easy to obtain

bαβ
1 |x=0 = −k

α
1⊥q

β
1⊥

k2
1⊥

, bαβ
2 |x=0 =

(q1 − k2)α
⊥q

β
1⊥

(q1 − k2)2⊥
− q

2
1⊥(q1 − k2)α

⊥k
β
2⊥

k2
2⊥(q1 − k2)2⊥

, (4.6)

bαβ
1 |x=1 =

qα
1⊥(q1 − k1)

β
⊥

(q1 − k1)2⊥
− q

2
1⊥k

α
1⊥(q1 − k1)

β
⊥

k2
1⊥(q1 − k1)2⊥

, bαβ
2 |x=1 = −q

α
1⊥k

β
2⊥

k2
2⊥

. (4.7)

Note also that at fixed x the tensors bαβ
i have infrared singularities. The

singularities of bαβ
0 are evident from Eq. (4.3). As for bαβ

i with i = 1, 2, they
are singular at ki⊥, where

bαβ
1 |k1⊥→0 = −k

α
1⊥q

β
1⊥

k2
1⊥

, bαβ
2 |k2⊥→0 = −q

α
1⊥k

β
2⊥

k2
2⊥

. (4.8)
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Accordingly to the composition (4.2), we present Fs(k1, k2) in the form

Fs(k1, k2) = (A0 +A1 +A2 +A3) + (k1 ↔ k2) . (4.9)

Note that, since the total convolution (4.9) includes the terms obtained by
the substitution (k1 ↔ k2) from Ai, the choice of Ai is not unique. We get
(in the following in this Section only transverse momenta are used and we
omit the ⊥ sign; pay attention, however, that the Minkowski metric is used)

A0 =
1
2
bαβ
0 b′0 αβ =

q21q
′2
1

2k2
1k

2
2

, (4.10)

A1 = bαβ
1 b′0 αβ + bαβ

0 b′1 αβ = − q′21
k2
1k

2
2 t̃1

[
x2

2
(k1k2)(q21 − 2q1k1)

+
x2

x1
k2
1(q1k2) + (q21 − (q1k1))(k2(q1 − k1))

]
+ (q1 ↔ q′1) , (4.11)

A2 = bαβ
1 b′1 αβ =

1
2t̃1t̃′1

[
(D − 2)

4
x2

2(q
2
1−2q1k1)(q′21 −2q′1 k1)+x2(q′21 −2q′1k1)

×
(

(q1k1)(
1
x1

+
q21
k2
1

)− 2q21

)
+
x2

2

x2
1

k2
1(q1q

′
1 ) + (q1q′1 )((q1 − k1)(q′1 − k1))

−2
x2

x1
(k1q1)(q′1(q1 − k1)) +

q′21
k2
1

(
2
x2

x1
k2
1(q1(q

′
1 − k1))

+(q21 − 2(q1k1))((q1 − k1)(q′1 − k1))
)]

+ (qi ↔ q′i) , (4.12)

As for A3, its definition is not so simple. Actually A3 is constructed from
bαβ
1 b′2 αβ . Note that this convolution is invariant with respect to the simulta-

neous substitution k1 ↔ k2 and q1 ↔ q′1. As for the two terms in bαβ
1 b′2 αβ ,

which are obtained from each other by this substitution, we have taken one
of them in an unchanged form, whereas in the other we have performed the
substitution k1 ↔ k2, so that it can be obtained from the first term by the
substitution q1 ↔ q′1. Of course, this procedure is not unique. We define A3

as

A3 =
1

2t̃1t̃′2

[
(D − 2)

4
x1x2(q21 − 2q1k1)(q′21 − 2q′1 k2) + (q′21 − 2q′1k2)
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×
(

(q1k1)(1 +
x1q

2
1

k2
1

)− 2x1q
2
1

)
+ (q1k2)(q′1k1) + (q1(q′1 − k2))(q′1(q1 − k1))

+2q′21
x2(q1k2)(q′1 k1 − k2k1)− x1(q1k2 − k1k2)(q1q′1 − q1k2)

x1k2
2

−2x2

x1
(q1q′1)(k1(q′1 − k2)) +

q21q
′2
1

k2
1k

2
2

(q1k2 − k1k2)(q′1 k1 − k2k1)

]
+ (qi ↔ q′i) .

(4.13)
From Eqs. (3.43) and (4.9) it follows that we can present K(s)

GG(�q1, �q2; �q) as

K(s)
GG(�q1, �q2; �q) =

4g4N2
c

(2π)D−1

Γ(1− ε)
(4π)2+ε

Ŝ(J0 + J1 + J2 + J3) , (4.14)

where

Ji =
∫ 1

0

dx

∫
d2+2εk1

π1+εΓ(1− ε)
(
Ai + (k1 ↔ k2)

x(1 − x)
)

+

. (4.15)

Since A0 does not depend on x, the integral J0 evidently is equal to zero ac-
cording to the definition (3.41). The integrals Ji with i �= 0 will be discussed
below. Here we note that K(s)

GG(�q1, �q2; �q) is finite in the limit ε → 0. Indeed,
let us consider the terms in Ai having non-integrable infrared singularities in
the limit ε → 0 . These terms can be easily obtained using Eqs. (4.3) and
(4.8), as well as the explicit expressions (4.11)-(4.13):

A1|sing = −q
′2
1 (q1k2)
k2
1k

2
2

+(q1 ↔ q′1), A2|sing =
(q1q′1)
2k2

1

+(q1 ↔ q′1), A3|sing = 0.

(4.16)
We see that the infrared singular parts of Ai do not depend on x. On the
other hand for Ai|x=0 and Ai|x=1 we find (it can be done using Eqs. (4.3),
(4.6) and (4.7) as well as Eqs. (4.11)-(4.13) )

A1|x=0 = −q
′2
1 (q1k2)
k2
1k

2
2

+ (qi ↔ q′i) ,

A1|x=1 = − q′21
k2
1k

2
2(q1 − k1)2

(q21 − (q1k1))(k2(q1 − k1)) + (qi ↔ q′i) , (4.17)

A2|x=0 =
(q1q′1)
2k2

1

+ (qi ↔ q′i) ,

A2|x=1 =
(q1 − k1)(q′1 − k1)

2(q1 − k1)2(q′1 − k1)2

[
(q1q′1 ) +

q′21
k2
1

(
q21 − 2(k1q1)

)]
+ (qi ↔ q′i) ,

(4.18)
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A3|x=0 = − (k1(q′1 − k2))
k2
1(q′1 − k2)2

[
(q1q′1)− q′21

(q1k2)
k2
2

]
+ (qi ↔ q′i), A3|x=1 = 0 .

(4.19)
Comparing these expressions with the results (4.16), we see that they do not
contain new (i.e. different from Ai|sing) non-integrable infrared singularities
in the limit ε→ 0. Therefore such singularities are absent in (Ai/[x(1− x)])+.

