
Siberian Branch of Russian Academy of Science

BUDKER INSTITUTE OF NUCLEAR PHYSICS

A.V. Bogdan, V.S. Fadin

A PROOF OF THE REGGEIZED FORM
OF AMPLITUDES WITH QUARK EXCHANGES

Budker INP 2004-75

Novosibirsk
2004



A proof of the reggeized form
of amplitudes with quark exchanges1

A.V. Bogdan†, V.S. Fadin‡

‡ Budker Institute of Nuclear Physics
† and Novosibirsk State University

630090 Novosibirsk, Russia

Abstract

A complete proof of the quark Reggeization hypothesis in the lead-
ing logarithmic approximation for any quark-gluon inelastic process in
the multi-Regge kinematics in all orders of αs is given. First, we show
that the multi-Regge form of QCD amplitudes is guarantied if a set
of conditions on the Reggeon vertices and the trajectories is fulfilled.
Then, we examine these conditions and show that they are satisfied.

c©Budker Institute of Nuclear Physics SB RAS

1Work supported by the Russian Fund of Basic Researches, projects 03-02-16529-a,
04-02-16685-a.†email address: A.V.Bogdan@inp.nsk.su
‡email address: Fadin@inp.nsk.su



1 Introduction
Along with the Pomeron, which appears in QCD as a compound state of two
Reggeized gluons [1], the hadron phenomenology requires Reggeons, which
can be constructed as colorless states of Reggeized quarks and antiquarks.
It demands further development of the theory of quark Reggeization [2] in
QCD. Till now, this theory remains less developed than the Reggeized gluon
theory, although a noticeable progress was achieved in the last years, in par-
ticular, the multi–particle Reggeon vertices required in the next–to–leading
approximation (NLA) were found [3], and the next–to–leading order (NLO)
corrections to the vertices appearing in the the leading logarithmic approxi-
mation (LLA) were calculated [4, 5]. All these calculations were performed
assuming the quark Reggeization hypothesis. However, this hypothesis was
not proved even in the LLA, where merely its self–consistency was shown, in
all orders of αs, but only in a particular case of elastic quark–gluon scatter-
ing [2]. Recently, the hypothesis was tested at the NLO in order α2

s in [6],
where its compatibility with high-energy behaviour of the two–loop quark–
gluon scattering amplitude was shown and the NLO correction to the quark
trajectory was found in the limit of the space–time dimension D → 4. Then,
by the explicit two–loop calculations with the help of s–channel unitarity
[7] the hypothesis was checked and corresponding correction to the quark
trajectory was found at arbitrary D.

In this paper we suggest a complete proof of the quark Reggeization hy-
pothesis in the LLA for any quark–gluon inelastic process in all orders of αs.
The proof is based on the relations required by compatibility of the multi–
Regge form of QCD amplitudes with the s–channel unitarity (bootstrap re-
lations). We derive these relations and show that their fulfilment guaranties
the multi–Regge form. Fulfilment of bootstrap relations is secured by several
conditions (bootstrap conditions) on the Reggeon vertices and trajectories.
We explicitly show that these conditions are satisfied by the known expres-
sions for the vertices and trajectories. The method of the proof is similar to
one used for proving of the gluon Reggeization in the NLA [8], but instead
of passing to partial waves we apply recently introduced operator formalism
[9] extended to consideration of inelastic amplitudes and quark exchanges.
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The paper is organized as follows. In the next Section necessary deno-
tations, kinematics definition as well as the form of the multi–Regge inelas-
tic amplitudes are introduced and explicit expressions for particle–particle–
Reggeon, Reggeon–Reggeon–particle vertices and quark and gluon trajecto-
ries are given. The bootstrap relations are derived in Section 3. Section 4
is devoted to calculation of the s–channel discontinuities of the amplitudes.
The bootstrap conditions for Reggeon vertices and trajectory are derived in
Section 5. In the subsequent Section 6 these bootstrap conditions are verified.
Section 7 concludes the paper.

2 The multi–Regge form of QCD amplitudes
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Figure 1: Schematic representation of the process A + B → A′ + P1 + · · · +
Pn + B′.

The only kinematics which is essential in the LLA is the multi–Regge
kinematics (MRK) which means that all particles participating in a high–
energy process are well separated in the rapidity space and have limited
transverse momenta.

Let us consider the process A+B → A′ +P1 + ....+Pn +B′ in the MRK.
We will use light-cone momenta n1 and n2, n2

1 = n2
2 = 0, (n1n2) = 1,

and denote (pn2) ≡ p+, (pn1) ≡ p−, so that pq = p+q− + p−q+ + p⊥q⊥,
where the sign ⊥ means transverse to the (n1, n2) plane components. We
assume that initial momenta pA and pB (see Fig. 1 for denotations) have
predominant components along n1 and n2 respectively. For generality we do
not assume that transverse components pA⊥ and pB⊥ are zero, but |p2

A⊥| ∼
|p2

B⊥| ∼ p2
A ∼ p2

B � p+
Ap−B and remain limited (do not grow) at p+

Ap−B → ∞.
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For the final particle momenta ki, i = 0, ...., n + 1, we assume the MRK
conditions:

k−
0 � k−

1 � . . . � k−
n � k−

n+1 ,

k+
n+1 � k+

n � . . . � k+
1 � k+

0 , (1)

and ki⊥ are limited. It ensures that the squared invariant masses sij =
(ki + kj)2 are large compared with the squared transverse momenta; at i < j

sij ≈ 2k+
i k−

j =
k+

i

k+
j

(k2
j − k2

j⊥) =
k−

j

k−
i

(k2
i − k2

i⊥) , (2)

and at i < l < j submit to relations

silslj ≈ sij(k2
l − k2

l⊥) . (3)

For the momentum transfers qi, i = 1, . . . , n + 1,

q1 = k0 − pA , qj+1 = qj + kj , (j = 1, . . . , n) , (4)

we have
q2
i ≈ q2

⊥ . (5)

High energy behaviour of amplitudes in the MRK is determined by exchanges
in qi channels. The largest (∼ sAB ≡ (pA + pB)2) are amplitudes with gluon
exchanges in all channels; such exchanges give factors si ≡ si−1i for each of
qi–channel, and product of all these factors gives sAB due to (3). A quark
(antiquark) in a channel with momentum qj leads to loss of (sj)1/2.

Our goal is to prove that the amplitude A2→n+2 of the process A + B →
A′ + P1 + .... + Pn + B′ has the multi–Regge form

AR
2→n+2 = Γ̄R1

A′A
sω1
1

d1
γP1
R1R2

sω2
2

d2
.....γPn

RiRn+1

s
ωn+1
n+1

dn+1
ΓRn+1

B′B , (6)

where Γ̄R
A′A and ΓR

B′B are the particle–particle–Reggeon (PPR) effective ver-
tices, describing P → P ′ transitions due to interaction with Reggeons R;
for the gluon quantum numbers in qi channel ωi = ωG(qi) is the gluon Regge
trajectory and di ≡ di(qi) = q2

i⊥; for the quark numbers ωi = ωQ(qi) is the
quark Regge trajectory and di ≡ di(qi) = m− q̂i⊥; γPi

RiRi+1
are the Reggeon–

Reggeon–particle (RRP) effective vertices, describing production of particles
Pi at Reggeon transitions Ri+1 → Ri. For definiteness we do not consider
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Figure 2: The Reggeon–Reggeon–Particle vertices.

here the antiquark quantum numbers in any of qi channels. It determines
the order of the multipliers in (6). At that, our consideration does not lose
generality, since amplitudes with quark and antiquark exchanges are related
by charge conjugation.

