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Abstract

The photon emission intensity spectrum is calculated taking into
account influence of multiple scattering (the LPM effect) under con-
ditions of recent CERN SPS experiment. It is shown that the theory
quite satisfactory describes data. The integral characteristics: the ra-
diation length and total probability of photon emission are analyzed
under influence of the LPM effect, and the asymptotic expansions of
these characteristics are derived.
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1 Introduction
When a charged particle is moving in a medium it scatters on atoms. With
probability ∼ α this scattering is accompanied by a radiation. At high en-
ergy the radiation process occurs over a rather long distance, known as the
formation length lc (see e.g.[1]):

lc =
l0

1 + γ2ϑ2
c

, l0 =
2εε′

m2ω
, (1.1)

where ω is the energy of emitted photon, ε(m) is the energy (the mass) of
a particle, ε′ = ε − ω, ϑc is the characteristic angle of photon emission, the
system � = c = 1 is used.

Landau and Pomeranchuk were the first who showed that if the forma-
tion length of bremsstrahlung becomes comparable to the distance over which
the multiple scattering becomes important, the bremsstrahlung will be sup-
pressed [2]. Migdal [3] developed the quantitative theory of this phenomenon.

A new interest to the theory of the LPM effect is connected with a very
successful series of experiments performed at SLAC [4]. In these experiments
the cross section of the bremsstrahlung of soft photons with energy from
200 keV to 500 MeV from electrons with energy 8 GeV and 25 GeV is mea-
sured with an accuracy of the order of a few percent. Both LPM and dielectric
suppression are observed and investigated. The logarithmic binning of pho-
ton spectrum was used with 25 bins per decade.These experiments were the
challenge for the theory since in all the mentioned papers calculations are
performed to logarithmic accuracy which is not enough for description of
the new experiment. The contribution of the Coulomb corrections (at least
for heavy elements) is larger than experimental errors and these corrections
should be taken into account.

Recently new study of LPM effect at higher energies of electrons (ε =149,
207 and 287 GeV), where the effect has influence upon much wider part of
spectrum comparing with ε =25 GeV, was performed in the H2 beam line
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of the CERN SPS [5],[6]. The logarithmic binning of photon spectrum was
used with 25 bins per decade as at SLAC.

We developed the new approach to the theory of the Landau-
Pomeranchuk-Migdal (LPM) effect [7]. In this paper the cross section of
the bremsstrahlung process in the photon energies region where the influence
of the LPM is very strong was calculated with a term ∝ 1/L , where L is
characteristic logarithm of the problem, and with the Coulomb corrections
taken into account. In the photon energy region, where the LPM effect is
"turned off", the obtained cross section gives the exact Bethe-Maximon cross
section (within power accuracy and with the Coulomb corrections). This im-
portant feature was absent in the previous calculations. The LPM effect in a
thin target were the interference effects and boundary photon emission is of
special interest was analyzed in [8]. The probability of multiphoton emission
is enhanced at high energy [9]. Correspondingly this effect is very important
for comparison of theory prediction and data. The influence of LPM effect on
integral characteristics of bremsstrahlung was considered in [10]. The other
approaches to the LPM effect theory see e.g. in [11], [12], the recent review
is given in [13].

In Sec.2 the theory predictions are compared with the recent CERN SPS
data [5],[6]. It is shown that the theory quite satisfactory describes data. In
Sec.3 the variation of the radiation length due to multiple scattering is dis-
cussed. In the region where the LPM effect is weak (ε� εe) the asymptotic
expressions for the radiation length and the photon emission probability are
derived taking into account both decomposition over ε/εe and over 1/L1, L1

is the characteristic logarithm of the problem. Appendices A and B con-
tain details of derivation for radiation length and Appendix C for the photon
emission probability. In Appendix D the structure of series over ε/εe and
over 1/L1 is analyzed for ε� εe.

2 Influence of the multiple scattering on the
bremsstrahlung spectrum

The spectral radiation intensity obtained in [7], Eq.(2.39) (see also Sec.3 in
[10]) is valid for any energy and has the form

dI = ωdW =
αm2xdx

2π(1 − x)
Im

[
Φ(ν) − 1

2Lc
F (ν)

]
, x =

ω

ε
, (2.1)

where
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Φ(ν) =
∫ ∞

0

dze−it

[
r1

(
1

sinh z
− 1
z

)
− iνr2

(
1

sinh2 z
− 1
z2

)]

= r1

(
ln p− ψ

(
p+

1
2

))
+ r2

(
ψ(p) − ln p+

1
2p

)
,

F (ν) =
∫ ∞

0

dze−it

sinh2 z
[r1f1(z) − 2ir2f2(z)] ,

t =
z

ν
, r1 = x2, r2 = 1 + (1 − x)2, (2.2)

where z = νt, p = i/(2ν), ψ(x) is the logarithmic derivative of the gamma
function. The functions f1(z) and f2(z) are defined by following expressions

f1(z) =
(
ln 	2

c + ln
ν

i
− ln sinh z − C

)
g(z) − 2 cosh zG(z),

f2(z) =
ν

sinh z

(
f1(z) − g(z)