4.1 Calculation of J1

In order to calculate the integral J1 it is suitable to first integrate over x and
then over k1. Using the invariance of the integration measure with respect
to the exchange k1 ↔ k2, after the first integration (here and below we omit
in integrands terms giving zero after the subsequent integration) we obtain

J1 =
q′ 2
1

2

∫
d2+2εk1

π1+εΓ(1− ε)
1
k2
2

ln
(

( q1 − k1)2

k2
1

)

×
(

q21 q
2
2

k2
1( q1 − k1)2

− q22
( q1 − k1)2

− q22 + 2q2k1

k2
1

)
+ (qi ↔ q′i) . (4.20)

Note that the singularities of separate terms in the integrand at k1 = 0,
k2 = 0 and q1 − k1 = 0 cancel each other.

Details of the calculation of this integral are given in Appendix B. At
arbitrary ε we find

J1 =
q′ 2
1

2

∫ 1

0

dx

∫ 1

0

dyyε−1

×
[(

(q21 − k2)(1 − x)(1 − y(1− x))− q22(x − y(1− x2))

(−(k2(1 − x) + q22x)(1 − y)− q21x(1 − x)y)1−ε
x(1 − x)

)
+

+ln
(

x

1− x
)

× (1− ε)q21q22
(−(k2(1 − x) + q22x)(1 − y)− q21x(1 − x)y)2−ε

]
+ (qi ↔ q′i) . (4.21)

The integral cannot be expressed in terms of elementary functions not only
at arbitrary D, but even in the limit ε→ 0. In this limit we have

J1 =
q′ 2
1

2

(
(k2 − q21 − q22)2 − 4q21q22

2k2
I(k2, q22 , q

2
1)

+
k2 + q22 − q21

2k2
ln
(
k2

q22

)
ln
(
q21
q22

))
+ (qi ↔ q′i) , (4.22)
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where

I(a, b, c) =
∫ 1

0

dx

a(1− x) + bx− cx(1− x) ln
(
a(1− x) + bx

cx(1− x)
)
. (4.23)

Note that the integral I(a, b, c) is invariant with respect to any permutation
of its arguments, as it can be seen from the representation [15]

I(a, b, c) =
∫ 1

0

∫ 1

0

∫ 1

0

dx1dx2dx3δ(1 − x1 − x2 − x3)
(ax1 + bx2 + cx3)(x1x2 + x1x3 + x2x3)

. (4.24)

In particular, I(k2, q22 , q
2
1) does not change under the substitution q1 ↔ −q2.

4.2 Calculation of J2

The order of integration used for the calculation of J1 (first over x and then
over k1) is suitable for the calculation of J2 as well. Details of the integration
are given in Appendix C. The result of the integration over x can be presented
as

J2 =
∫

d2+2εk1

π1+εΓ(1− ε)
{[

1
(q1 − k1)2 − k2

1

(
(1 + ε)k2

1 − q21
(

2− (k1q1)
k2
1

))

+
(q1 − k1)(q′1 − k1)

(q1 − k1)2

(
q21
k2
1

− q2

2(q′1 − k1)2

)
− (q1q′1)

k2
1

]
ln
(

(q1 − k1)2

k2
1

)

+
[(

q2

2

(
1 +

(q1 − k1)(q′1 − k1)
(q1 − k1)2

))
− 1 + ε

2
(q1 − k1)2

]

× 1
(q1 − k1)2 − (q′1 − k1)2

ln
(

(q1 − k1)2

(q′1 − k1)2

)}
+ (q1 ↔ q′1) . (4.25)

At arbitrary ε the integration in Eq. (4.25) gives

J2 =
Γ2(1 + ε)
εΓ(1 + 2ε)

(
(−q21)1+ε + (−q′ 21 )1+ε − (−q2)1+ε

)

×
(

11 + 7ε
2(1 + 2ε)(3 + 2ε)

− ψ(1 + ε) + ψ(1 + 2ε)
)
− q2

2
I+(q1, q′1) , (4.26)

where

I+(q1, q′1) = −
∫

d2+2εk1

π1+εΓ(1− ε)
(q1 − k1)(q′1 − k1)

(q1 − k1)2(q′1 − k1)2
ln
(

(q1 − k1)2(q′1 − k1)2

(k2
1)2

)
.

(4.27)
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This last integral cannot be expressed in terms of elementary functions at
arbitrary ε. In the limit ε→ 0, instead, at fixed nonzero q it becomes

I+(q1, q′1) = − ln
(
q21
q2

)
ln
(
q′ 21

q2

)
. (4.28)

Note that for I+(q1, q′1) the limits ε → 0 and q → 0 are noninterchangeable.
However, it does not matter for J2, where I+(q1, q′1) enters with the coefficient
∼ q2. At ε→ 0 we obtain

J2 = (q21 + q′ 21 − q2)
(
−11

6ε
+

67
18
− ζ(2)

)
− q2

2
ln
(
q21
q2

)
ln
(
q′ 21

q2

)

+
11
6
(
q21 ln(−q21) + q′ 21 ln(−q′ 21 )− q2 ln(−q2)) . (4.29)

Appearance of the pole at ε = 0 in J2 does not contradict the statement
that non-integrable infrared singularities in the limit ε → 0 are absent in
(Ai/[x(1− x)])+. The pole term comes from the ultraviolet region. Indeed,
one can see from the expression (4.12) for A2 that, after averaging over the
azimuthal angle at D = 4 in the limit of large |k1|, we have(

A2

x(1− x)
)

+

� q1q
′
1

k2
1

(x(1 − x)− 2) . (4.30)

The pole term in Eq. (4.29) is just the doubled result of the integration of the
expression (4.30) over dxd2+2εk1/π. Evidently, the ultraviolet divergency is
artificial and appears to be the result of the separation of Fs(k1, k2) as shown
in Eq. (4.9). Indeed, as it can be easily proved from formulas (4.12) and
(4.13), the terms leading to such divergencies cancel in the sum A2 + A3 +
(k1 ↔ k2). This means that the pole term in J2 is cancelled by an analogous
term in J3 (see below).

4.3 Calculation of J3

The integral J3 is much more complicated than the preceding ones. As a
consequence, the trick of integrating first over x, applied before, cannot be
used in the calculation of J3, because it leads to terms with the denomina-
tors containing a third power of k1. Such terms cannot be integrated over
k1 by known methods. This complexity is connected with non-planarity of
diagrams represented by J3, which is seen from the denominator t̃1t̃2 related
to the cross-box diagram. The complexity of contributions of the cross-box
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diagrams is well known since the calculation of the non-forward kernel for
the QED Pomeron [17] which was found only in the form of two-dimensional
integral. In QCD the situation is greatly worse because of the existence of
cross-pentagon and cross-hexagon diagrams in addition to QED-type cross-
box diagrams. It requires the use of additional Feynman parameters. At
arbitrary D no integration over these parameters at all can be done in ele-
mentary functions. It occurs, however, that in the limit ε→ 0 the integration
over additional Feynman parameters can be performed, so that the result can
be written as two-dimensional integral, as well as in QED. Details of the cal-
culation are given in Appendix D. The result is

J3 =
11
12

(q21 + q′ 21 − q2)
(

1
ε

+ ln(−k2) + 1
)

