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system, its propagation and the subsequent decay. 'If, in general, the system
contains in the given energy region N resonance levels coupled to M channel
states the matrix A is a rectangular N x M-matrix composed of the tran-
sition amplitudes AS, between internal states | m > (m = 1,2,...,N) and
channel states | ¢ > (¢ = 1,2,...,M). These amplitudes can be considered
within limited energy intervals distant from thresholds as energy-independent
quantities. They are real provided that T-invariance holds.

The evolution of the intermediate unstable system is described according
to eq. (1) by the non-hermitian matrix ' 5

H:H—%W, (2)

which can be considered as an effective Hamiltonian [6-8]. This Hamiltoni-
an acts only within the intrinsic N-dimensional space but acquires, due to
elimination of the degrees of freedom of motion in the energy continuum,
an antihermitian part. The hermitian part H is the internal Hamiltionian
with a discrete spectrum whereas the antihermitian part W originates from
on-shell self-energy contributions corresponding to open decay channels. By
this, one gains the ability of a discretized treatment of the intrinsic dynamics
of systems embedded in continuum.

Both the matrices H and W are real and symmetric in T-invariant theory.
The effective Hamiltonian 7 is therefore also symmetric. Due to unitarity

of the scattering matrix, the antihermitian part W is expressed [6-8] in the

specific factorized form-

W =AAT | ol

in terms of the same transition amplitudes A%, which appear in the reaction
matrix (1). All parameters of the resonance scattering amplitudes T are
hence presented in the effective Hamiltonian (2)-(3). This effective Hamilto-
nian plays an important role in the theory of resonance reactions (8].

The eigenenergies and eigenstates of the effective Hamiltonian are of spe-
cial interest. They are found from matrix equation

HE =VE, (4)

where £ is the diagonal matrix of complex energies £, = Em — iT,, with
E.,. and T',, being the energy and width of m-th resonance state. Such states
form the columns of the N x N matrix ¥. Inasmuch as the matrix of effecrive
Hamiltonian H is symmetric, the matrix of eigenstates ¥ can be chosen to
be complex orthogonal 8]
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Te=99"=1. (5)

Note that the normalization of eigenstates 3, ¥Z = 1 following from (5)

differs from the condition 5, [¥,,|*> = 1 used in the elementary particle

physics [3] and corresponds to that usually adopted in the theory of nuclear

reactions [8]. We found this choice to be more convenient for our purposes.
Contrary to (5), the matrix

U =99 | (6)

is not the unit one. Decaying states are not, in general, orthogonal. It is easy
to prove [8] that | ' '

UE-EYU = it WT = A" AT . . (7)

This is a matrix version of the well-known Bell-Steinberger relation [3]. Unlike
A, the tilted matrix 5
A=9TA (8)

is complex due to complexity of the eigenvectors of the effective Hamiltonian.
The complex matrix elements A¢, play the role of the decay amplitudes of

unstable states. The on- and off-diagonal elements of eq. (7) are

A,

: 1 2

N A A = i(En — Ep) Uma - (10)
L L
The quantities ', are the partial widths by definition.
“The matrix of the eigenstates ¥ is used to represent the reaction ampl-
tudes eq. (1) in the explicit resonance form )

i

T (E) = %“;% ., (11)

il

Only one term in the sum {11) dominates in the vicinity of a given reaction
energy E provided that resonances are well separated i.e. the widths of
resonances are much less than spacings between them. It can be easily seen
that in this case all eigenstates of the effenctive Hamiltonian are real, the
matrix (6) coincides with the unit matrix and the amplitudes AS = JTe
are real. The energy dependence of cross-sections has therefore ihe standard
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Breit-Wigner form defined by the energy of the resonance and its partial
widths.
In the opposite case of overlapping resonances, the amplitudes

jﬁn = \/IE‘V Ummeia:" (12)

are complex and the reaction energy spectrum is formed by a non-trivial
interference of different terms in the sum (11) corresponding to these reso-
nances. This spectrum can not be analysed in term of energies and partial
widths only. The mixing phases oy, play in this analysis an important role.

In what follows we will consider the decay properties in the special case
of a system with only two overlapping resonances. Various aspects of this
problem have attracted attention before this work [7,10,12,13,14]. Recently,
these properties were discussed in the frame of the effective Hamiltonian ap-
proach in a number of papers [15-17] by one of the authors in the special case

when only one decay channel is open. In the present paper, we extend this

consideration to an arbitrary number of open channels. We will show that,
for any number of channels, the mixing phases ay, can be eliminated from
the decay energy spectrum of an unstable two-level system and this spectrum
is expressed only in terms of energies and partial widths of resonances and
one additional universal parameter which satisfies a sum rule following from
the Bell-Steinberger relation (10).