2

)
, g(z) = z cosh z − sinh z,

G(z) =
∫ z

0

(1 − y coth y)dy

= z − z2

2
− π2

12
− z ln

(
1 − e−2z

)
+

1
2
Li2
(
e−2z

)
, (2.3)

here Li2 (x) is the Euler dilogarithm, c = 0.577216... is Euler’s constant. Use
of the last representation of function G(z) simplifies the numerical calcula-
tion. The crucial parameter ν is

ν2 = iν2
0 , ν2

0 = |ν|2 � ν2
1

(
1 +

ln ν1
L1

ϑ(ν1 − 1)
)
, ν2

1 =
ε

εe

1 − x

x
,

εe = m
(
8πZ2α2naλ

3
cL1

)−1
, Lc � L1

(
1 +

ln ν1
L1

ϑ(ν1 − 1)
)
, L1 = ln

a2
s2

λ2
c

,

as2

λc
= 183Z−1/3e−f , f = f(Zα) = (Zα)2

∞∑
k=1

1
k(k2 + (Zα)2)

, (2.4)

where Z is the charge of the nucleus, na is the number density of atoms in
the medium, λc = 1/m = (�/mc) is the electron Compton wavelength. Here
εe is a characteristic parameter of medium, starting from this energy the
multiple scattering distorts the whole spectrum of bremsstrahlung including
its hard part: for iridium εe=2.27 TeV, for gold εe=2.6 TeV, for tungsten
εe=2.73 TeV, for tantalum εe=3.18 TeV, for lead εe=4.38 TeV.

In the case ε� εe the LPM effect manifests itself when

ν1(xc) = 1, xc =
ε

εe + ε
� ε

εe
. (2.5)
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In this case in the hard part of spectrum (1 ≥ x � xc, ν
2
1 � xc/x � 1) one

has (see Appendices A and B)

dI

dx
=

ε

L0
rad

{
x2 +

4(1 − x)
3

+
2(1 − x)

9L1
− ε2

ε2e

(1 − x)2

x2

×
[(

64
63

− 15272
2205

1
L1

)
(1 − x) +

(
1 − 5017

1800
1
L1

)
x2

]}
,

1
L0

rad

=
2Z2α3naL1

m2
=

α

4π
m

εeλc
,

1
LBM

rad

=
1

L0
rad

(
1 +

1
9L1

)
, (2.6)

here LBM
rad is the Bethe-Maximon radiation length. Note that if neglect here

the terms ∝ ε2/ε2e we obtain the Bethe-Maximon intensity spectrum.
In the recent CERN SPS experiment the iridium target with thickness

l=0.128 mm (l/Lrad = 4.36 ± 0.10%, Lrad is the radiation length) [5] and
tantalum target [6] with thickness l/Lrad = 4.45±0.10% were used. Photons
with energy 2 GeV < ω < ε were detected in a lead glass calorimeter.

Obtained experimental data should be recalculated:(
dε

dω

)
exp

=
l

Lrad

1
k

(
dN

d lnω

)
exp

. (2.7)

Because photon energies were histogrammed logarithmically, using 25 bins
per decade of energy, one has for the coefficient k

kh =
ωmax − ωmin

ωmin
= es − 1 = 0.096,

km = 2
ωmax − ωmin

ωmax + ωmin
= 2

es − 1
es + 1

= 0.092,

kl =
ωmax − ωmin

ωmax
= 1 − e−s = 0.88,

s = ln
ωmax

ωmin
=

ln 10
25

= 0.092, (2.8)

depending on the normalization point within bin. Here we will use km.
Since only high energy photons (ω ≥ 2 GeV) were measured, no

boundary effects were observed. So, only the pure LPM effect was stud-
ied. For iridium εe=2.27 TeV and from one has Eq.(2.5) that the char-
acteristic photon energy ωc(ε) for which the LPM effect is well manifests
itself is ωc(287 GeV)=32 GeV and ωc(207 GeV)=19 GeV, while for tantalum
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εe=3.18 TeV and ωc(287 GeV)=26 GeV. The results of calculations for irid-
ium (the initial electron energy ε=287 GeV and ε=207 GeV) and for tantalum
(the initial electron energy ε=287 GeV) are shown in Figs.1-3. The curve 1 is
the Bethe-Maximon intensity spectrum (see e.g.Eq.(2.6)). The curves 2,3 are
calculated using Eqs. (2.1) and (2.2). The curve 2 presents the main term
(with the function Φ(ν)), the curve 3 presents the correction term (with the
function F (ν)). It should be noted that the prediction of our theory (sum
of previous terms, curve 4) in the hard end of spectrum coincide with the
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Figure 1: The energy loss spectrum
dε

dω
in units

1
L0

rad

in iridium target with

thickness l=0.128 mm (l/LBM
rad = 4.36%) for the initial electrons energy is

ε = 286.6 GeV. The Coulomb corrections are included: curve 1 is the Bethe-
Maximon spectrum, curve 2 is the contribution of the main term describing
LPM effect; curve 3 is the correction term; curve 4 is the sum of two previ-
ous contributions; curve T is the final theory prediction with regard for the
reduction factor (the multiphoton effects). Experimental data from [5], [6].