+ J(q1, q2; q) + (qi ↔ q′i)

with

J(q1, q2; q) =
∫ 1

0

dx

∫ 1

0

dz

{
q1q
′
1

(
(2− x1x2) ln

(
Q2

−k2

)
− 2
x1

ln
(
Q2

Q2
0

))

+
1
Q2

(
x1x2

2
(q21 − 2q1r1)(q′21 − 2q′1 r2) + q′21 q1 (r1 − 2q′1) + 4x1q

2
1(q
′
1r2)

+q′1q1(q
′
1q1 − q′1r1 − q1r2) + 2(q′1r1)(q1r2)− 2(q′1r2)(q1r1) +

2
x1

(
q′21 q1r2

−x2q1q
′
1 ((q′1 − r2)r1))

)
− 2
Q2

0x1

(
z(1− z)q′22 q1q′1 + q′21 (zq1k + (1− z)q1q′1)

)

+q′21

[(
q1(x2q

′
1 + q2)− x2

x1
q1(q′1 + k)

)
1
r22

ln
(
Q2

µ2
2

)
+

1
x1
q1(q′1 + k)

1
r20

ln
(
Q2

0

µ2
0

))

− 1
µ2

2Q
2

(
2
x2

x1
(q1r2)q′1k + x2(q′1r2)(q

2
2 − k2) + 2(q2r2)q1q

)
+

2
µ2

0Q
2
0

1
x1

(q1r0)q′1k

+
1
r22

(
1
r22

ln
(
Q2

µ2
2

)
− 1
Q2

)(
2
x2

x1
(q1r2)(q′1 + k)r2 − 2((x2q

′
1 + q2)r2)q1r2

)

− 1
r20

(
1
r20

ln
(
Q2

0

µ2
0

)
− 1
Q2

0

)(
2

1
x1

(q1r0)(q′1 + k)r0

)

−q
2
1

d

(
(q2k)(q′2k)

(
1
k2

+
Q2

d
L
)

+ (q2r2)(q′2k)
(

1
µ2

2

− µ2
1

d
L
)

+ (q2k)(q′2r1)

×
(

1
µ2

1

− µ2
2

d
L
)
− (q2r2)(q′2r1)

(
1
Q2

+
k2

d
L
)
− (q2q′2)

2
L
)]}

. (4.31)
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Here

r1 = zxq1 +(1−z)(xk−(1−x)q′2), r2 = z((1−x)k−xq2)+(1−z)(1−x)q′1;

Q2 = −x(1− x)(q21z + q′21 (1− z))− z(1− z)(q22x+ q′22 (1− x)− q2x(1− x)),
µ2

i = Q2−r2i , r0 = zk+(1−z)q′1, Q2
0 = −z(1−z)q′22 , µ2

0 = −zk2−(1−z)q′21 ,
d = µ2

1µ
2
2 + k2Q2 = z(1− z)x(1− x) ((k2 − q21 − q′22 )(k2 − q′21 − q22) + k2q2

)
+q21q

2
2xz(x+z−1)+q′21 q

′2
2 (1−x)(1−z)(1−x−z), L = ln

(
µ2

1µ
2
2

−k2Q2

)
. (4.32)

5 Non-forward kernel
In pure gluodynamics, which is considered here, the part K(R)

r of the BFKL
kernel (2.2), related to the production of real particles, for any representation
R is given by the sum of one-gluon K(R)

G and two-gluon K(R)
GG contributions.

Using for the last of them the decomposition (3.46) we have

K(R)
r = K(R)

G + 4(aR − bR)K(8)
GG + bRK(s)

GG , (5.1)

where the colour group coefficients aR and bR are defined in Eqs. (3.25) and
the one-gluon contribution K(R)

G is given by Eq. (2.12) (for arbitrary D see
Eq. (4.10) in the last of Refs. [8]). The two-gluon contribution for the octet
channel K(8)

GG was calculated in the second of Refs. [10] (see there Eqs. (61)
and (63) for arbitrary D and for D = 4, respectively). The calculation of the
“symmetric" contribution K(s)

GG performed in this paper solves the problem of
finding the expression of the non-forward BFKL kernel for all possible colour
states in the t-channel. This contribution is determined by Eq. (4.14), where
J0 = 0 and Ji, for i = 1 ÷ 3, are given by Eqs. (4.21), (4.26), (D.8) and
(4.22), (4.29), (4.31) for arbitrary D and for D = 4 correspondingly. Note
that everywhere in these formulas the bare coupling constant g is used. The
transition to the renormalized coupling gµ in the MS scheme takes place by
means of Eq. (2.5).

For the most important colour singlet case, using c1 = a1 = 1 and c8 =
b1 = 1/2, from Eqs. (5.1) and (2.12) we obtain

K(1)
r = 2K(8)

r +
1
2
K(s)

GG . (5.2)
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Because of the significance of this case let us consider it in more detail. We
present the kernel K(1)

r obtained from the above stated sources in the limit
D = 4 + 2ε→ 4 as sum of two parts,

K(1)
r = Ksing

r +Kreg , (5.3)

where the first, given by

Ksing
r (�q1, �q2; �q) =

2ḡ2
µµ
−2ε

π1+εΓ(1− ε)
(
�q 2
1 �q
′ 2
2 + �q ′ 21 �q 2

2

�k 2
− �q 2

){
1 + ḡ2

µ

[
11
3ε

+

(
�k 2

µ2

)ε{
−11

3ε
+

67
9
− 2ζ(2) + ε

(
−404

27
+ 14ζ(3) +

11
3
ζ(2)

)}]}
, (5.4)

contains all singularities and the second, putting ε = 0 and ḡ2
µ =

αs(µ2)Nc/(4π) , becomes

Kreg
r (�q1, �q2; �q) =

α2
s(µ2)N2

c

16π3

[
2(�q 2

1 +�q 2
2 −�q 2)

(
ζ(2)− 50

9

)
− 11

3

(
�q 2
1 ln

(
�q 2
1

�k 2

)

+�q 2
2 ln

(
�q 2
2

�k 2

)
− �q 2 ln

(
�q 2
1 �q

2
2

�k 4

)
− �q 2

1 �q
′ 2
2 − �q 2

2 �q
′ 2
1

�k 2
ln
(
�q 2
1

�q 2
2

))
+�q 2

(
1
2

ln2

(
�q 2
1

�q 2
2

)

+ ln
(
�q 2
2

�q 2

)
ln
(
�q ′22

�q 2

)
+ ln

(
�q 2
1

�q 2

)
ln
(
�q ′21

�q 2

))
+ ln

(
�q 2
1

�q 2
2

)(
�q ′21

2
ln
(
�q 2
2

�k 2

)

−�q
′2
2

2
ln
(
�q 2
1

�k 2

)
− �q 2

1 �q
′ 2
2 + �q 2

2 �q
′ 2
1

2�k 2
ln
(
�q 2
1

�q 2
2

)
+
�q ′ 21 (�q 2

1 − 3�q 2
2 )

2�k 2
ln

(
�k 2

�q 2
2

)

+
�q ′ 22 (3�q 2

1 − �q 2
2 )