In order to perform consideration of processes with gluon and quark ex-
changes in an unified way we introduced in (6) denotations slightly different
from usually used. We denote particles and Reggeons by symbols which ac-
cumulate all their quantum numbers. We will use the letter P for particles
and the letter R for Reggeons independently of their nature, the letters G
and Q for ordinary gluons and quarks and G and Q for Reggeized ones. In
these denotations we have for the PPR vertices

ΓG
G′G = −2g p−GT G

G′G(e∗G′
⊥
eG⊥), ΓG

Q′Q = g ūQ′tGγ−uQ, ΓG
Q̄′Q̄ = −g ῡQ̄tGγ−υQ̄′ ,

Γ̄G
G′G = −2g p+

GT G
G′G(e∗G′

⊥
eG⊥), Γ̄G

Q′Q = g ūQ′tGγ+uQ, Γ̄G
Q̄′Q̄ = −g ῡQ̄tGγ+υQ̄′ ,

(7)
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ΓQ
G′Q = −gtG

′
ê∗G′⊥uQ , ΓQ

Q̄′G = −gtGêG⊥υQ̄′ ,

Γ̄Q
G′Q̄ = −gῡQ̄tG

′
ê∗G′⊥ , Γ̄Q

Q′G = −gūQ′tGêG⊥ . (8)

As usually, we do not write colour and spinor quark indices; T G and tG are
the color group generators in the adjoint and fundamental representations.
Here and in the following the physical light–cone gauges

(eP kP ) = (eP n2) = 0, eP = eP⊥ − (eP⊥kP )
k+

P

n2 (9)

and
(eP kP ) = (eP n1) = 0, eP = eP⊥ − (eP⊥kP )

k−
P

n1 (10)

are assumed for polarization vectors eP of particles P having momenta kP

with predominant components along n1 and n2 respectively.
For production of gluon with momentum kG = q2 − q1 and polarization

vector e in transition R2 → R1 of Reggeons with momenta q2 and q1 we have
[10] for the case of Reggeized gluons in both channels (see Fig. 2a)

γG
G1G2

= −gT G
G1G2

e∗µCµ(q2, q1) ,

Cµ(q2, q1) = −(q1 + q2)
µ
⊥ − nµ

1

(
k+

G +
q2
1⊥
k−

G

)
+ nµ

2

(
k−

G +
q2
2⊥
k+

G

)
, (11)

and (see Fig. 2b))

γG
Q1Q2

= −g tG e∗µPµ(q2, q1) ,

Pµ(q2, q1) = γµ
⊥ − (m − q̂1⊥)

nµ
1

k−
G

+ (m − q̂2⊥)
nµ

2

k+
G

(12)

in the case of Reggeized quarks [2]. It is easy to check, that these vertices
are gauge invariant, since

Cµ(q2, q1)kGµ = Pµ(q2, q1)kGµ = 0 . (13)

In the gauges (9) and (10) the vertices can be presented as

γG
G1G2

= 2gT G
G1G2

e∗⊥

(
q1⊥ + kG⊥

q2
1⊥

k2
G⊥

)
,

γG
Q1Q2

= −gtG e∗⊥

(
γ⊥ − 2(m − q̂1⊥)

kG⊥
k2

G⊥

)
, (14)
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and

γG
G1G2

= 2gT G
G1G2

e∗⊥

(
q2⊥ − kG⊥

q2
2⊥

k2
G⊥

)
,

γG
Q1Q2

= −gtG e∗⊥

(
γ⊥ + 2(m − q̂2⊥)

kG⊥
k2

G⊥

)
(15)

respectively.
The vertices for quark (antiquark) production were found in [2]. For the

case of Reggeized gluon in the q1 channel (see Fig. 2c) we have

γQ
G1Q2

= g ūQ
q̂1⊥
k+

Q

tG1 , (16)

and in the q2 channel (see Fig. 2d)

γQ̄
Q1G2

= −gtG2
q̂2⊥
k−

Q̄

υQ̄ . (17)

In terms of integrals in the transverse momentum space the Reggeon
trajectories are presented as

ωG(q) =
Nc

2
g2q2

(2π)D−1

∫
dD−2k⊥

k2
⊥(q − k)2⊥

,

ωQ(qi) = CF
g2

(2π)D−1
(m − q̂⊥)

∫
dD−2k⊥

(m − k̂⊥)(q − k)2⊥
, (18)

where Nc = 3 for QCD is number of colours, D = 4 + 2ε is the space–time
dimension taken different from 4 to regularize infrared divergences.

In the following we will need more general multi–particle amplitudes
AR

2+n1→2+n2
, but in the same multi–Regge kinematics. Assuming the same

ordering in longitudinal components, the amplitudes AR
2+m→2+n−m can be

obtained from AR
2→n+2 by usual crossing rules. Note that in (6) we neglect

imaginary parts of the amplitude since they are subleading. Therefore the
crossing rules for the transition to the amplitudes do not affect the Regge
factors sωi

i .
Here it seems sensible to make two remarks. The first one is that the

hypothesis (6) means much more than it is usually included in the notion
"Reggeization" of elementary particles. It means not only existence of the
Reggeons with gluon and quark quantum numbers and trajectories (18), but
also that in the LLA all the MRK amplitudes are determined only by the

8



Reggeon exchanges, i.e. only amplitudes with Reggeon quantum numbers
(that means, in particular, colour octet for pure gluon exchanges and colour
triplet for exchanges with flavour) do survive. The second remark concerns
signature. As compared with ordinary particles Reggeons possess additional
quantum numbers – signature, negative for the Reggeized gluon and positive
for the Reggeized quark. Therefore, in order to affirm that the amplitude is
given by the Reggeon exchanges we need to show that it has corresponding
signatures in all qi–channels.

In order to construct amplitudes with definite signatures one needs to per-
form "signaturization". In general the signaturization is not a simple task.
It requires partial-wave decomposition of amplitudes in cross-channels with
subsequent symmetrization (anti–symmetrization) in "scattering angles" and
analytical continuation into the s–channel. The procedure is relatively simple
only in the case of elastic scattering of spin-zero particles. At that, generally
speaking, even in this case the amplitudes with definite signatures can not be
expressed in terms of physical amplitudes related by crossing. Fortunately,
at high energy the signaturization can be easily done not only for elastic, but
in the MRK also for inelastic amplitudes, for particles with spin as well as for
spin–zero ones. The signaturization (as well as crossing relations) is naturally
formulated for "truncated" amplitudes, i.e. for amplitudes with omitted wave
functions (polarization vectors and Dirac spinors). The crucial points are that
in the MRK all energy invariants sij are large and that they are determined
only by longitudinal components of momenta (sij = 2p+

i p−j , i < j). Due to
largeness of sij signaturization in the ql–channel means symmetrization (anti–
symmetrization) with respect to the substitution sij ↔ −sij , i < l ≤ j.
Since sij are determined by longitudinal components, it can be considered
as the substitution k±

i ↔ −k±
i , i < l, p±A ↔ −p±A (or, equivalently,

k±
j ↔ −k±

j , j ≥ l, p±B ↔ −p±B) in truncated amplitudes without change
of transverse components. Note that such substitution does not violate mo-
mentum conservation due to strong ordering of the longitudinal components
(1). At that, all particles remain on their mass shell, so that the substitution
is equivalent to transition into the cross-channel.

In order to understand behaviour of the amplitudes (6) under the signa-
turization it is convenient to take the gluon production vertices in the physical
light–cone gauges with gauge–fixing vectors n2 or n1 (see (14), (15)). At that,
it becomes evident that they do not depend on longitudinal components of
momenta, as well as the PPR vertices for the Reggeized quark (8) after omit-
ting of wave functions. On the contrary, the quark and antiquark production
vertices (16) and (17) contain explicitly longitudinal components, so that they
change their signs at the transition into the cross-channel. The same is true

9



for the PPR vertices with the Reggeized gluon (7): for the vertices for gluon
scattering because they are proportional to longitudinal components, and for
the vertices for quark and antiquark scattering because of difference in their
signs. After these remarks, with account of the fact that in the LLA change
of signs of si does not affect the Regge factors, it is not difficult to see that
the amplitudes (6) are invariant with respect to the signaturization described
above, i.e. they have corresponding signatures in each of the qi–channels.