Bethe-Maximon curve within the accuracy better than 10−3. It is seen that
given values ωc(ε) show the scale where LPM effect becomes essential. For
used thickness of target the multi-photon effects are very essential. The re-
duction factor f in this case it is convenient to calculate using the following
general expression (Eq.(3.4) of [9]):

dε

dω
= ω

dw

dω
f, f = exp

[
−
∫ ∞

ω

dw

dω1
dω1

](
1 +O

(
ω
dw

dω

))
, (2.9)
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Figure 2: The same as in Fig.1 but for the initial electrons energy ε =
206.7 GeV.
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Figure 3: The same as in Fig.1 but for tantalum target with thickness
(l/LBM

rad = 4.45%).

where the main term (with Φ(ν)) of spectrum Eq.(2.1) is substituted. The
results obtained are in a good agreement with Eqs.(2.11) and (2.26) of [9].
The reduction factor f in iridium for three used energies is presented in Fig.4.
It follows from Fig.4 that if the electron energy decreases the reduction factor

8



f diminishes as well. The final prediction, with the reduction factor taken
into account for used target thicknesses, present the curves T . The data
are recalculated according with Eqs.(2.7),(2.8) using the coefficient km. In
Figs.1-3 one can see that for energy 287 GeV there is quite satisfactory agree-
ment of theory with data for both iridium and tantalum, for energy 207 GeV
in iridium the agreement is somewhat less satisfactory.
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Figure 4: The reduction factor for iridium target with thickness l = 0.128mm
(4.36% Lrad) versus x = ω/ε. The curves 1,2,3 are for energies 149 GeV,
207 GeV and 287 GeV correspondingly.

3 The LPM radiation length and the average
number of emitted photons at ε � εe

The local radiation length Lrad is defined by equation
dε

dt
= −I(ε) = − ε

Lrad
. (3.1)

In the absence of LPM effect the value Lrad doesn’t dependent on energy and
defined by Eq.(2.6). In this case, after averaging Eq.(3.1) with the electron
distribution function over energy f(ε, t) one obtains the closed equation for
the mean energy loss which has the solution 〈ε(t)〉 = ε0 exp(−t/Lrad).

For the first photon emission according with Eq.(3.1) Lrad = ε/I(ε). The
dependence on the energy of the function (I(ε)/ε)LBM

rad = LBM
rad /Lrad for
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iridium (curve 1) and lead (curve 2) is given in Fig.5. The I(ε) is the inte-
grated over x Eq.(2.1). The relative value of correction (the term with F (ν))
to the main term (with Φ(ν)) depends on energy. It attains the maximum
∼ 5% near ε ∼ εe for both media. So, the value of Lrad for the energy
ε = 3 TeV increases 1.33 times in Ir and in 1.16 times in Pb, while for the
energy ε = 10 TeV the corresponding figures are 1.58 and 1.38.
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Figure 5: The relative energy losses of electron per unit time including the
contribution of the correction term (I(ε)/ε)LBM

rad = LBM
rad /Lrad in iridium

(curve 1) and in lead (curve 2) vs the initial energy of electron.

In the region where the LPM effect is weak (see Appendices A and B)

1
Lrad

=
1

L0
rad

{
1 +

1
9L1

− 4π
15

ε

εe
+

64
21
ε2

ε2e

(
ln
εe

ε
− 2.040

)

+
1
L1

[
182π
225

ε

εe
− 15272

735
ε2

ε2e

(
ln
εe

ε
− 2.577

)]
. (3.2)

The first term of expansion over ε/εe (not over 1/L1) was found in [10].
The accuracy of Eq.(3.2) is defined by a several essentially different fac-

tors. The first is the relative value of discarded terms O(ε3/ε3e) in Eqs.(A.13),
B.15). The second is the substitution of Lc by L1 (	c = 1) in Eqs.(2.1) -
(2.4) for the whole spectrum, the relative accuracy of this substitution is
O(ε/(εeL

2
1)). The third is due to fact that in the initial formula Eq.(2.1) the
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terms ∝ 1/L2
c were rejected. However, as is shown in in Appendix D, in the

region ε� εe the corrections ∝ 1/L2
1 are beginning with the terms contained

ε/εe. So, in this region, the relative accuracy in the formula Eq.(2.1) is also
O(ε/(εeL

2
1)).

One can see from Eq.(3.2), that in a decomposition over ε/εe one have
to take into account the terms ∝ 1/L1 because of relatively large numerical
values of the coefficients of decomposition. Moreover, for heavy elements
L1 � (6÷7) taking into account of term ∝ 1/L1 results in substantial change
of numerical value of coefficients at the given degree of ε/εe. Particularly
this is important for term containing ln(εe/ε). As a result, there is essential
compensation inside the coefficients of decomposition. This permit to use
the decomposition Eq.(3.2) at relatively large energies. At ε/εe ≤ 1/10 an
error in the correction terms doesn’t exceed 10%.