2�k 2
ln

(
�k 2

�q 2
1

))
+
(
�q 2(�k 2 − �q 2

1 − �q 2
2 ) + 2�q 2

1 �q
2
2 + �q 2

1 �q
′ 2
1 + �q 2

2 �q
′ 2
2

− (�q 2
1 − �q 2

2 )(�q 2
1 + �q 2

2 )(�q ′ 21 − �q ′ 22 )

2�k 2
−
�k 2

2
(�q ′ 21 + �q ′ 22 )

)
I(�k 2, �q 2

2 , �q
2
1 )

−2J(�q1, �q2; �q)− 2J(−�q2,−�q1;−�q)
]

+

{
�qi ←→ �q ′i

}
. (5.5)

Here the functions I(k2, q22 , q
2
1) and J(q1, q2; q) are defined in Eqs. (4.23) and

(4.31) correspondingly.
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All singularities of K(1)
r are contained in the first part. We remind that

K(R)
G and K(R)

GG separately contain first and second order poles at ε = 0 (see
Eq. (2.12)). In the sum of these contributions the pole terms cancel, so that
at fixed nonzero �k2, when the term

(
�k 2/µ2

)ε

in Eq. (5.4) can be expanded

in ε, the sum is finite at ε = 0. But the kernel (5.4) is singular at �k 2 = 0 so
that, when it is integrated over q2, the region of so small �k 2 values such that
ε| ln

(
�k 2/µ2

)
| ∼ 1 does contribute. Therefore the expansion of

(
�k 2/µ2

)ε

is not done in Eq. (5.4). Moreover, the terms ∼ ε are taken into account
in the coefficient of the expression divergent at �k 2 = 0 in order to save all
contributions non-vanishing in the limit ε→ 0 after the integration.

As it was already discussed, the “symmetric" part K(s)
GG of the kernel

(5.1) is finite in the limit ε = 0. Moreover, it does not give singularities
at ε = 0 when the kernel is used in the equation for the Green’s function.
Indeed, the points �q2 = 0 and �q ′2 = 0 do not give such singularities due to
the “gauge invariance" properties (2.13), because these properties are valid
for any representation. Its validity for K(s)

GG can be checked explicitly using
the properties of bαβ . It is not difficult also to see that K(s)

GG has not non-
integrable singularities in the limit ε = 0 at �k = 0.

For the singlet case the infrared singularities of K(1)
r must be cancelled by

the singularities of the gluon trajectory after integration of the total kernel
with any nonsingular at �k = 0 function. The total BFKL kernel in the singlet
case must be free from singularities. It is not difficult to see that it is the
case, using the equality

ω(t) = −2ḡ2
µ

(
1
ε

+ ln
(−t
µ2

))
− ḡ4

µ

[
11
3

(
1
ε2
− ln2

(−t
µ2

))
+
(

67
9
− 2ζ(2)

)

×
(

1
ε

+ 2 ln
(−t
µ2

))
− 404

27
+ 2ζ(3)

]
. (5.6)

It is convenient to represent the total kernel in such a form that the cancella-
tion of singularities between real and virtual contributions becomes evident.
For this purpose let us first switch from the dimensional regularization to
the cut-off �k2 > λ2, λ→ 0, which is more convenient for practical purposes.
With such regularization we can pass to the limit ε → 0 in the real part of
the kernel, so that its singular part assumes the form

Ksing
r (�q1, �q2; �q) → θ((�q1 − �q2)2 − λ2)Ksing

r (�q1, �q2; �q)|ε=0
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=
αs(µ2)Nc

2π2

(
�q 2
1 �q
′ 2
2 + �q ′ 21 �q 2

2

�k 2
− �q 2

)

×
{

1− αs(µ)Nc

4π

(
11
3

ln

(
�k 2

µ2

)
− 67

9
+ 2ζ(2)

)}
θ((�q1 − �q2)2 − λ2) . (5.7)

The trajectory must be transformed in such a way that the cut-off regular-
ization gives the same result as the ε regularization:

ω(t) → ωλ(t) = lim
ε→0

(
ω(t) +

1
2

∫
d2+εq2
�q 2
2 �q
′ 2
2

K(1)
r (�q1, �q2; �q)θ((�q1 − �q2)2 − λ2)

)

= −αs(µ2)Nc

2π

{
ln
(−t
λ2

)
− αs(µ2)Nc

4π

[
11
6

(
ln2

(−t
µ2

)

− ln2

(
λ2

µ2

))
−
(

67
9
− π2

3

)
ln
(−t
λ2

)
+ 6ζ(3)

]}
. (5.8)

It is easy to check that the integral over d2q2 of the total kernel (2.2) with
any function non-singular at �k = 0 is λ -independent in the limit λ → 0.
Moreover, it is equally easy to find a form of the kernel which does not
contain λ . It is sufficient to find a representation

ωλ(−�q 2
1 ) =

∫
d2q2fω(�q1, �q2)θ((�q1 − �q2)2 − λ2) (5.9)

with such a function fω that the singularity non-integrable at �k = �q1 − �q2 =
�q ′1 − �q ′2 = 0 is cancelled in the “regularized virtual kernel"

Kreg
v (�q1, �q2; �q) = fω(�q1, �q2) + fω(�q ′1 , �q

′
2) +

Ksing
r (�q1, �q2; �q)|ε=0

�q 2
2 �q
′ 2
2

. (5.10)

After that we can proceed to the limit λ = 0, obtaining(
K̂(1)Ψ

)
(�q1) =

∫
d2q2

{
Kreg

v (�q1, �q2; �q)Ψ(�q1)

+
Ksing

r (�q1, �q2; �q)|ε=0

�q 2
2 �q
′ 2
2

(Ψ(�q2)−Ψ(�q1)) +
Kreg

r (�q1, �q2; �q)
�q 2
2 �q
′ 2
2

Ψ(�q2)
}
. (5.11)

Of course, the choice of the function fω contains a large arbitrariness. One
simple choice is

fω(�q1, �q2) = −αs(µ2)Nc

2π2

�q1
2

�k 2(�q1
2 + �k 2)

{
1− αs(µ)Nc

4π

(
11
3

ln

(
�k 2

µ2

)
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−67
9

+ 2ζ(2) +
(

6ζ(3)− 11
3
ζ(2)

) �k 2

(�q1
2 + �k 2)

)}
. (5.12)

We have to say that the integral (4.31) for J(q1, q2; q) entering into all
kernels besides the octet ones definitely is presented not in the best form.
We have decided to present it in such shape in order to give a possibility of
further development to people interested in this subject. The results of our
efforts on simplification of the kernel and investigation of its properties will
be presented in a subsequent paper.
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Appendix A
For the colour group SU(Nc) with Nc = 3 the possible representations R are
1, 8a, 8s, 10, 10, 27. Corresponding projection operators are

〈bb′|P̂1|aa′〉 =
δbb′δaa′

N2
c − 1

, (A.1)

〈bb′|P̂8a |aa′〉 =
fbb′cfaa′c

Nc
, (A.2)

〈bb′|P̂8s |aa′〉 = dbb′cdaa′c
Nc

N2
c − 4

, (A.3)