3 Bootstrap relations
The proof of the form (6) is based on use of the s–channel unitarity, which pro-
vides us with discontinuities discsij (i.e. imaginary parts) of the amplitudes
in the sij channels. We need to connect the amplitudes themselves (which are
real in the LLA) with these discontinuities. It is not difficult to do for elastic
amplitudes. Unfortunately, it is quite not so for inelastic amplitudes. Ana-
lytical properties of the production amplitudes are very complicated even in
the MRK [11]. But fortunately, it turns out, that in the LLA these properties
are greatly simplified and allow us to express partial derivatives ∂/∂ ln(si) of
the amplitudes, considered as a function of si, i = 1 . . . n + 1, and transverse
momenta, in terms of the discontinuities of the signaturized amplitudes. It
permits us to find all the MRK amplitudes loop by loop in the perturbation
theory, using the Born form of these amplitudes and the unitarity relations.
Note that in the Born approximation the representation (6) was proved in
[1, 2] with the help of the t–channel unitarity.

For the elastic amplitude the partial derivative ∂/∂ ln s can be expressed
in terms of the s–channel discontinuity quite easily. For the signaturized am-
plitudes radiative corrections depend on s only in the form (lnn(−s) + lnn s)
independently of signature. With the LLA accuracy we can put

1
−πi

discs (lnn(−s) + lnn s) =
∂

∂ ln s
[lnn(−s) + lnn s] . (19)

Therefore we have (the superscript S means signaturization)

1
−πi

discs

[
AS

2→2

]
/ABorn

2→2 =
∂

∂ ln s

[
AS

2→2/A
Born
2→2

]
. (20)

Division by the Born amplitude is performed in order to differentiate s–
dependence of radiative corrections only.

In the case of A2→2+n the main complication is that instead of s we have
(n + 2)(n + 1)/2 large invariants sij = (ki + kj)2, which are not independent
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because of the equalities (3). Equalities like (20) connecting discontinuities
in each of the channels and corresponding derivatives of the amplitude do
not exist. However there are equalities [12] connecting definite combinations
of the discontinuities and the derivatives ∂/∂si :

1
−πi

(
n+1∑

l=k+1

discskl
−

k−1∑
l=0

discslk

)
AS

2→n+2/A
Born
2→n+2 =

(
∂

∂ ln sk+1
− ∂

∂ ln sk

)[
AS

2→n+2(si)/ABorn
2→n+2

]
.

(21)

Here in the r.h.s. the amplitude is expressed in terms of si, i = 1 . . . n + 1,
and transverse momenta; the index k takes values from 0 to n + 1.

Equalities (21) can be easily proved with use of the Steinmann relations,
or, more definitely, of the statement [11] that the amplitude can be presented
as a sum of contributions corresponding to various sets of n+1 nonoverlapping
channels sikjk

, ik < jk, k = 1 . . . n + 1; at that each of the contributions
can be written as a signaturized series in logarithms of energy variables sikjk

with coefficients which are real function of transverse momenta. Remind that
two channels si1j1 and si2j2 are called overlapping if either i1 < i2 ≤ j1 < j2,
or i2 < i1 ≤ j2 < j1. What is important:

— energy variables sikjk
are independent, since the relations (3) concern

with overlapping channels; it means, in particular, that we need to consider
only leading orders in logarithms of these variables;

— we need not to consider the coefficients depending on transverse mo-
menta neither calculating the discontinuities, nor calculating derivatives over
ln si.

Therefore, since scattering amplitudes enter the relations (21) linearly
and uniformly, it is sufficient to prove these relations in the leading order for
the symmetrized products

SP = Ŝ
n+1∏

i<j=1

(−sij)αij (22)

instead of AS
2→2+n/ABorn

2→2+n. Here the exponents αij ∼ g2 are different
from zero only for some set of nonoverlapping channels and are arbitrary
in all other respects; Ŝ means symmetrization with respect to simultaneous
change of signs of all sij with i < k ≤ j, performed independently for each
k = 1 . . . n+1. Indeed, due to above mentioned arbitrariness of αij fulfilment
of (21) for SP guarantees it for any logarithmic series.
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With αij ∼ g2 calculating discontinuity of SP in one of the invariants sij

we can neglect in the leading order signs of other invariants, so that we have

1
−πi

(
n+1∑

l=k+1

discskl
−

k−1∑
l=0

discslk

)
SP =

(
n+1∑

l=k+1

αkl −
k−1∑
l=0

αlk

)
SP. (23)

From other hand, taking into account that with the LO accuracy,

(sij)αij =
j∏

l=i+1

s
αij

l , (24)

we have

(
∂

∂ ln sk+1
− ∂

∂ ln sk

)
SP =

⎛
⎝ ∑

i<k+1,j≥k+1

αij −
∑

i<k,j≥k

αij

⎞
⎠SP

=

(
n+1∑

l=k+1

αkl −
k−1∑
l=0

αlk

)
SP. (25)

From (23) and (25) it follows that the equalities (21) are fulfilled.
These equalities allow us to express all partial derivatives ∂/∂ ln(sk)A2→2+n

through the discontinuities. Note that from n + 2 equalities (21) considered
as equations for the derivatives only n + 1 are linear independent, that can
be easily seen taking sum of the equations over k = 0 . . . n + 1. Note here
that requirement of equality of mixed derivatives taking in different orders
imposes strong restrictions on the discontinuities. If they are fulfilled, the
amplitude is unambiguously defined by its value at ln si = 0, i.e. in the
Born approximation. It means that the equalities (21) permit to find in the
LLA all the MRK amplitudes using the Born approximation for them and
the s–channel unitarity. Indeed, at some number L of loops the discontinu-
ities entering (21) can be expressed with the help of the s–channel unitarity
through the amplitudes with smaller number of loops. Therefore starting
with the expression (6) in the Born approximation (as it was already men-
tioned, in this approximation it was proved for arbitrary n [1, 2] with the
help of the t–channel unitarity) we can calculate loop–by–loop all radiative
corrections to the Born amplitudes and examine the formula (6).

Instead of such calculations it is sufficient, since the amplitudes are de-
termined unambiguously, to check that the Reggeized form (6) satisfies (21).
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Substituting (6) into the r.h.s. of (21) we obtain the bootstrap relations:

1
−πi

(
n+1∑

l=k+1

discskl
−

k−1∑
l=0

discslk

)
AS

2→2+n

= Γ̄R1
A′A

sω1
1

d1

k∏
i=2

(
γ

Pi−1
Ri−1Ri

sωi

i

di

)[
γPk

RkRk+1
ωk+1 − ωkγPk

RkRk+1

]

× s
ωk+1
k+1

dk+1

n+1∏
i=k+2

(
γ

Pi−1
Ri−1Ri

sωi

i

di

)
ΓRn+1

B′B .

(26)

In the l.h.s. of these equations the discontinuities must be calculated using
the unitarity relations and the anzats (6). Since number of the bootstrap
relations is infinite it is quite nontrivial to satisfy all of them using only
several Reggeon vertices and trajectories. A crucial for the Reggeization
hypothesis fact, which is demonstrated below, is that all these relations are
fulfilled if the Reggeized vertices and trajectories satisfy several equations
called bootstrap conditions. In the following we derive these conditions and
demonstrate that they are satisfied.

4 Calculation of the discontinuities

A B

A′ B′

Figure 3: Schematic representation of the s–channel discontinuity
discsA

S
AB→A′B′ .