As illustration we present the radiation length in iridium
(L1 = 6.9225, εe = 2.27 TeV, LBM

rad (Ir)=2.91 mm):

1
Lrad(Ir)

=
1

LBM
rad (Ir)

(
1 − 0.464

ε

εe
+ 0.045

ε2

ε2e
ln
εe

ε
+ 1.492

ε2

ε2e

)
. (3.3)

It should be noted that after substitution of Eq.(3.3) into Eq.(3.1) and aver-
aging with the distribution function f(ε, t) the higher moments of ε appear.
Because of this, equation (3.1) ceases to be closed. We will discuss this item
elsewhere.

The mean value of photons emitted by electron is also of evident interest.
Particularly, at ω � ωc � ε2/εe this value defines mainly the exponent
in Eq.(2.9). At energy where the LPM effect is rather weak (ε � εe) the
radiation probability per unit time integrated over whole photon spectrum is
(see Appendix C)

W (ε) =
dw

dt
=

αm

3πεeλc

[
ln
εe

ε
+ 1.959 +

2π
5
ε

εe

+
1
L1

(
1
6

ln
εe

ε
+ 3.574 − 91π

75
ε

εe

)]
. (3.4)

It is seen that allowing for terms ∝ 1/L1 changes essentially non-logarithmic
terms in Eq.(3.4).
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A Appendix
We consider here the asymptotic behavior of the total intensity of radiation
I0 in the region ε � εe where the LPM effect is weak and one can put in
Eqs.(2.1)-(2.4) ν2 = iν2

1 , 	c = 1, Lc = L1. This substitution will manifest

itself only starting from terms of the order
1
L2

1

ε

εe
I0. Then in expressions for

Φ(ν) and F (ν) in Eq.(2.2) we integrate by parts the terms ∝ r1 and make
the substitution of variable t→ −it. As a result we obtain

I =
ε

L0
rad

(
Jm +

1
L1
Jv

)
, (A.1)

where

Jm = 2Re
∫ 1

0

dx

∫ ∞

0

dte−t
[
x2ϕ1(z) − 2(1 − x)ϕ2(z)

]
;

ϕ1(z) =
1

cosh z + 1
, ϕ2(z) =

1
sinh2 z

− 1
z2
, (A.2)

and

Jv = −Re
∫ 1

0

dx

∫ ∞

0

dte−t
[
x2l1(z, t) + 4(1 − x)l2(z, t)

]
;

l1,2 = a1,2(z)(ln t+ C) + b1,2(z),

a1(z) = ϕ1(z) − z

sinh z
, a2(z) =

z coth z − 1
sinh2 z

,

b1(z) = a1(z) ln
sinh z
z

+
1

cosh z + 1

(
1 − z coth z +

2
sinh z

G(z)
)
,

b2(z) = a2(z) ln
sinh z
z

+
1

2 sinh2 z
(4G(z) coth z + z coth z − 1) , (A.3)

here the function G(z) is defined in Eq.(2.3) and

β2 = i
εe

ε
, z =

t

βy
, y =

√
x

1 − x
. (A.4)

In Eq.(A.2) one can expand the function ϕ1(z) up to terms ∝ z4. We find

Jm1 � 2
∫ 1

0

dxx2

∫ ∞

0

dte−t

(
ϕ1(0) +

ϕ
(4)
1 (0)
β4y4

t4

4!

)
=

2
3

[
ϕ1(0) − ε2

ε2e
ϕ

(4)
1 (0)

]
.

(A.5)
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In the integral with function ϕ2(z) in Eq.(A.2) we perform twice integration
by parts over t. We find

Jm2 = −4Re
∫ 1

0

dx(1 − x)
[
ϕ2(0) +

1
β2y2

∫ ∞

0

dte−tϕ
(2)
2 (z)

]

= −2ϕ2(0) − 4
ε

εe
S,

S = Im
∫ 1

0

(1 − x)2dx
x

∫ ∞

0

dte−tϕ
(2)
2 (z). (A.6)

To calculate S we choose the value y0 in such way that y0 � 1 and |β|y0 � 1
and divide the integral over x into two. The first one is

S1 = Im
∫ 1

x0

(1 − x)2dx
x

∫ ∞

0

dte−tϕ
(2)
2 (z)

� Im
∫ 1

x0

(1 − x)2dx
x

1
β2y2

ϕ
(4)
2 (0)

� − 1
|β|2

(
1
x0

− 1 + 3 lnx0 +
5
2

)
ϕ

(4)
2 (0)

� − 1
|β|2

(
1
y2
0

+ 6 ln y0 +
5
2

)
ϕ

(4)
2 (0) . (A.7)

In the second integral we pass to the variable y:

S2 = 2Im
∫ y0

0

dy

y(1 + y2)3

∫ ∞

0

dte−tϕ
(2)
2 (z)

� 2Im
∫ y0

0

(1 − 3y2)
dy

y

∫ ∞

0

dte−tϕ
(2)
2 (z) . (A.8)