Two-level system

1. The orthogonal matrix of eigenvectors of a 2x2 symmetric matrix coincides
with the well-known matrix of rotation in a plane provided that this symmet-
ric matrix is real. The matrix ¥ depends then on the only real parameter, the
angle of rotation in the plane. To diagonalize a complex symmetric matrix
one needs a complex orthogonal matrix which still can be presented in the
same form of plane rotation :

_11!:( COS X smx) (13)

—siny coOsY

but with complex angle x = x2 + ix2. The imaginary part X2 plays an im-
portant role describing the special mixtures of the originally bounded states
which forms the unstable (resonance) states under consideration. Another
parametrization which is frequently used in particle physics [3,7,10-13] looks

i
i

1

e

like

W:ﬁ(i ’lf) (14)

After corresponding renormalization of eigenvectors the two parameters can |
be connected by the simple formula € = tan x.
The complex decay amplitudes A?, are therefore

A = cosyA] —sinxA;, (15)
AS = sinxAf + cos xAj .

Since the quantities LAS, are real, all phases af, are governed by the parameter
x2 only. It leads to two conditions

sinh xg(Re.i"i) — cosh xz(fmj;) s ; (16)
cosh x2(Im.Aj) + sinh xg{Rej.g) =

I ¢ Tm 4"1:

m%l 2 = —tanh’x2,

ReA{ ReAj _ _

ReAS Im.AS e

- = = =]
ReAS Im.A5

are therefore channel-independent. Using the definition (12) and the fact
that in the two-resonance case Uiy = Usa (see eq.(6) and eq.(21) below) one
easily obtains the equations

tanajtana; = - tanh? x2, |
(i~ tanh? xaI'5) tanaf + (I‘§ — tanh? x2T'f) tanag =0,

(18)
which give

T b tanh® xoT'¢

tan® oy = = tanh® v2 ,
o BT R s

(19)

2

¢ — tanh? xo IS
: X232 tanhz b, e

c
Xn —
27 I —tanh® x2I¢

tan

One of the combinations of the partial widths in the fractions in r.h.s.
of egs. (19) is certainly positive. For egs. (19) to be consistent, the other
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combination must be also positive. It should be provided by the value of x2
which is not a free parameter but is determened by the sum rule given below
(see eq. (24)).

The absolute signs of tanaf, are left uncertain by eqgs. (19) though we
can see from the first relation in egs. {18) that they are opposite for the two
resonances. The cross-section and the decay energy specirum are expressed
in the terms of sine and cosine of the phase differences af — af which can be
restricted to the interval [0, 7]. The sine is positive in this interval whereas the
cosine can be positive or negative depending on whether the phase difference
is less than I or exceeds this value. Only the absolute value of the cos(af—a$)
is fixed however by eq.(18). With all this taken into account; we atrive from
the egs. (18), (19) at

1T§ + 1%
2 /TiT%

| \/ (T§ — tanh® x2T5)(T'§ — tanh® xT)
(1+ tanh® x2)/T5T3 :

Two solutions S}'mrﬁetric with respect to the value 7 are given by (20) for
each phase difference a§ — 5. One can not choose one of them on this stage.

tﬂ-[l._h 23(2 '

sin(a§ - 05) =

(20)

cos(aj —aj) =

Let us now make use the Bell-Steinberger relation (10). With the paramet-

rization (13), the non-orthogonality matrix (6) is

cosh2x2  isinh 2x3
= : 21
i ( —isinh 2xs cosh 2x3 (21)

The relation (10) is therefore equivalent to the two conditions

1
Y JTiT5sin(af —a5) = —5(T1+Ts)tank2xa, (22)
S /Tl cos(af —a5) = (B, — E;) tanh 2y, . (23)
- _

The first of them is identically satisfied by eq. (20) whereas the condition
(23) gives the non-trivial sum rule which can be reduced after some algebra
to :

Z SE\/I“]:_FE e % 5i11h2 2}(3 (Fi . F%)ﬂ = (E]_ — Eg) sinh 2){2 . (24}
¢

8

Here, the signs S, in front of the square roots are still uncertain in accordance
with the second equation (20). However, since the value of physical parameter
x> is unique, all signs in (24) should be as well determined in selfconsistent
way by the same sum rule. Some additional information can be also used
in a concrete situation (see, for example, discussion of the p — w mixing
below). - The numeration of the resonances is chosen in such a way that
(E; — E;) > 0. The equation (24) defines the parameter x; in the terms of
the spacing between the resonances and their partial widths.

2. The effective Hamiltonian X of two-resonance system being a 2x2
complex symmetric matrix is determined by 6 real combinations of the S-
matrix parameters. In general, it can be represented in the form

H:(EI“%'h 26¢ )_i( : m"“sﬁ) (25)
e e —3im 2 \ /172c08f e !

where two initial ”unpertﬁrbed” resonances with complex energies €m — %ﬂrm
are mixed by the internal interaction %51‘;‘ as well as by the external interaction
with amplitudes AZ, via the continuum; '