Let us start with the elastic amplitude. For the process A + B → A′ +B′
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the discontinuity is

discsA
S
AB→A′B′ = i

∞∑
n=0

Ŝ
∫

AR
AB→n+2A

R
A′B′→n+2dρn+2, (27)

where Ŝ is the signaturization operator, the sum is taken over discrete quan-
tum states of intermediate particles as well as over their number, dρn+2 is
their phase–space element, and the hermicity property of the amplitudes (6)
is used. The discontinuity is presented schematically at Fig. 3, where the
circles on the lines AA′ and BB′ mean the signaturization (evidently its
execution for both lines gives the same result as for one of them).

To calculate the discontinuity we need to convolute Reggeon vertices and
to integrate over momenta of particles in the intermediate states. All con-
volutions are known long ago [1, 2]. The important fact is that they do not
depend on longitudinal momenta. In order to present them, and then the
discontinuities, in a compact way it is convenient to use operator denotations
in the transverse momentum, colour and spin space. We will use also deno-
tations which accumulate all these quantum numbers. Thus, 〈Gi| and |Gi〉
are "bra"– and "ket"–vectors for the t– channel states of the Reggeized gluon
with transverse momentum ri⊥ and colour index ci. It is convenient to define
the scalar product

〈Gi|Gj〉 = r2
i⊥δ(ri⊥ − rj⊥)δcicj . (28)

Analogously, 〈Qi| and |Qi〉 with the scalar product

〈Qi|Qj〉 = (m − r̂i⊥)ρiρj δ(ri⊥ − rj⊥)δαiαj (29)

denote the t– channel states of the Reggeized quark with transverse momen-
tum ri⊥, colour index αi and spinor index ρi. We will use the letter R for
denotation of Reggeon states independently of their nature. In the following
we will use the letters Gi and Qi also as colour indices, instead of ci and
αi. The states with two Reggeons are built from the above ones. At that
it is convenient to distinguish the states |RiRj〉 (with corresponding "bra"–
vectors 〈RiRj | )and |RjRi〉 . We will associate the first of them with the
case when the Reggeon Ri turns up in the lower part of Fig. 3, i.e. in the
amplitude AR

AB→n+2, and the second with the case when it turns up in the
upper part of Fig. 3, i.e. in the amplitude AR

n+2→A′B′ . We define three types
of states

|GiGj〉 = |Gi〉|Gj〉, |GiQj〉 = |Gi〉|Qj〉, |QiGj〉 = |Qi〉|Gj〉. (30)
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States of different types are orthogonal one another. All states create a
complete set, i.e.

〈Ψ|Φ〉 =
∫
〈Ψ|G1G2〉d

D−2r1⊥dD−2r2⊥
r2
1⊥r2

2⊥
〈G1G2|Φ〉

+
∫
〈Ψ|Q1G2〉d

D−2r1⊥dD−2r2⊥
(m − r̂1⊥)r2

2⊥
〈Q1G2|Φ〉

+
∫
〈Ψ|G1Q2〉d

D−2r1⊥dD−2r2⊥
(m − r̂2⊥)r2

1⊥
〈G1Q2|Φ〉, (31)

where summation over colour and spin indices is assumed.
Interaction of scattering particles with Reggeons is described by so called

impact factors. We define them as projections of t-channel states |B̄′B〉 and
〈A′Ā| on the two-Reggeon states:

〈R1R2|B̄′B〉 = δ(r1⊥+r2⊥−qB⊥)
1

2p−B

∑
P

(
ΓR2

B′P ΓR1
PB ± ΓR2

B̄P
ΓR1

PB̄′

)
, (32)

where the + (−) sign stands for a fermion (boson) state in the t–channel,
qB = pB − pB′ , the sum is taken over quantum numbers of particles P (at
that, these particles can be different in the first and the second terms) and
the factor 1/p−B is included in the definition for convenience. The factor 1

2
and the last term in (32) serves for account of the signaturization; at that,
the bar over particle symbols means, as usually, antiparticles, while ΓR2

B̄P
and

ΓR1
PB̄′ are obtained from ΓR2

B̄P
and ΓR1

PB̄′ correspondingly (see (7), (8)) taking
instead of wave functions (polarization vectors and Dirac spinors) of B̄ and
B̄′ the wave functions of B and B′ from the first term.

Quite analogously,

〈A′Ā|R1R2〉 = δ(r1⊥ +r2⊥−qA⊥)
1

2p+
A

∑
P

(
Γ̄R2

A′P Γ̄R1
PA ± Γ̄R2

ĀP Γ̄R1
PĀ′

)
, (33)

where qA = pA′ − pA.
We introduce the operator K̂r of Reggeon-Reggeon interaction, related

to real particle production. It is defined by its matrix elements between the
two-Reggeon states, which are expressed in terms of convolutions of the RRP
vertices. The important remark which must be made here is that, because
of the anticommutativity of the fermion operators the sign of the amplitude
depends on their order in the definition of the state vectors. We have defined
the amplitudes AR (6) without worrying about their signs or fixing this order,

15



as if the operators were commutative. However in (27) the relative signs of
the amplitudes must be taken into account. In order to do this we must
associate a factor -1 with each antiquark in the intermediate state (that can
be easily understood from the Cutkosky rules). We define:

〈R1R2|K̂r|R′
1R′

2〉 = δ(q′⊥ − q⊥)
1

2(2π)D−1

∑
P

γP
R1R′

1
γ
R2R′

2
P , (34)

where q⊥ = r1⊥+r2⊥, q′⊥ = r′1⊥+r′2⊥. In this formula we account the above
remark concerning −1 for each antiquark in intermediate state by insertion
−1 into the definition of the vertex γ

G2Q′
2

Q̄
:

γ
G2Q′

2
Q̄

= g ῡQ̄

p̂G2⊥
k+

Q̄

tG2 , (35)

γ
Q2G′

2
Q = g tG

′
2
p̂G′

2⊥
k−

Q

uQ ; (36)

and the vertices γ
R2R′

2
G are obtained from γG

R2R′
2

(see (14)), (15)) by the
substitution kG → −kG (in accordance with momentum conservation) and
e∗G → eG. We introduce also the operator Ω̂, so that

Ω̂ |R1R2〉 = (ωR1(r1⊥) + ωR2(r2⊥)) |R1R2〉 . (37)

Denoting momenta of intermediate particles by ki, we have for the phase
space element in (27)

dρn+2 = (2π)Dδ(pA + pB −
n+1∑
i=0

ki)
n+1∏
i=0

dD−1ki

2k0
i (2π)D−1

=
(2π)D

p+
Ap−B

δ(pA⊥ + pB⊥ −
n+1∑
i=0

ki⊥)
n∏

j=1

dyi

n+1∏
i=0

dD−2ki⊥
2(2π)D−1

, (38)

where yi = ln k+
i – rapidities of the produced particles, obeying the conditions

ln p+
A ≡ yA > y1 > . . . > yn > yB ≡ − ln p−B . (39)

Note that we have included the factors 1/p−B and 1/p+
A in the definitions of the

impact–factors (32) and (33), and the factors (2(2π)D−1)−1 from produced
particles Pi in the definition of the matrix elements of the kernel (34). Now,
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taking into account that with the LLA accuracy sωi

i = eωi(yi−1−yi), we can
present the discontinuity (27) in the form

δ(qA⊥ − qB⊥)discsA
R
AB→A′B′ =

i
4(2π)D−2

〈A′Ā|Ĝ(Y )|B̄′B〉 , (40)

where qB⊥ = pB⊥ − pB′⊥, qA⊥ = pA′⊥ − pA⊥, Y = yA − yB and

Ĝ(Y ) =
∞∑

n=0

⎛
⎝ yA∫

yB

eΩ̂(yA−y1)dy1K̂r

y1∫
yB

eΩ̂(y1−y2)dy2K̂r

× · · · ×
yn−1∫
yB

eΩ̂(yn−1−yn)dynK̂reΩ̂(yn−yB)