〈bb′|P̂10|aa′〉 = 1
4

[
δbaδb′a′ − δba′δb′a − 2

Nc
fbb′cfaa′c + ifba′cdb′ac + idba′cfb′ac

]
,

(A.4)

〈bb′|P̂10|aa′〉 =
1
4

[
δbaδb′a′ − δba′δb′a − 2

Nc
fbb′cfaa′c − ifba′cdb′ac − idba′cfb′ac

]
,

(A.5)

〈bb′|P̂27|aa′〉 = 1
4

[(
1 +

2
Nc

)
(δbaδb′a′ + δba′δb′a)− 2(Nc + 2)

Nc(Nc + 1)
δbb′δaa′
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−
(

1 +
2

Nc + 2

)
dbb′cdaa′c + dbacdb′a′c + db′acdba′c

]
. (A.6)

Here fabc and dabc are defined by the relation

tatb = (dabc + ifabc)
tc

2
+ δab

I

2Nc
, (A.7)

where ta are the group generators in the fundamental representation, nor-
malized by the requirement tr(tatb) = δab/2 and I is the identity matrix.

For generality, we do not put here Nc = 3, so that above expressions are
valid for the SU(Nc) group with arbitraryNc. Corresponding representations
in this case have dimensions

n1 = 1 , n8a = n8s = N2
c − 1 , n10 = n10 =

(N2
c − 4)(N2

c − 1)
4

,

n27 =
(Nc + 3)N2

c (Nc − 1)
4

. (A.8)

However, at Nc > 3 there is an additional representation with dimension

nNc>3 =
(Nc + 1)N2

c (Nc − 3)
4

(A.9)

and projection operator

〈bb′|P̂Nc>3|aa′〉 = 1
4

[(
1− 2

Nc

)
(δbaδb′a′ + δba′δb′a) +

2(Nc − 2)
Nc(Nc − 1)

δbb′δaa′

+
(

1− 2
Nc − 2

)
dbb′cdaa′c − dbacdb′a′c − dba′cdb′ac

]
. (A.10)

In SU(3) this projection operator turns into zero due to the equality

dbb′cdaa′c +dba′cdb′ac +dbacda′b′c =
1
3

(δbb′δaa′ + δba′δb′a + δbaδa′b′) , (A.11)

which holds at Nc = 3. The following useful identities with

T a
bc = −ifabc, Da

bc = dabc,
[
F a, F b

]
= ifabcF

c,
[
F a, Db

]
= ifabcD

c

(A.12)
are valid at arbitrary Nc:

Tr (T a) = Tr (Da) = Tr
(
T aDb

)
= 0, T r

(
T aT b

)
= Ncδ

ab,
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Tr
(
DaDb

)
=
N2

c − 4
Nc

δab, T r
(
T aT bT c

)
= i

Nc

2
fabc, T r

(
T aT bDc

)
=
Nc

2
dabc,

T r
(
DaDbT c

)
= i

N2
c − 4
2Nc

fabc, T r
(
DaDbDc

)
=
N2

c − 12
2Nc

dabc,

T r
(
T aT bT cT d

)
= δadδbc +

1
2

(δabδcd + δacδbd) +
Nc

4
(fadifbci + dadidbci) ,

T r
(
T aT bT cDd

)
= i

Nc

4
(dadifbci − fadidbci) ,

T r
(
T aT bDcDd

)
=

1
2

(δabδcd − δacδbd) +
N2

c − 8
4Nc

fadifbci +
Nc

4
dadidbci,

T r
(
T aDbT cDd

)
= −1

2
(δabδcd − δacδbd) +

Nc

4
(fadifbci + dadidbci) ,

T r
(
T aDbDcDd

)
= i

2
Nc

fadidbci + i
N2

c − 8
4Nc

fabidcdi + i
Nc

2
dabifcdi,

T r
(
DaDbDcDd

)
=
N2

c − 4
N2

c

δadδbc +
1
2
δacδbd +

N2
c − 8
2N2

c

δabδcd

+
Nc

4
fadifbci +

N2
c − 16
4Nc

dadidbci − 4
Nc

dabidcdi,

fadifbci + dadidbci − fabifcdi − dabidcdi +
2
Nc

(δadδbc − δabδcd) = 0. (A.13)

These equalities (A.13) can be derived from the relation (A.7) and the com-
pleteness of the matrices ta and I. The properties of the projection operators

P̂iP̂j = δijP̂i,
∑

i

P̂i = I (A.14)

can be easily obtained with the help of these equalities, as well as the coeffi-
cients cR:

c1 = 1 , c8a = c8a =
1
2
, c10 = c10 = 0 , c27 = −cNc>3 = − 1

4Nc
. (A.15)
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Appendix B
Here and below all vectors are taken transverse (D − 2)-dimensional, al-
though the transversality sign ⊥ is omitted. If the vector sign is not used,
the Minkowski metric is assumed, so that (ab) = −�a�b. We use a standard
representation of logarithms, i.e.

ln a =
d

dν
aν |ν=0 (B.1)

and the Feynman parametrization

n∏
i=1

a−αi

i =

Γ

(
n∑

i=1

αi

)
n∏

i=1

Γ(αi)

(
n∏

i=1

∫ 1

0

dxix
αi−1
i

) δ(1−
n∑

i=1

xi)

(
n∑

i=1

aixi

) n∑
i=1

αi

. (B.2)

Using the notations

R = (k2−ykx)2−y (ax − ybx) , kx = k(1−x)−q2x = q1(1−x)−q2 = k−q1x ,
ax = − (k2(1 − x) + q22x

)
, bx = −k2

x = ax + q21x(1 − x) ,

J1 =
q′21
2
J1 + (qi ↔ q′i) , (B.3)

from Eq. (4.20) we obtain

J1 =
∂

∂ν

∫
d2+2εk1

π1+εΓ(1− ε)
((q1 − k1)2)ν

(k2
1)νk2

2

(
q21q

2
2

k2
1(q1 − k1)2

− q22
(q1 − k1)2

−q
2
2 + 2k1q2

k2
1

)
|ν=0 =

∂

∂ν

∫ 1

0

dy

∫ 1

0

dx(1 − x)νx−ν

Γ(1 + ν)Γ(1− ν)
∫

d2+2εk1

π1+εΓ(1− ε)

×
(

2yq21q
2
2

R3
− q22ν

(1− x)R2
+

(q21 − k2 − 2k2q2)ν
xR2

)
|ν=0

=
∂

∂ν

∫ 1

0

dx(1 − x)νx−ν

Γ(1 + ν)Γ(1 − ν)
∫ 1

0

dyyε−1

(ax − ybx)1−ε

×
[−(1− ε)q21q22

(ax − ybx)
− νq22

(1 − x) +
ν

x
(q21 − k2 − 2ykxq2)

]
|ν=0
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=
∫ 1

0

dx

∫ 1

0

dyyε−1

[
(1− ε)q21q22

(ax − ybx)2−ε ln
(

x

1− x
)

− ln(1− x) d
dx

q22

(ax − ybx)1−ε − lnx
d

dx

q21 − k2 − 2ykxq2

(ax − ybx)1−ε

]
. (B.4)