Let us consider the integral

S21 = 2Im
∫ y0

0

dy

y

∫ ∞

0

dte−tϕ
(2)
2

(
t

βy

)
=

1
i

∫ βy0

β∗y0

dy

y

∫ ∞

0

dte−tϕ
(2)
2

(
t

y

)

� 1
i

∫ βy0

β∗y0

dy

y

(
ϕ

(2)
2 (0) +

1
y2
ϕ

(4)
2 (0)

)

=
1
i

[
ln

β

β∗ϕ
(2)
2 (0) − 1

2

(
1

β2y2
0

− 1
β∗2y2

0

)
ϕ

(4)
2 (0)

]

=
π

2
ϕ

(2)
2 (0) +

1
|β|2y2

0

ϕ
(4)
2 (0) . (A.9)
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The remaining integral in Eq.(A.8) is

S22 = −6Im
∫ y0

0

ydy

∫ ∞

0

dte−tϕ
(2)
2 (z)

=
6

|β|2 Re
∫ βy0

0

dy

y

∫ ∞

0

dte−tϕ
(4)
2

(
t

y

)

=
6

|β|2 Re
[
ln(βy0)

∫ ∞

0

dte−tϕ
(4)
2

(
t

βy0

)

+
∫ βy0

0

ln ydy
∫ ∞

0

tdt

y2
e−tϕ

(5)
2

(
t

y

)]

� 6
|β|2 Re

[
ln(βy0)ϕ

(4)
2 (0) +

∫ ∞

0

ln ydy
∫ ∞

0

ze−zyϕ
(5)
2 (z)dz

]

=
6

|β|2 Re
[
ln(βy0)ϕ

(4)
2 (0) +

∫ ∞

0

dy

∫ ∞

0

(ln y − ln z)e−yϕ
(5)
2 (z)dz

]

=
6

|β|2 Re
[
(ln(βy0) + C)ϕ(4)

2 (0) −
∫ ∞

0

ln zϕ(5)
2 (z)dz

]
. (A.10)

Summing S1, S21 and S22 we obtain for S

S =
π

2
ϕ

(2)
2 (0) + 3

ε

εe

[(
ln
εe

ε
+ 2C − 5

6

)
ϕ

(4)
2 (0) − 2

∫ ∞

0

ln zϕ(5)
2 (z)dz

]
.

(A.11)
Substituting Eq.(A.11) into Jm2, adding with Jm1 Eq.(A.5) and taking into
account that

ϕ1(0) = ϕ
(4)
1 (0) =

1
2
, ϕ2(0) = −1

3
, ϕ

(2)
2 (0) =

2
15
, ϕ

(4)
2 (0) = −16

63
,∫ ∞

0

ln zϕ(5)
2 (z)dz = −0.286, (A.12)

we obtain

Jm = 1 − 4π
15

ε

εe
+

64
21
ε2

ε2e

(
ln
εe

ε
+ 2C − 5

6
− 7

64
+

63
8

∫ ∞

0

ln zϕ(5)
2 (z)dz

)

+O
(
ε3

ε3e

)
= 1 − 4π

15
ε

εe
+

64
21
ε2

ε2e

(
ln
εe

ε
− 2.040

)
+O

(
ε3

ε3e

)
. (A.13)

Here the first two terms agree with Eq.(3.9) in [10].
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B Appendix
Here we calculate the function Jv in Eq.(A.1) defined in Eq.(A.3). In the last
expression one can expand the function l1(z, t) up to terms ∝ z4. We find

Jv1 �
(
ε

εe

)2 ∫ 1

0

(1 − x)2dx
∫ ∞

0

dte−t t
4

4!

(
a
(4)
1 (0)(ln t+ C) + b

(4)
1 (0)

)

=
1
3

(
ε

εe

)2 [
(ψ(5) − ψ(1))a(4)

1 (0) + b
(4)
1 (0)

]

=
1
3

(
ε

εe

)2 [25
12
a
(4)
1 (0) + b

(4)
1 (0)

]
, (B.1)

where the function ψ(x) is defined in Eq.(2.2). The integral with the function
l2(z, t) is

Jv2 = −4Re
∫ 1

0

(1 − x)dx
∫ ∞

0

dte−t [a2(z)(ln t+ C) + b2(z)] . (B.2)

The term with b2(z) can be calculated as the term Jm2 in the Appendix A.
Substituting ϕ2(z) → b2(z) we have

J
(b)
v2 = −2b2(0) − 2π

ε

εe
b
(2)
2 (0) (B.3)

−12
(
ε

εe

)2 [(
ln
εe

ε
+ 2C − 5

6

)
b
(4)
2 (0) − 2

∫ ∞

0

ln zb(5)2 (z)dz
]
.

Now we turn over to the term with a2(z) in Eq.(B.2)

T = Re
∫ 1

0

(1 − x)dx
∫ ∞

0

dte−ta2(z)(ln t+ C) (B.4)

= Re
∫ 1

0

(1 − x)dx
∫ ∞

0

dte−t (a2(z) − a2(0)) (ln t+ C).