⎞
⎠ . (41)

It is easy to see that the Green–function operator obeys the equation

dĜ(Y )
dY

= K̂Ĝ(Y ) , (42)

where
K̂ = Ω̂ +K̂r , (43)

with initial condition Ĝ(0) = 1, so that

Ĝ(Y ) = eK̂Y = sK̂ . (44)

Eqs. (40) and (44) give the the operator representation of the discontinuities
of elastic amplitudes.

pA

k0

pB

kn+1

qn+1qj+1

kj+1

qiq1

k1

ki kl kj

A

A′

B

B′P1 Pi

Pl
Pj Pj+1

Figure 4: Schematic representation of the sij–channel discontinuity
discsij A

S
2→n+2.
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To give analogous representations for discontinuities of inelastic ampli-
tudes we need to define new operators and new matrix elements. Let us con-
sider the discontinuity schematically presented at Fig. 4, where the circles,
as well as in Fig. 3, mean the signaturization. Analogously to the impact fac-
tors for scattering particles we define the impact factors for Reggeon–particle
transitions as (compare with (32))

〈R1R2|P̄jRj+1〉 = δ(r1⊥+r2⊥−qj⊥)
1

2k−
j

∑
P

(
ΓR2

PjP γP
R1Rj+1

± ΓR1
PP̄j

γ
R2Rj+1
P

)
,

(45)
where qj⊥ = q(j+1)⊥ − kj⊥, the + (−) sign stands for the case of boson
(fermion) production; and

〈PiRi|R1R2〉 = δ(r1⊥+r2⊥−q(i+1)⊥)
1

2k+
i

∑
P

(
Γ̄R2

PiP
γP
RiR1

± Γ̄R1
PP̄i

γRiR2
P

)
,

(46)
where q(i+1)⊥ = qi⊥ + ki⊥.

Finally, we introduce the operator P̂l for production of particle Pl with
momentum kl as having the following matrix elements:

〈R1R2|P̂l|R′
1R′

2〉 = δ(q(l+1)⊥ − kl⊥ − ql⊥)

×
(
γPl

R1R′
1
δR2R′

2
δ(r2⊥ − r′2⊥)dR2 + γPl

R2R′
2
δR1R′

1
δ(r1⊥ − r′1⊥)dR1

)
, (47)

where ql⊥ = r1⊥ + r2⊥, q(l+1)⊥ = r′1⊥ + r′2⊥.
Now we are ready to give the operator representation for discontinuities

of the signaturized inelastic amplitudes in the sij–channels. If 0 < i <
j < n + 1 (see Fig. 4) then the value of −4i(2π)D−2δ(qi⊥ − q(j+1)⊥ −∑j

l=i kl⊥) discsij A
S
2→n+2 can be obtained from the r.h.s of (6) by the re-

placement of

γPi

RiRi+1

(
j∏

l=i+1

sωl

l

dl
γPl

RlRl+1

)
−→ 〈Pi,Ri|

(
j−1∏

l=i+1

sK̂l P̂l

)
sK̂j |P̄j ,Rj+1〉.

(48)
Eq. (48) remains valid for i = 0 with the substitutions γP0

R0R1
→ ΓR1

A′A
and 〈P0, R̄0| → 〈A′, Ā|, as well as for j = n + 1, with the substitutions
γ

Pn+1
Rn+1Rn+2

→ ΓRn+1
B′B and |P̄n+1,Rn+2〉 → |B̄′, B〉. The matrix elements are

calculated using the full set of two-Reggeon states (30), the completeness
condition (31) and the definitions of the operators K̂ (43) and P̂l (47) and
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the matrix elements (32), (33), (34), (37), (45) and (46). After derivation of
the discontinuity (27) the substitution (48) is practically evident. In the Born
approximation it follows directly from the above mentioned definitions. The
factors sK̂i appear from sum of contributions of any number of intermediate
particles with rapidities between yi−1 and yi exactly in the same way as the
factor sK̂ in (44).

It completes the calculation of the discontinuities.

5 Bootstrap conditions for the Reggeon
vertices

For elastic amplitudes the bootstrap relation (26) and the representation of
the discontinuity (27) give

〈A′Ā| sK̂ |B̄′B〉 = −δ(qA⊥ − qB⊥)2(2π)D−1Γ̄R
A′AωR

sωR

dR
ΓR

B′B , (49)

where R takes values G and Q. This equation is satisfied if the Reggeon
vertices obey the conditions:

|B̄′B〉 = g|Rω(qB⊥)〉ΓR
B′B, 〈A′Ā| = gΓ̄R

A′A〈Rω(qA⊥)| , (50)

where |Rω(q⊥)〉 are universal (process independent) eigenstates of the kernel
K̂ with the eigenvalues ωR(q)

K̂|Rω(q⊥)〉 = ωR(q⊥)|Rω(q⊥)〉 , 〈Rω(q⊥)|K̂ = 〈Rω(q⊥)|ωR(q⊥) , (51)

and with scalar product

〈R′
ω(q′⊥)|Rω(q⊥)〉 = −δR′Rδ(q′⊥ − q⊥)CR

∫
dD−2r⊥

dR(r⊥)(q − r)2⊥
, (52)

where CG = CA = Nc, CQ = 2CF = (N2
c − 1)/Nc. Note that the conditions

for "ket"– and "bra"–vectors in (50) and (51) are not independent, because
these vectors are related with each other by the change of + and − momenta
components.

It occurs that an infinite number of bootstrap relations for inelastic am-
plitudes requires besides (50)–(52) only one additional condition. This con-
dition can be obtained from the bootstrap relation for amplitudes of the
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process A + B → A′ + P + B′. Taking in (26) n = 1 and k = 0 and writing
corresponding discontinuities according to (48), we have

〈A′Ā| sK̂1

(
P̂1 sK̂2 |B̄′B〉 + |P̄R2〉s

ω2
2

d2
ΓR2

B′B

)

= −δ(qA⊥ + k1⊥ + k2⊥ − qB⊥)2(2π)D−1Γ̄R1
A′Aω1

sω1
1

d1
γP
R1R2

sω2
2

d2
ΓR2

B′B . (53)

This equality will be satisfied if together with (50)–(52) the condition

P̂i |Rω(q(i+1)⊥)〉 g di+1(q(i+1)⊥) + |P̄iRi+1〉 = |Rω(qi⊥)〉 g γPi

RiRi+1
, (54)

where qi⊥ = q(i+1)⊥ − ki⊥, will be fulfilled. For the "bra"–vectors this con-
dition is written as

g di(qi⊥)〈Rω(qi⊥)|P̂i + 〈PiRi| = g γPi

RiRi+1
〈Rω(q(i+1)⊥)| , (55)

where q(i+1)⊥ = qi⊥ + ki⊥. Let us prove that the equalities (50)–(52) and
(54), (55) secure fulfilment of all infinite set of the bootstrap relations (26).
Consider the terms with l = n and l = n + 1 in (26). Corresponding discon-
tinuities are determined by (48). Using (50) and (51) for the sk n+1–channel
discontinuity we obtain that the sum of the discontinuities in the channels
skn and sk n+1 contains

g P̂n |Rω(q(n+1)⊥)〉 + |P̄nRn+1〉 1
dn+1

= |Rω(qn⊥)〉 g γPn

RnRn+1

1
dn+1

. (56)