Subsequent integrations can be performed only in the limit ε → 0. Note
that proceeding to the limit ε → 0 in the integrand leads to a wrong, al-
though convergent, integral. The singularity at y = 0 requires an accurate
consideration. After integration over y we obtain

J1 =
∫ 1

0

dx

[
q21q

2
2

a2
x

ln
(

x

1− x
)(

ln
(

ax

ax − bx

)
+

bx
ax − bx

)

− ln(1− x) d
dx

q22
ax

ln
(

ax

ax − bx

)
− lnx

d

dx

(
q21 − k2

ax
− 2kxq2

bx

)
ln
(

ax

ax − bx

)

+
1
a2

x

(
q21q

2
2 ln

(
x

1− x
)

+ q22(k
2 − q22) ln(1− x)

+(q21 − k2)(k2 − q22) lnx
)
ln ax

]
. (B.5)

Last terms come from the singularity at y = 0. Performing appropriate
integrations by parts, after simple though slightly tedious steps we arrive at

J1 =
∫ 1

0

dx

(
1

1− x
(
q22 − q21
k2

+ 1
)

ln
(
ax

−q22

)

+
1

k2bx

(
q21(q

2
1 − q22 − k2)x+ k2(q21 + q22)− (q21 + q22)

2
)
ln
(

ax

ax − bx

))
.

(B.6)
Using the equalities

∫ 1

0

xdx

(k(1− x)− q2x)2 ln
(
k 2(1− x) + q 2

2 x

q 2
1 x(1− x)

)

=
q 2
1 + k 2 − q 2

2

2q 2
1

∫ 1

0

dx

(k(1 − x)− q2x)2 ln
(
k 2(1 − x) + q 2

2 x

q 2
1 x(1 − x)

)

− 1
2q 2

1

(
L(1− k 2

q 2
2

)− L(1− q 2
2

k 2
)
)
− 1

4q 2
1

ln
(
k 2

q 2
2

)
ln
(
k 2q 2

2

q 4
1

)
, (B.7)
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L(x) = −Li2(x) =
∫ x

0

dy

y
ln(1− y) , Li2(1− x) + Li2(1− 1

x
) = −1

2
ln2 x ,

(B.8)
we obtain

J1 =
4q21q

2
2 − (k2 − q21 − q22)2

2k2

∫ 1

0

dx

bx
ln
(

ax

ax − bx

)

+
k2 + q22 − q21

2k2
ln
(
k2

q22

)
ln
(
q21
q22

)
. (B.9)

This result can be reached by another way, using the analyticity properties
of J1. To do that, let us present J1 at ε = 0 as an integral in the Minkowski
space:

J1 =
∫ ∞

0

dz

∫
d2k1

iπ(k2
2 + i0)

(
1

z − k2
1 − i0

− 1
z − (q1 − k1)2 − i0

)

×
(

q21q
2
2

(k2
1 + i0)((q1 − k1)2 + i0)

− q22
((q1 − k1)2 + i0)

− q22 + 2k1q2
(k2

1 + i0)

)
. (B.10)

Here k1, q1 and q2 are considered as vectors in the two-dimensional
Minkowski space, so that we have

d2k1 = dk
(0)
1 dk

(1)
1 , k 2

1 = (k(0)
1 )2 − (k(1)

1 )2 , (B.11)

and so on. Eq. (B.10) determines J1 as a function of q21 , q22 and k2 for ar-
bitrary values of these variables. For q21 = −�q 2

1 ≤ 0, q22 = −�q 2
2 ≤ 0 and

k2 = −�k 2 ≤ 0 Eq. (B.10) turns into the function given by Eq. (4.20), that
can be easily seen by making the Wick rotation of the contour of integration
over k(0)

1 and performing integration over z. At fixed negative q21,2 Eq. (B.10)
determines the real analytical function of k2 with the cut at k2 ≥ 0. Accord-
ing to the Cutkosky rules, one can find a discontinuity on the cut rewriting
Eq. (B.10) as

J1 =
∫ ∞

0

dz

∫
d2k1

iπ(k2
2 + i0)

((
q21q

2
2

((q1 − k1)2 + i0)
− q22 − 2k1q2

)

×
(

1
z

(
1

k2
1 + i0

− 1
k2
1 − z + i0)

)
+

1
k2
1 + i0

1
(q1 − k1)2 − z + i0

)

+
q22

((q1 − k1)2 + i0)

(
1

k2
1 − z + i0

− 1
(q1 − k1)2 − z + i0

))
, (B.12)
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omitting the last term and making the substitutions (assuming k(0) ≥ 0)

1
k 2
2 + i0

1
k 2
1 + i0

→ (−2πi)2δ(k 2
2 )δ(k 2

1 )θ(k(0)
2 )θ(k(0)

1 ) ,

1
k 2
2 + i0

1
k 2
1 − z + i0

→ (−2πi)2δ(k 2
2 )δ(z − k 2

1 )θ(k(0)
2 )θ(k(0)

1 ) . (B.13)

Using these rules and removing the δ-functions by integration over k1 (the
most appropriate system for this is k(1) = 0, k2 = (k(0))2), we obtain for the
imaginary part

�J1 = π

∫ ∞
0

dz
∑
i=±

[
q21q

2
2

k2

(
1

κ0
i (κ

0
i − z)

+
1
κ0

i z
− k2θ(k2 − z)
z(k2 − z)κi

)

+
k2 − q21 − q22

k2

(
1

κ0
i − z

+
1
z
− k2θ(k2 − z)

z(k2 − z)
)

+
κ0

i

k2(κ0
i − z)

+
κ0

i

k2z
+

κ0
i

k2(κ0
i − z)

+
θ(k2 − z)
(k2 − z)

(
q22
κi
− κi

z

)]
, (B.14)

where κ0
± and κ± are given by values of (q1 − k1)2 on the mass shells k2

2 =
0 , k2

1 = 0 and k2
2 = 0 , k2

1 = z respectively, so that

κ0
± =

1
2

[
q21 + q22 − k2 ±

√
(q21 + q22 − k2)2 − 4q21q22

]
, κ± = κ0

±+
z

k2
(q22−κ0

±) .

(B.15)
The integration over z is quite elementary and gives

�J1 = − π

2k2

[(
k2 − q21 + q22

)
ln
q21
q22

+
√

(k2 − q21 − q22)2 − 4q21q
2
2

× ln

(
k2 − q21 − q22 +

√
(k2 − q21 − q22)2 − 4q21q

2
2

k2 − q21 − q22 −
√

(k2 − q21 − q22)2 − 4q21q
2
2

)]
. (B.16)

The use of this equation and the equality (see Refs. [10] and [15] )

π
√

(k2 − q21 − q22)2 − 4q21q
2
2 ln

(
k2 − q21 − q22 +

√
(k2 − q21 − q22)2 − 4q21q22

k2 − q21 − q22 −
√

(k2 − q21 − q22)2 − 4q21q22

)

= �
(

[4q21q
2
2 − (k2 − q21 − q22)2]

∫ 1

0

dx

(k(1− x) − q2x)2 ln
(
k 2(1− x) + q 2

2 x

q 2
1 x(1 − x)

))
(B.17)
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gives the result (B.9). The absence of a polynomial in k2 can be easily
checked by considering the integral (4.20) at large �k 2 � �q 2

1 . Integration
regions which could contribute in this case are |�k1| ∼ |�k − �k1| ∼ |�k| and
|�k1| ∼ |�q1 − �k1| ∼ |�q1|. But the first region gives a vanishing contribution
because of the smallness of ln((�q1 − �k1)2/�k 2

1 ) there. In the second region
the integrand of Eq. (B.9) with the required accuracy is anti-symmetric with
respect to the exchange k1 ↔ q1 − k1, so that its contribution vanishes as
well.