As in previous Appendix we divide the integral over x into two: 0 ≤ x ≤ x0

and x0 ≤ x ≤ 1. We have (see Eqs.(B.1) and (A.7))

T1 = Re
∫ 1

x0

(1 − x)dx
∫ ∞

0

dte−t (a2(z) − a2(0)) (ln t+ C) (B.5)

= − 1
|β|4

∫ 1

x0

(1 − x)3

x2
dx

25
12
a
(4)
1 (0) � − 25

12|β|4
(

1
y2
0

+ 6 ln y0 +
5
2

)
a
(4)
2 (0).
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In the second integral we perform twice integration by parts over t and pass
to the variable y. We find

T2 =
2

|β|2 Im
∫ y0

0

dy

y(1 + y2)3

∫ ∞

0

dte−t
[
a
(2)
2 (z)(ln t+ C) + d(z)

]

d(z) =
2
z
a
(1)
2 (z) − 1

z2
(a2(z) − a2(0)) . (B.6)

We proceed as above (see Eq.(A.8)) and expand (1 + y2)3 � 1 − 3y2, then

T21 =
2

|β|2 Im
∫ βy0

0

dy

y

∫ ∞

0

dte−t

[
a
(2)
2

(
t

y

)
(ln t+ C) + d

(
t

y

)]

=
1

|β|2
1
i

∫ βy0

β∗y0

dy

y

∫ ∞

0

dte−t

[
a
(2)
2

(
t

y

)
(ln t+ C) + d

(
t

y

)]

� 1
|β|2

[
π

2
d(0) +

1
|β|2y2

0

(
3
2
a
(4)
2 (0) + d(2)(0)

)]

=
1

|β|2
[
3π
4
a
(2)
2 (0) +

25
12|β|2y2

0

a
(4)
2 (0)

]
. (B.7)

and

T22 = − 6
|β|2 Im

∫ y0

0

ydy

∫ ∞

0

dte−t

[
a
(2)
2 (z) (ln t+ C) + d

(
t

y

)]
(B.8)

= − 6
|β|2 Im

∫ y0

0

ydy

∫ ∞

0

dte−t

[
(a(2)

2 (z) − a
(2)
2 (0))(ln t+ C) + d

(
t

y

)]
.

Integrating by parts over t two times we obtain

T22 =
6

|β|4 Re
∫ βy0

0

dy

y

∫ ∞

0

dte−t

[
a
(4)
2

(
t

y

)
(ln t+ C) + g

(
t

y

)]

g(z) =
2
z
a
(3)
2 (z) − 1

z2

(
a
(2)
2 (z) − a

(2)
2 (0)

)
+ d(2)(z). (B.9)

The term with the function g(z) can be calculated in the same manner as in
Eq.(A.10) (ϕ(4)

2 (z) → g(z))

T
(g)
22 =

6
|β|4 Re

[
(ln(βy0) + C)g(0) −

∫ ∞

0

ln zg′(z)dz
]

(B.10)
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Now we have to calculate the integral containing ln t+ C

T
(l)
22 =

6
|β|4 Re

∫ βy0

0

dy

y

∫ ∞

0

e−ta
(4)
2

(
t

y

)
(ln t+ C)dt (B.11)

� 6
|β|4

∫ ∞

0

ln ydy
∫ ∞

0

ze−zy(ln y + ln z + C)a(5)
2 (z)dz

=
6

|β|4
∫ ∞

0

dy

∫ ∞

0

(ln y − ln z)(ln y + C)e−ya
(5)
2 (z)dz

= − 6
|β|4 a

(4)
2 (0)

∫ ∞

0

e−y(ln2 y − C2)dy = − π2

|β|4 a
(4)
2 (0)

Taking into account that g(0) =
25
12
a
(4)
2 (0) and summing T1 Eq.(B.5), T21

Eq.(B.7), T (g)
22 Eq.(B.10), T (l)

22 Eq.(B.11) we find for T Eq.(B.4)

T =
3π
4
ε

εe
a
(2)
2 (0) (B.12)

+
ε2

ε2e

[
25
4

(
ln
εe

ε
+ 2C − 5

6
− 4

25
π2

)
a
(4)
2 (0) − 6

∫ ∞

0

ln zg′(z)dz
]

;

g(z) =
4
z
a
(3)
2 (z) − 1

z2
(6a(2)

2 (z) − a
(2)
2 (0)) +

8
z3
a
(1)
2 (z) − 6

z4
(a2(z) − a2(0)).