Here the equation (54) was used. Now the procedure can be repeated: we
can apply to this sum Eqs. (50) and (51), and to the sum of the obtained
result with the sk n−1–channel discontinuity Eq. (54). Thus all sum over
l from k + 1 to n + 1 is reduced to one term. Quite analogous procedure
(with use of the bootstrap conditions for "bra"–vectors) can be applied to
the sum over l from 0 to k − 1. As a result we have that the left part of
(26) with the coefficient −2(2π)D−1δ(q(k+1)⊥ − qk⊥ − kk⊥), where q(k+1)⊥ =
pB⊥ − pB′⊥ −∑n

l=k+1 kl⊥, qk⊥ = pA′⊥ − pA⊥ +
∑k−1

l=1 kl⊥, can be obtained
from the r.h.s. of (6) by the replacement

γPk

RkRk+1
−→ 〈PkRk|Rω(q(k+1)⊥)〉gdk+1 − gdk〈Rω(qk⊥)|P̄kRk+1〉 . (57)

Taking difference of (54) multiplied by g di〈Rω(qi⊥)| and (55) multiplied by
|Rω(q(i+1)⊥)〉g di+1 and using the normalization (52) we obtain

〈PkRk|Rω(qk+1)〉 g dk+1 − g dk 〈Rω(qk)|P̄kRk+1〉
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= −2(2π)D−1δ(q(k+1)⊥ − qk⊥ − kk⊥)

×
(
γPk

RkRk+1
ωRk+1(qk+1) − ωRk

(qk)γPk

RkRk+1

)
. (58)

It concludes the proof.
Thus, fulfilment of the bootstrap conditions (50)–(51) and (54), (55) se-

cures implementation of all infinite set of the bootstrap relations (26).

6 Verification of bootstrap conditions
on Reggeon vertices

Let us start from the impact factors. As it was already mentioned, the
conditions for "ket"– and "bra"–vectors are not independent, so that in the
following we consider only "ket"–vectors. Using the PPR vertices (7) and
the definition of the vertices Γ given after (32) it is easy to obtain

1
2p−G

∑
P

(
ΓG2

G′P ΓG1
PG − ΓG2

GP ΓG1
PG′

)
= −2g2T G

G1G2
p−GT G

G′G(e∗G′
⊥
eG⊥) , (59)

1
2p−Q

∑
P

(
ΓG2

Q′P ΓG1
PQ − ΓG2

Q̄P
ΓG1

PQ̄′

)
= g2T G

G1G2
ūQ′tGγ−uQ , (60)

1
2p−

Q̄

∑
P

(
ΓG2

Q̄′P ΓG1
PQ̄

− ΓG2
QP ΓG1

PQ′

)
= −g2T G

G1G2
ῡQ̄tGγ−υQ̄′ . (61)

Clearly, in the first of these equations intermediate particles P are gluons, in
the first (second) term of the second equation they are quarks (antiquarks)
and in the third equation vise versa. Note that the important fact of disap-
pearance of all t–channel colour states besides the colour octet one is provided
by the signaturization. All these three equations can be presented as

1
2p−B

∑
P

(
ΓG

B′P ΓG1
PB − ΓG2

B̄P
ΓG1

PB̄′

)
= gT G

G1G2
ΓG2

B′B . (62)

Consequently, according to the definition (32), for the case of boson-type
t–channel states the bootstrap condition (50) is fulfilled, and the universal
state |Rω(q⊥)〉, which we call in this case |Gω(q⊥)〉, is defined by the matrix
elements

〈G1G2|Gω(q⊥)〉 = δ(r1⊥ + r2⊥ − q⊥)T G
G1G2

. (63)
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In the following we will show that this state is the eigenstate of the kernel
K̂ with the eigenvalues ωG(q). Now we turn to the fermion-type t–channel
states.

Using the PPR vertices (8) and (7) we obtain

1
2p−G

∑
P

(
ΓQ2

Q̄′P ΓG1
PG + ΓQ2

GP ΓG1
PQ′

)
= −g2tG1tGêG⊥υQ̄′ = gtG1ΓQ2

Q̄′G . (64)

Evidently, here in the first term intermediate particles are gluons and in the
second – quarks. Note that due to the signaturization only t–channel colour
triplet does survive. To obtain (64) one needs to perform commutations of
gamma matrices and to omit leftmost matrices γ−, that can be done due to
the strong ordering (1). The same we will do in the following with rightmost
γ+.

In the same way we obtain

1
2p−Q

∑
P

(
ΓQ2

G′P ΓG1
PQ + ΓQ2

Q̄P
ΓG1

PG′

)
= −g2tG1tG

′
ê∗G′⊥uQ = gtG1ΓQ1

G′Q , (65)

and

1
2p−G

∑
P

(
ΓG2

Q̄′P ΓQ1
PG + ΓG2

GP ΓQ1
PQ′

)
= g2tG2tGêG⊥υQ̄′ = −gtG2ΓQ2

Q̄′G . (66)

1
2p−Q

∑
P

(
ΓG2

G′P ΓQ1
PQ + ΓG2

Q̄P
ΓQ1

PG′

)
= g2tG2tG

′
ê∗G′⊥uQ = −gtG2ΓQ1

G′Q . (67)

These equations give

1
2p−B

∑
P

(
ΓQ2

B′P ΓG1
PB + ΓQ2

B̄P
ΓG1

PB′

)
= gtG1ΓQ1

B′B , (68)

1
2p−B

∑
P

(
ΓG2

B′P ΓQ1
PB + ΓG2

B̄P
ΓQ1

PB′

)
= −gtG2ΓQ1

B′B . (69)

According to the definition (32), the bootstrap condition (50) is fulfilled
for the case of fermion-type t–channel states also, with the universal state
|Qω(q⊥)〉, defined by its matrix elements

〈G1Q2|Qω(q⊥)〉 = δ(r1⊥ + r2⊥ − q⊥)tG1 , (70)

〈Q1G2|Qω(q⊥)〉 = −δ(r1⊥ + r2⊥ − q⊥)tG2 . (71)
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Now let us demonstrate that the states |Gω(q⊥)〉 and |Qω(q⊥)〉 are the eigen-
state of the kernel K̂ with the eigenvalues ωG(q⊥) and ωQ(q⊥) correspond-
ingly. First we need to obtain explicit expressions for matrix elements of the
operator K̂r (34). For matrix elements between states of two Reggeized glu-
ons we obtain, using the vertices (11) (actually it is much more convenient to
take them in any of the gauges (14), (15)) and the definition of γG1G2

G given
just after (34):

〈G1G2|K̂r|G′
1G′

2〉 = δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)
1

2(2π)D−1

∑
G

γG
G1G′

1
γ
G2G′

2
G

= δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)KGG
r (r1⊥, r2⊥; r′1⊥, r′2⊥)

2T a
G1G′

1
T a
G′

2G2

Nc
, (72)

KGG
r (r1, r2; r′1⊥, r′2⊥) =

g2

(2π)D−1

Nc

2

(
(r1⊥ + r2⊥)2 − r2

1⊥r′22⊥ + r2
2⊥r′21⊥

(r1 − r′1)
2
⊥

)
.

(73)
Now it is easy to see that the state |Gω(q⊥)〉 is the eigenstate of K̂ (43).
Indeed, since this operator conserves fermion number, it is sufficient, with
account of the completeness condition (31) and (63), to show that

〈G1G2|K̂r|G′
1G′

2〉〈G′
1G′

2|Gω(q⊥)〉

= δ(r1⊥ + r2⊥ − q) (ωG(q⊥) − ωG(r2⊥) − ωG(r1⊥)) T G
G1G2

. (74)

Using (31), (72) and (73) it is easy to obtain

〈G1G2|K̂r|G′
1G′

2〉〈G′
1G′

2|Gω(q⊥)〉 = δ(r1⊥ + r2⊥ − q)
Nc

2
g2

(2π)D−1

×
∫

dD−2k⊥
k2
⊥

(
q2
⊥

(q − k)2⊥
− r2

1⊥
(r1⊥ − k)2⊥

− r2
2⊥

(r2⊥ − k)2⊥

)
T G
G1G2

. (75)

Using the representation (18) for trajectories in (77), we see that it is satisfied,
i.e. indeed |Gω(q⊥)〉 is the eigenstate of the kernel with the eigenvalue ωG(q⊥).