Appendix C
We start from the integrals∫ 1

0

dx

(
(t̃1t̃′1)

−1

x(1 − x)
)

+

=
L+

2cc′
− c+ c′

2cc′
L−
b− b′ ,∫ 1

0

dx

(
x2(t̃1 t̃′1)

−1

x(1− x)
)

+

=
1

2bb′

[
L+ − b+ b′

b− b′L−
]
,

∫ 1

0

dx

(
x2(x1 t̃1t̃

′
1)
−1

x(1 − x)
)

+

=
L−

a(b − b′) ,∫ 1

0

dx

(
x2

2(x
2
1 t̃1t̃

′
1)
−1

x(1 − x)
)

+

=
1

2a2

[
−L+ − c+ c′

b− b′L−
]
,

∫ 1

0

dx

(
x2

2(t̃1 t̃
′
1)
−1

x(1 − x)
)

+

=
1
bb′

[
−1 +

L+

2bb′
(bb′ + a(b+ b′))− L−

2(b− b′) (c+ c′ +
a(b− b′)2

bb′
)
]
, (C.1)

where

a = k2
1 , c = (q1 − k1)2 , c′ = (q′1 − k1)2 , b = c− a, b′ = c′ − a ,

L+ = ln
(
cc′

a2

)
, L− = ln

( c
c′
)
, (C.2)

and after some algebra we arrive at Eq. (4.25). We remind that in the inte-
grands we omit the terms giving zero after the subsequent integration. Then
we use the following equalities:∫

d2+2εk1

π1+εΓ(1− ε)
a

b
ln
( c
a

)
= − (−q21)ε+1 Γ(1 + ε)Γ(2 + ε)

εΓ(4 + 2ε)
,
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∫
d2+2εk1

π1+εΓ(1− ε)
1
b

ln
( c
a

)
=
(−q21)ε Γ2(1 + ε)

εΓ(2 + 2ε)
,

∫
d2+2εk1

π1+εΓ(1− ε)
(q1k1)
ab

ln
( c
a

)
=
(−q21)ε Γ2(1 + ε)

εΓ(1 + 2ε)
(ψ(1 + ε)− ψ(1 + 2ε)) ,

q21

∫
d2+2εk1

π1+εΓ(1− ε)
(q1 − k1)(q′1 − k1)

ac
ln
( c
a

)
= −(q1q′1)

(−q21)ε Γ2(1 + ε)
ε2Γ(1 + 2ε)

,

q2
∫

d2+2εk1

π1+εΓ(1− ε)
L−
b− b′ = − (−q2)ε+1 Γ2(1 + ε)

εΓ(2 + 2ε)
,

∫
d2+2εk1

π1+εΓ(1− ε)
c+ c′

b− b′L− = − (−q2)ε+1 Γ2(1 + ε)
εΓ(2 + 2ε)Γ(3 + 2ε)

,

∫
d2+2εk1

π1+εΓ(1− ε)
(q1 − k1)(q′1 − k1)

c

L−
b− b′

= − (−q2)ε Γ2(1 + ε)
εΓ(1 + 2ε)

(ψ(1 + ε)− ψ(2 + 2ε)) . (C.3)

The first three of these integrals can be easily calculated with the help of the
representation

1
b

ln
(
a+ b

a

)
=
∫ 1

0

dx

a+ bx
, (C.4)

the forth with the help of Eq. (B.1) and the last three using the representation

L−
b− b′ =

∫ 1

0

dx

cx+ c′(1− x) . (C.5)

Using these integrals we arrive at Eq. (4.26). As for the integral I+(q1, q′1) of
Eq. (4.27), it can be written as

I+(q1, q′1) = −
∫

d2+2εk1

π1+εΓ(1 − ε)
(

(q1 − k1)(q′1 − k1)
cc′

ln
(

cc′

(q2)2

)

−c+ c′

cc′
ln
(
k2
1

q2

))
−
∫

d2+2εk1

π1+εΓ(1 − ε)
q2

(q1 − k1)2(q′1 − k1)2
ln
(
k2
1

q2

)
. (C.6)

The first integral in Eq. (C.6) can be easily calculated at arbitraryε; we find

−
∫

d2+2εk1

π1+εΓ(1− ε)
(

(q1 − k1)(q′1 − k1)
cc′

ln
(

cc′

(q2)2

)
− c+ c′

cc′
ln
(
k2
1

q2

))
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=
Γ2(1 + ε)
εΓ(1 + 2ε)

(
2
(−q2)ε (1

ε
− ψ(1) + ψ(1 − ε)− ψ(1 + ε) + ψ(1 + 2ε)

)

−1
ε

((−q21)ε +
(−q′21 )ε)

)
. (C.7)

The second integral in Eq. (C.6) was analyzed in Ref. [16]. In the limit ε→ 0
we have ∫

d2+2εk1

π1+εΓ(1− ε)
q2

(q1 − k1)2(q′1 − k1)2
ln
(
k2
1

q2

)

=
1
ε

(−q2)ε ln
(

(q2)2

q21q
′2
1

)
− 1

2
ln2

(
q21
q′21

)
. (C.8)

Appendix D
We use Eqs. (4.15), (4.13) and after a simple algebra we obtain

J3 =
∫ 1

0

dx

(
1

x(1 − x)
∫

d2+2εk1

π1+εΓ(1− ε)
1
t̃1t̃′2

[
(D − 2)

4
x1x2(q21 − 2q1k1)

×(q′21 − 2q′1 k2)− 2x2

x1
(q1q′1)(k1(q′1 − k2)) + q′21

(
2
q1k2

x1
− 2q1q′1 + q1k1

)

+4x1q
2
1(q
′
1k2) + q′1q1(q

′
1q1 − q′1k1 − q1k2) + 2(q′1k1)(q1k2)− 2(q′1k2)(q1k1)

+
q′21
k2
2

(
2
x2

x1
(q1k2)(q′1k1 − kk2) + x2(q′1k2)(q22 − k2 + 2q1k2)

+2(q2k2)(q1q + q1k2)) + q′21 q
2
1

(q2k2)(q′2k1)
k2
1k

2
2

])
+

+ (qi ↔ q′i) . (D.1)