Substituting the obtained expression for T Eq.(B.12) and J (b)
v2 Eq.(B.3) into

Jv2, adding to Jv1 and taking into account that

a
(4)
1 (0) =

1
30
, b

(4)
1 (0) =

1223
450

, a
(2)
2 (0) = − 4

15
, a

(4)
2 (0) =

16
21
,

b2(0) = − 1
18
, b

(2)
2 (0) = − 1

225
, b

(4)
2 (0) =

106
735

, (B.13)

and numerical value of integrals∫ ∞

0

ln zb(5)2 (z)dz � 0.250,
∫ ∞

0

ln zg′(z)dz � 0.967, (B.14)

we obtain

Jv =
1
9

+
182π
225

ε

εe
− 15272

735
ε2

ε2e

(
ln
εe

ε
− 2.577

)
+O

(
ε3

ε3e

)
. (B.15)
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C Appendix
Here we consider the asymptotic behavior of the total probability of radiation
W in the region ε � εe to within terms ∼ ε/εe inclusively. According with
Eqs.(A.1)-(A.4) we present the total probability in form

W =
1

L0
rad

(
Wm +

1
L1
Wv

)
, (C.1)

where

Wm = 2Re
∫ 1

0

dx

x

∫ ∞

0

dte−t
[
x2ϕ1(z) − 2(1 − x)ϕ2(z)

]
;

Wv = −Re
∫ 1

0

dx

x

∫ ∞

0

dte−t
[
x2l1(z, t) + 4(1 − x)l2(z, t)

]
. (C.2)

The function entering in Eq.(C.2) are defined in Eqs.(A.3)-(A.4).
The term with ϕ1(z) in the integrand ofWm to within mentioned accuracy

is

Wm1 = 2
∫ 1

0

xdx

∫ ∞

0

e−tdtϕ1(0). (C.3)

In the integral with ϕ2(z) we divide the integral over x into two

W
(1)
m2 = −4Re

∫ 1

x0

dx

x
(1 − x)

∫ ∞

0

dte−tϕ2(z) � 4(lnx0 + 1)ϕ2(0), (C.4)

and

W
(2)
m2 = −8Re

∫ y0

0

dy

y(1 + y2)2

∫ ∞

0

dte−tϕ2(z) (C.5)

� −8Re
∫ βy0

0

dy

y

∫ ∞

0

dte−tϕ2

(
t

y

)

+16Re
∫ y0

0

ydy

∫ ∞

0

dte−tϕ2

(
t

βy

)
= W

(2)
m21 +W

(2)
m22

Integration of W (2)
m21 coincides with calculation in Eq.(A.10) with substitution

ϕ
(4)
2

(
t

y

)
→ ϕ2

(
t

y

)
. We have

W
(2)
m21 = −8Re

∫ βy0

0

dy

y

∫ ∞

0

dte−tϕ2

(
t

y

)
(C.6)

� −4
[(

ln
εe

ε
+ 2C + ln y2

0

)
ϕ2(0) − 2

∫ ∞

0

ln zϕ(1)
2 (z)dz

]
18



Integrating by parts twice over t in integral W (2)
m22 Eq.(C.5) we find (see

Eq.(A.9))

W
(2)
m22 = 16

ε

εe
Im
∫ βy0

0

dy

y

∫ ∞

0

dte−tϕ
(2)
2

(
t

y

)
� 4π

ε

εe
ϕ

(2)
2 (0). (C.7)

Summing W (1)
m2 Eq.(C.4), W (2)

m21 Eq.(C.6) and W (2)
m22 Eq.(C.7) and taking into

account Eq.(A.12)) we have

Wm = −4ϕ2(0)
[
ln
εe

ε
+ 2C − 1 − ϕ1(0)

4ϕ2(0)
− 2
ϕ2(0)

∫ ∞

0

ln zϕ(1)
2 (z)dz

]
+

4π
ε

εe
ϕ

(2)
2 (0) =

4
3

[
ln
εe

ε
+ 2C − 5

8
+ 12

∫ ∞

0

ln z
(

1
z3

− cosh z
sinh3 z

)
dz

]
+

8π
15

ε

εe

=
4
3

(
ln
εe

ε
+ 1.959

)
+

8π
15

ε

εe
. (C.8)

The first term in Eq.(C.8)) is similar to Eq.(2.21) in [9].
We will consider now the probability Wv in Eq.(C.2)). The term with

l1(z, t) gives no contribution into two first terms of expansion over
ε

εe
.

Wv2 = −4Re
∫ 1

0

(1−x)dx
x

∫ ∞

0

dte−t [a2(z)(ln t+ C) + b2(z)] = W
(a)
v2 +W (b)

v2 .

(C.9)
The calculation of the term W

(b)
v2 (with b2(z)) is analogous to the calculation

above (with substitution ϕ2(z) → b2(z))

W
(b)
v2 = −4b2(0)

(
ln
εe

ε
+ 2C − 1

)
+8
∫ ∞

0

ln zb(1)2 (z)dz+4π
ε

εe
b
(2)
2 (0). (C.10)

For calculation of term W
(a)
v2 (with a2(z)) it is convenient to use the

variable y

W
(a)
v2 = W

(a)
v21 +W

(a)
v22; (C.11)

W
(a)
v21 = −8

∫ ∞

0

dy

y

∫ ∞

0

dte−t

(
a2

(
t

y

)
− a2

(
1
y

))
(ln t+ C),

W
(a)
v22 = 8Re

∫ ∞

0

dy

y

(
1 − 1

(1 + y2)2

)∫ ∞

0

dte−t(a2(z) − a2(0))(ln t+ C).