Turn now to the fermion-type states. The matrix elements between the
states of Reggeized gluon and Reggeized quark correspond to

〈Q1G2|K̂r|Q′
1G′

2〉
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= 〈G2Q1|K̂r|G′
2Q′

1〉 = δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)
1

2(2π)D−1

∑
G

γG
Q1Q′

1
γ
G1G′

1
G

= δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)KQG
r (r1⊥, r2⊥; r′1⊥, r′2⊥)

2T a
G′

2G2
ta

Nc
, (76)

where
KQG

r (r1⊥, r2⊥; r′1⊥, r′2⊥)

=
g2

(2π)D−1

Nc

2

(
m − r̂1⊥ − r̂2⊥ − (m − r̂1⊥)r′22⊥ + (m − r̂′1⊥)r2

2⊥
(r1 − r′1)

2
⊥

)
, (77)

and
〈G1Q2|K̂r|Q′

1G′
2〉

= 〈Q2G1|K̂r|G′
2Q′

1〉 = δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)
1

2(2π)D−1

∑
Q

γQ
G1Q′

1
γ
Q2G′

2
Q

= δ(r1⊥ + r2⊥ − r′1⊥ − r′2⊥)KGQ
r (r1⊥, r2⊥; r′1⊥, r′2⊥)(2Nc)tG

′
2tG1 , (78)

where
KGQ

r (r1⊥, r2⊥; r′1⊥, r′2⊥)

=
g2

(2π)D−1

−1
2Nc

(
m − r̂1⊥ − r̂2⊥ − (m − r̂2⊥)

1
m − (r̂′1⊥ − r̂1⊥)

(m − r̂′1⊥)
)

.

(79)
In order to prove that the state |Qω(q⊥)〉 is the eigenstate of K̂ (43) we need,
taking into account (70) and (71), to show that

〈G1Q2|K̂r|Qω(q⊥)〉 = −〈Q2G1|K̂r|Qω(q⊥)〉

= δ(r1⊥ + r2⊥ − q) (ωQ(q⊥) − ωG(r1⊥) − ωQ(r2⊥)) tG1 . (80)

Using (31), (76)–(79), and (70), (71), it is easy to obtain

〈G1Q2|K̂r |Qω(q⊥)〉

= 〈G1Q2|K̂r|G′
1Q′

2〉〈G′
1Q′

2|Qω(q⊥)〉 + 〈G1Q2|K̂r|Q′
1G′

2〉〈Q′
1G′

2|Qω(q⊥)〉

= δ(r1⊥ + r2⊥ − q⊥)g2
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∫
dD−2k⊥
2(2π)D−1

((
(m − q̂⊥)
(q − k)2⊥

− (m − r̂2⊥)
(r2 − k)2⊥

)
N2

c − 1

Nc(m − k̂⊥)
− Ncr

2
1⊥

k2
⊥(r1 − k)2⊥

)
tG1 .

(81)
Together with the representation (18) it shows that (80) is satisfied, i.e.
|Qω(q⊥)〉 is the eigenstate of the kernel with the eigenvalue ωQ(q⊥).

The normalization conditions (52) follow immediately from (63), (70),
(71).

Thus, we have demonstrated that the conditions (50)–(52) are satisfied.
Let us turn now to the last conditions. We will consider the bootstrap condi-
tions for "ket"–vectors (54) and use the light-cone gauge (10). First we need
to find explicit expressions for the impact factors of Reggeon-particle tran-
sitions and the matrix elements of the production operator P̂l between the
vectors |Rω(q⊥)〉 and two-Reggeon states. The expressions for the impact
factors are calculated using their definition (45) and the vertices (7), (8),
(15)–(17). To find the matrix elements of the production operator we use
the definitions of P̂l (47), the vectors (63), (70), (71) and the completeness
condition (31).

Let us start with gluon production. In the case of boson-type qj+1-channel
we obtain for the impact factor

〈G1G2|ḠjGj+1〉 = δ(r1⊥+r2⊥−qj⊥)
1

2k−
j

∑
G

(
ΓG2

GjGγG
G1Gj+1

+ ΓG1
GGj

γ
G2Gj+1
G

)

= δ(r1⊥ + r2⊥ − qj⊥)2g2e∗Gj⊥

×
(
− (T Gj+1T Gj

)
G1G2

(
q(j+1)⊥ − (q(j+1) − r1)⊥

q2
(j+1)⊥

(q(j+1) − r1)2⊥

)

+
(
T GjT Gj+1

)
G1G2

(
q(j+1)⊥ − (q(j+1) − r2)⊥

q2
(j+1)⊥

(q(j+1) − r2)2⊥

))
. (82)

For corresponding martix element of the kernel only two-gluon intermediate
states in the completeness condition contribute, with the result

〈G1G2|Ĝj |Gω(q(j+1)⊥)〉 = δ(q(j+1)⊥ − kj⊥ − qj⊥)2ge∗Gj⊥

×
((−T Gj+1T Gj

)
G1G2

(
(q(j+1) − r1)⊥
(q(j+1) − r1)2⊥

− kj⊥
k2

j⊥

)
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+
(
T GjT Gj+1

)
G1G2

(
(q(j+1) − r2)⊥
(q(j+1) − r2)2⊥

− kj⊥
k2

j⊥

))
. (83)

Now, with account of (63), it is quite easy to obtain

〈G1G2|Ĝi |Gω(q(i+1)⊥)〉 g di+1(q(i+1)⊥) + 〈G1G2|ḠiGi+1〉

= 〈G1G2|Gω(qi⊥)〉 g γGi

GiGi+1
, (84)

which proves the bootstrap condition (54) for this case.
Another possibility for gluon production is fermion–type qj+1-channel. In

this case we have to consider projections on two different two-Reggeon states:
〈Q1G2| and 〈G1Q2|. For the first one we obtain

〈Q1G2|ḠjQj+1〉

= δ(r1⊥ + r2⊥ − qj⊥)
1

2k−
j

⎛
⎝∑

G

ΓG2
GjGγG

Q1Qj+1
+
∑
Q̄

ΓQ1
Q̄Gj

γ
G2Qj+1

Q̄

⎞
⎠

= δ(r1⊥ + r2⊥ − qj⊥)g2e∗Gj⊥

(
[tG2tGj ]

(
γ⊥ + 2(m − q̂(j+1)⊥)

(kj + r2)⊥
(kj + r2)2⊥

)

+tGj tG2γ⊥
1

m − (k̂j + r̂1)⊥
r̂2⊥

)
. (85)

Calculating corresponding matrix element of the kernel one needs to take
again only intermediate states of one type (|QG〉) in the completeness condi-
tion. The result is

〈Q1G2|Ĝj |Qω(q(j+1)⊥)〉

= δ(q(j+1)⊥ − kj⊥ − qj⊥)ge∗Gj⊥

(
2[tGj tG2 ]

(
(kj + r2)⊥
(kj + r2)2⊥

− kj⊥
k2

j⊥

)

+tGj tG2

(
γ⊥ + 2(m − (k̂j + r̂1)⊥)

kj⊥
k2

j⊥

)
1

(m − (k̂j + r̂1)⊥)

)
, (86)

so that, with account of (71), we obtain

〈Q1G2|Ĝi |Qω(q(i+1)⊥)〉 g di+1(q(i+1)⊥) + 〈Q1G2|ḠiQi+1〉

= 〈Q1G2|Qω(qi⊥)〉 g γGi

QiQi+1
, (87)