Terms in Eq. (D.1) with x1 in the denominators require subtraction, so that
the prescription (3.41) is important for them (and only for them). Note that
neither the integrand in Eq. (D.1) itself, nor the subtraction terms contain
non-integrable infrared singularities. Nevertheless, the integral J3 has a pole
at ε = 0. The pole comes from the ultraviolet region. Evidently, the ultravi-
olet divergency is artificial and appears as a result of the separation shown in
Eq. (4.9). It is easy to see from Eqs. (4.12) and (4.13) that the terms leading
to such divergencies cancel in the sum A2 +A3.
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The integration over k1 is performed using a standard Feynman parame-
terization. The basic integrals are

∫
d2+2εk1

π1+εΓ(1− ε)
1
t̃1t̃′2

= x1x2

∫ 1

0

dz

Q2(1−ε)
,

∫
d2+2εk1

π1+εΓ(1− ε)
kµ

i

t̃1t̃′2
= x1x2

∫ 1

0

dzrµ
i

Q2(1−ε)
,

∫
d2+2εk1

π1+εΓ(1 − ε)
kµ
1 k

ν
2

t̃1t̃′2
= x1x2

∫ 1

0

dz

Q2(1−ε)

(
rµ
1 r

ν
2 −

gµν

2ε
Q2

)
, (D.2)

where

Q2 = −x(1− x)(q21z + q′21 (1− z))− z(1− z)(q22x+ q′22 (1− x)− q2x(1− x)) ,

r1 = zxq1 +(1− z)(xk− (1−x)q′2), r2 = z((1−x)k−xq2)+ (1− z)(1−x)q′1.
(D.3)

The integrals with t̃1t̃
′
2k

2
i can be calculated joining first t̃1 and t̃′2 and then

k2
i . We have
∫

d2+2εk1

π1+εΓ(1− ε)
1

t̃1 t̃′2k
2
i

= −x1x2(1 − ε)
∫ 1

0

dz

∫ 1

0

ydy

(y (µ2
i + yr2i ))2−ε ,

∫
d2+2εk1

π1+εΓ(1− ε)
kµ

i

t̃1t̃′2k2
i

= −x1x2(1− ε)
∫ 1

0

dz

∫ 1

0

dyy2rµ
i

(y (µ2
i + yr2i ))2−ε

= −x1x2

∫ 1

0

dzrµ
i

µ2
iQ

2
+O(ε) ,

∫
d2+2εk1

π1+εΓ(1− ε)
kµ

i k
ν
i

t̃1t̃′2k2
i

= −x1x2(1 − ε)
∫ 1

0

dz

∫ 1

0

ydy

(y (µ2
i + yr2i ))

2−ε

(
y2rµ

i r
ν
i −

gµνy
(
µ2

i + yr2i
)

2(1− ε)

)

= −x1x2

∫ 1

0

dz

[
rµ
i r

ν
i

r2i

(
1
r2i

ln
(
Q2

µ2
i

)
− 1
Q2

)
− gµν

2r2i
ln
(
Q2

µ2
i

)]
+O(ε) ,

(D.4)
where

µ2
i = Q2 − r2i , µ2

1 = −zxq21 − (1− z)(xk2 + (1− x)q′22 ) ,

µ2
2 = −z((1− x)k2 + xq22)− (1− z)(1− x)q′21 . (D.5)
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Finally, the integral with t̃1 t̃
′
2k

2
1k

2
2 can be calculated joining t̃1 and t̃′2, then

the result with k2
1 and subsequently with k2

2 . We obtain∫
d2+2εk1

π1+εΓ(1− ε)
kµ
2 k

ν
1

t̃1t̃′2k
2
1k

2
2

= x1x2(2− ε)(1− ε)
∫ 1

0

∫ 1

0

∫ 1

0

dzydyt3dt

(t (y (µ2
1 + 2kr1)− k2 + t(k − yr1)2))3−ε

×
[
(k − yr1)µ(k − t(k − yr1))ν +

gµν

2(2− ε)
(
y
(
µ2

1 + 2kr1
)− k2 + t(k − yr1)2

)]

= x1x2

∫ 1

0

dz

d

[
−kµkν

(
1
k2

+
Q2

d
L
)
− rµ

2 k
ν

(
1
µ2

2

− µ2
1

d
L
)

−kµrν
1

(
1
µ2

1

− µ2
2

d
L
)

+ rµ
2 r

ν
1

(
1
Q2

+
k2

d
L
)

+
gµν

2
L
]

+O(ε), (D.6)

where

d = µ2
1µ

2
2 + k2Q2 = z(1− z)x(1− x) ((k2 − q21 − q′22 )(k2 − q′21 − q22) + k2q2

)
+q21q

2
2xz(x+z−1)+q′21 q

′2
2 (1−x)(1−z)(1−x−z), L = ln

(
µ2

1µ
2
2

−k2Q2

)
. (D.7)

At arbitrary D we have

J3 =
∫ 1

0

dx

∫ 1

0

dz

{
− 1 + ε

ε
q1q
′
1

(
x1x2Q

2ε +
2
x1

(
x2Q

2ε −Q2ε
0

))

+
1 + ε

2Q2(1−ε)
x1x2(q21 − 2q1r1)(q′21 − 2q′1 r2)−

2
x1

[
(x2q1q

′
1 (r1(q′1 − r2))

−q′21 q1r2
) 1
Q2(1−ε)

+
(
z(1− z)q′22 q1q′1 + q′21 (zq1k + (1− z)q1q′1)

) 1

Q
2(1−ε)
0

]

+
1

Q2(1−ε)

(
q′21 q1 (r1 − 2q′1) + 4x1q

2
1(q
′
1r2) + q′1q1(q

′
1q1 − q′1r1 − q1r2)

+2(q′1r1)(q1r2)− 2(q′1r2)(q1r1)
)

+ q′21

∫ 1

0

ydy

[
1

(y(µ2
2 + yr22))

1−ε

×
(
−x2

x1
q1(q′1 + k) + x2q1q

′
1 + q1q2

)
− y(1− ε)

(y(µ2
2 + yr22))

2−ε
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×
(

2
x2

x1
(q1r2)(q′1k − y(q′1 + k)r2) + x2(q′1r2)(q

2
2 − k2 + 2yq1r2)

+2(q2r2)(q1(q+yr2))
)

+
1

(y(µ2
0 + yr20))

1−ε

(
1
x1
q1(q′1 + k)

)
+

y(1− ε)
(y(µ2

0 + yr20))
2−ε

×
(

2
x1

(q1r0)(q′1k − y(q′1 + k)r0)
)

+ (2− ε)(1 − ε)q21

×
∫ 1

0

t3dt

(t (y (µ2
1 + 2kr1)− k2 + t(k − yr1)2))3−ε

(
(q2(k−yr1))((k−t(k−yr1))q′2)

+
q2q
′
2

2(2− ε)
(
y
(
µ2

1 + 2kr1
)− k2 + t(k − yr1)2

))]}
+ (qi ↔ q′i) , (D.8)

where

Q2
0 = −z(1−z)q′22 , µ2

0 = −zk2−(1−z)q′21 , r0 = zk+(1−z)q′1, r20 = Q2
0−µ2

0.
(D.9)

In the limit ε→ 0 we arrive at Eq. (4.31).
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