The integral over y in W (a)
v21 is the integral Frullani∫ ∞

0

(
a2

(
t

y

)
− a2

(
1
y

))
dy

y
= −a2(0) ln t. (C.12)
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Using the last result in Eq.(B.11)) we have

W
(a)
v21 =

4
3
π2a2(0). (C.13)

In the expression for W (a)
v22 we divide the integration interval into two parts:

W
(a1)
v22 = 8Re

∫ ∞

y0

dy

y

(
1 − 1

(1 + y2)2

)
(C.14)

×
∫ ∞

0

e−t

(
a
(2)
2 (0)

t2

2!β2y2
+ ...

)
(ln t+ C)dt = 0,

W
(a2)
v22 � 16Re

∫ y0

0

ydy

∫ ∞

0

e−t(a2(z) − a2(0))(ln t+ C)dt

=
16 Im
|β|2

∫ βy0

0

dy

y

∫ ∞

0

e−t

[
a
(2)
2

(
t

y

)
(ln t+ C) + d

(
t

y

)]
dt .

The function d(z) is defined in Eq.(B.6), the further calculation can be done
as in Eq.(B.7)

W
(a2)
v22 � 4π

ε

εe
d(0) = 6π

ε

εe
a
(2)
2 (0). (C.15)

Summing W (b)
v2 Eq.(C.10), W (a)

v21 Eq.(C.13) and W (a)
v21 Eq.(C.15) we obtain the

following expression for Wv Eq.(C.1)

Wv = −4b2(0)
(
ln
εe

ε
+ 2C − 1

)
+ 8

∫ ∞

0

ln zb(1)2 (z)dz

+
4π2

3
a2(0) + 2π

ε

εe
(3a(2)

2 (0) + 2b(2)2 (0)). (C.16)

Taking into account that∫ ∞

0

ln zb(1)2 (z)dz = 0.0431

and using Eq.(B.13) we obtain (a2(0) = 1/3)

Wv =
2
9

ln
εe

ε
+ 4.7655− 364π

225
ε

εe
+O

(
ε2

ε2e

)
. (C.17)
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D Appendix
Here we discuss a structure of corrections to the total intensity of radiation
at ε � εe which is not included in the expansion over 1/Lc contained in
Eqs.(2.1)- (2.4). We will show that these corrections, which are contained
terms ∝ 1/L2

1 and higher degrees of 1/L1, are beginning from terms of the
order ε/εe. We will use the general expression Eq.(2.12) of [7] before decom-
position over 1/L:

dI

dx
=

2αm2x

1 − x
Im
〈
0|r1

(
G−1 −G−1

0

)
+ r2p

(
G−1 −G−1

0

)
p|0〉 , (D.1)

where

G = p2 + 1− iV (�), G0 = p2 + 1, V (�) =
ε

4εe

1 − x

x
�2

(
L1 − ln

�2

4
− 2C

)
,

(D.2)
here the quantities r1, r2 are defined in Eq.(2.2) and εe and L1 are defined in
Eq.(2.4). In the region 1 ≥ x� ε/εe we expand the combination entering in
Eq.(D.1) over degrees of V

G−1−G−1
0 = G−1

0 iV G−1
0 +G−1

0 iV G−1
0 iV G−1

0 +G−1
0 iV G−1

0 iV G−1
0 iV G−1

0 +. . .
(D.3)

Substituting Eq.(D.3) into Eq.(D.1) one can verify that the terms of the order
1/L2

1 and higher degrees of 1/L1 are appeared starting from the third term
of decomposition Eq.(D.3). Their relative contribution is of the order ε2/ε2e.
Taking into account that

G−1
0 = i

∫ ∞

0

e−ite−ip2tdt, < �1|e−ip2t|�2 >=
1

4πit
e

i
4t (�1−�2)

2

, (D.4)

we obtain

< �1|G−1
0 |�2 >=

1
4π

∫ ∞

0

exp
[
−it+

i

4t
(�1 − �2)

2

]
dt

t
=

1
2π
K0(|�1 − �2|),

(D.5)
where K0(z) is the modified Bessel function (Mac-Donald’s function). Sub-
stituting this result into Eq.(D.3) and then into Eq.(D.1) we get

dI

dx
=

αm2x

π(1 − x)

∫ ∞

0

[
r1K

2
0 (	) + r2K

2
1 (	)

]
V (	)	d	 (D.6)

=
αm2

4π
ε

εe

[
r1 + 2r2

3
L1 +

r2 − r1
9

]
, I(0) =

αm2

4π
ε

εe

(
L1 +

1
9

)
.
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Obtained here result for I(0) agrees with Bethe-Maximon formula.
In the region x ∼ ε/εe the potential V ∼ 1 and decomposition Eq.(D.3)

is inapplicable. However in this region

dI ∼ αm2 xdx

1 − x
∼ αm2

(
ε

εe

)2

, (D.7)

and the relative contribution of this region ∼ ε/εe.
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