26



so that the bootstrap condition (54) is also fulfilled for this case.
The projection on the state 〈G1Q2| is considered quite analogously. We

obtain
〈G1Q2|ḠjQj+1〉

= δ(r1⊥ + r2⊥ − qj⊥)
1

2k−
j

⎛
⎝∑

Q

ΓQ2
GjQγQ

G1Qj+1
+
∑
G

ΓG1
GGj

γ
Q2Qj+1
G

⎞
⎠

= δ(r1⊥ + r2⊥ − qj⊥)g2e∗Gj⊥

(
[tGj tG1 ]

(
γ⊥ + 2(m − q̂(j+1)⊥)

(kj + r1)⊥
(kj + r1)2⊥

)

−tGj tG1γ⊥
1

m − (k̂j + r̂2)⊥
r̂1⊥

)
, (88)

and
〈G1Q2|Ĝj |Qω(q(j+1)⊥)〉

= δ(q(j+1)⊥ − kj⊥ − qj⊥)ge∗Gj⊥

(
2[tG1tGj ]

(
(kj + r1)⊥
(kj + r1)2⊥

− kj⊥
k2

j⊥

)

−tGj tG1

(
γ⊥ + 2(m − (k̂j + r̂2)⊥)

kj⊥
k2

j⊥

)
1

(m − (k̂j + r̂2)⊥)

)
, (89)

so that, with account of (70),

〈G1Q2|Ĝi |Qω(q(i+1)⊥)〉 g di+1(q(i+1)⊥) + 〈G1Q2|ḠiQi+1〉

= 〈G1Q2|Qω(qi⊥)〉 g γGi

QiQi+1
, (90)

and we see that the bootstrap condition is also satisfied.
Let us consider now antiquark production. Here again we have to consider

projections on the states 〈Q1G2| and 〈G1Q2|. In the first case we obtain for
the impact factor

〈Q1G2|QjGj+1〉

= δ(r1⊥ + r2⊥ − qj⊥)
1

2k−
j

⎛
⎝∑

Q̄

ΓG2
Q̄jQ̄

γQ̄
Q1Gj+1

−
∑
G

ΓQ1
GQj

γ
G2Gj+1
G

⎞
⎠

= δ(r1⊥ + r2⊥ − qj⊥)
g2

k−
j
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×
(

tGj+1tG2 q̂(j+1)⊥ − [tGj+1 tG2 ]

(
q̂(j+1)⊥ − (k̂j + r̂1)⊥

q2
(j+1)⊥

(kj + r1)2⊥

))
υQ̄j

.

(91)
In the matrix element of the kernel now one needs to take intermediate states
of the type |GG〉. We obtain

〈Q1G2| ˆ̄Qj|Gω(q(j+1)⊥)〉 = δ(q(j+1)⊥−kj⊥− qj⊥)
g

k−
j

[tG2tGj+1 ]
r̂1⊥ + k̂j⊥
(r1 + kj)2⊥

υQ̄j
,

(92)
so that, with account of (71), we see that the bootstrap condition (54) for
this case is also fulfilled,

〈Q1G2| ˆ̄Qj |Gω(q(j+1)⊥)〉g di+1(q(i+1)⊥) + 〈Q1G2|QjGj+1〉

= 〈Q1G2|Qω(qi⊥)〉 g γQ̄i

QiGi+1
, (93)

which proves the bootstrap condition (54) for this case.
The projection on the 〈GQ|–state is considered quite similarly. We have

〈G1Q2|QjGj+1〉

= δ(r1⊥ + r2⊥ − qj⊥)
1

2k−
j

⎛
⎝∑

G

ΓQ2
Q̄jG

γG
G1Gj+1

−
∑
Q

ΓG1
QQj

γ
Q2Gj+1
Q

⎞
⎠

= δ(r1⊥ + r2⊥ − qj⊥)

× g2

k−
j

(
[tGj+1tG1 ]

(
q̂(j+1)⊥ − (k̂j + r̂2)⊥

q2
(j+1)⊥

(kj + r2)2⊥

)
− tGj+1tG1 q̂(j+1)⊥

)
υQ̄j

,

(94)

〈G1Q2| ˆ̄Qj|Gω(q(j+1)⊥)〉 = δ(q(j+1)⊥−kj⊥− qj⊥)
g

k−
j

[tGj+1 tG1 ]
r̂2⊥ + k̂j⊥
(r2 + kj)2⊥

υQ̄j
,

(95)
and therefore

〈G1Q2| ˆ̄Qj |Gω(q(j+1)⊥)〉g di+1(q(i+1)⊥) + 〈G1Q2|QjGj+1〉

= 〈G1Q2|Qω(qi⊥)〉 g γQ̄i

QiGi+1
. (96)

Finally, we consider quark production. Here we need to consider only
progection on 〈G1G2|–state. It is easy to obtain

〈G1G2|Q̄jQj+1〉
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= δ(r1⊥ + r2⊥ − qj⊥)
1

2k−
j

⎛
⎝∑

Q

ΓG2
QjQγQ

G1Qj+1
− (−1)

∑
Q̄

ΓG1
Q̄Q̄j

γ
G2Qj+1

Q̄

⎞
⎠

= δ(r1⊥ + r2⊥ − qj⊥)
g2

k+
j

ūQj

(
tG2tG1 r̂1⊥ − tG1tG2 r̂2⊥

)
, (97)

where the additional (−1) is introduced to avoid double counting caused
by the fact that the vertices ΓG1

Q̄Q̄j
and γ

G2Qj+1

Q̄
are both include −1 for

antiquark in the intermediate state. Here in the matrix element of the kernel
intermediate states |QG〉 and |GQ〉 contribute. The result is

〈G1G2|Q̂j |Qω(q(j+1)⊥)〉 = δ(q(j+1)⊥ − kj⊥ − qj⊥)
g

k+
j

ūQ

×
(

tG2tG1 r̂2⊥
1

m − (k̂j⊥ + r̂2⊥)
− tG1tG2 r̂1⊥

1
m − (k̂j⊥ + r̂1⊥)

)
. (98)

With account of (63) we obtain,

〈G1G2|Q̂j |Qω(q(j+1)⊥)〉g di+1(q(i+1)⊥) + 〈G1G2|Q̄jQj+1〉

= 〈G1G2|Gω(qi⊥)〉 g γQi

GiQi+1
. (99)

It concludes the proof of the bootstrap relations.

7 Summary
The multi–Regge kinematics plays an outstanding role in high energy physics.
It is extremely important since it gives a dominant contribution to total cross
sections of particle interactions. The remarkable phenomenon is that QCD
amplitudes in this kinematics have simple multi–Regge form and are ex-
pressed in terms of the gluon and quark Regge trajectories and a few vertices
of Reggeon interactions.

The multi–Regge form of amplitudes containing quark exchanges was
proposed in [2] long ago, but up to now it was merely tested on its self–
consistency for several particular processes. In this paper we have presented
the proof of the multi–Regge form in the leading logarithmic approximation
for arbitrary quark–gluon inelastic processes in all orders of αs. The proof
is based on the bootstrap relations required by compatibility of the multi–
Regge form (6) of inelastic QCD amplitudes with the s–channel unitarity.
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It consists of three steps. First, we derive an infinite set of the bootstrap
relations (21) and demonstrate that fulfillment of these relations secure the
Reggeized form (6). Second, we show that all these bootstrap relations are
fulfilled if the vertices and trajectories submit to several bootstrap conditions
(50)–(52), (54) and (55). This circumstance is extremely nontrivial since an
infinite set of the bootstrap relations is reduced to several conditions on the
Reggeon trajectories and vertices. And finally, we examine the bootstrap
conditions and prove that all of them are fulfilled.

Although being simple in principle, necessary calculations were extremely
cumbersome and tedious if they performed in the standard approach. The op-
erator formalism, recently introduced for consideration of elastic amplitudes
with gluon exchanges and generalized in this paper for the case of inelastic
amplitudes with arbitrary spin and colour exchanges, is very helpful.
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