LES o

The six elements of the matrix (25) are connected by the formula

T Z (Afn.}z ) COSﬁ o

H=VEYT (27)

to the complex energies of the two resonances £; and £; (4 real parameters)
and the complex angle x introduced in the previous point (2 real parameters).
Five of these parameters, the energies and widths as well as the imaginary
part ya, are invariant under arbitrary real orthogonal transformation of the
intrinsic basis. As we have shown above, the parameter x2 is defined by the
energy spliting and partial widths of resonances. Contrary to this, the sixth
parameter, the real angle x1, depends on the choice of the basis of intrinsic
motion. This choice is dictated by physical reasons. We stress that the real’
decay amplitudes A, are also basis-dependent; decays of actual resonances
are described by the complex amplitudes .»fl'.ﬁn :
Two possible choices of the intrinsic basis are of special interest. One can
diagonalize by some real orthogonal transformation either the hermitian or
the anti-hermitian part of # . In the first case é¢ = 0 and two unperturbed
resonances are mixed by a purely imaginary interaction via the continuum
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("external mixing”). The condition f¢ = 0 fixes angle x; to satisfy the
condition

1T —-T'9
0 S Reeq Sl
el R s
The five remaining matrix elements in (25) can then be easily expressed

in terms of the complex energies £; and £; and of the parameter x; of ”physi-
cal” resonance states. One gets

tanh 2y2 . (28)

: i :
(€1 - «'52)2 = (B - E3)2 + 1 (I'y — ]’."2)2 tanh? 2x2 cosh? 2x2,
(1 =12)° = (B1 — B3)" Ty~ Ta)’ St
(E; — Eg):E 4 i—(f‘l - I‘z)_2 tanh? 2y2 | cosh? 2y,
2
((B1 - B2 + 3 (01 - 2)]
e e 2 - - sinh? 2y, (30)
[(E1 = E3)* 4+ 1 (T = Ty} tand?® zxg]
whereas the two equalities
€1+ €2 = By + Ey, Y1 +72=F1+F2_ (31)

are provided by the invariance of matrix trace.

In the second case, cos 3 = 0 and the initial resonances are mixed by a
real internal interaction (”internal mixing”). The angle x; is now given by

oy

tan 2y; = 2r1‘; tanh 2x; (32)
and
; 2 2
e S % o (Erz—Ez] (I'y - T'y) -~ _ :
[{El — E5)" tanh® 2y, + % (Ty—T5) ; cosh? 2x, 5
(y1 — 72)2 ol [(El — }E'g)2 tanh® 2x3 + :41— (T, — 1"3)2 cosh? 2y,
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3

2
(81— B2)* + 1 (11 - 1))
[(El - Eg)? tanh® 2x2 + % (1 — Fz)z

(6e)* = ]s'mh“’zm. (34)

Note that, as it can be easily seen from eqgs. (29) and (33), the attr-actim.:b
repulsion theorems established in [16] for the single-channel case remain valid
also for arbitrary number of channels (see also [15]).

3. Additional simplifications emerge if only one decay channel is open
since the partial widths of the resonances coincide in this case with the total
widths. One can therefore find the parameter x2 explicitly. To do this, one
can take into account that one of the initial widths 4 vanishes in the internal
mixing basis whereas another is equal to sum I'y + T’z [8]. It gives

I'yI's
(Ei - Ez)z -+ _]1‘-(111 -+ I‘g)2

The formulae (29), (30) and (33), (34) are reduced after substitution of eq.
(35) to the corresponding expressions of the ref. [16]. In particular,

_ tanh® 2x2 = (35)

'
(F1 +I'2)

We will use this equality in the next section. At last the mixing phase can
be easily found to be [7]

(6¢)* = 4 - {(E, — E3)* + i Ty + rz)zl : (36)

1T, 4T

i il 37
2E, - E; (37)

tan (g — az) =

Applications

The resonances mixed due to violation of an approximate symmetry represent
nice special patterns of overlapping resonances. The isospin symmetry or CP-
symmetry broken in the decays of the neutral K-mesons are typical jex.amples.
The initial symmetry prompts a natural choice of the intrinsic basis in these

cases.

a) 2t doublett in ®*Be

The well-known doublett of 2% states of ®Be with energies 16,7 and 17,0MeV
decaying into the two-a-particle channel with zero isospin are formed by two
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states with isospins 1 and 0. These states are considered to be composed
from the two charge conjugate states

i) s ( o) o [Betn)= ( '

From the charge symmetry one expects that the latter states have near-
ly equal energies and decay amplitudes. In the limit of the exact charge
symmetry Hamiltonian matrix (25) has in the basis of constituents (38) the

form
H:(EG ﬂ)ﬁ_i(’rﬂ TD\ (39)
v € 4% T Yo/
-clearly manifesting this symmetry.

The matrix (39) can be diagonalized by the real orthogonal transformation
given by the matrix :

el (40

- (38)

of eigenvectors

s ("Lt p) = [Be+n) = 2= ( L ) |

x (41)
S s - (1)

with isospins 1 and 0 correspondingly. The diagonal form

= 0
B €— 1 :
( 0 E—l—v—;—,'m) (42)

directly reveals the isospin conservation due to the underlying charge sym-
metry: the state with isospin 1 is stable.

Let us now suppose that the charge symmetry is broken only in the en-
ergies of the constituents {38) whereas their decay amplitudes remain equal.
Then the effective Hamiltonian is perturbed by the energy-shift matrix

6e O 0 gbe )
s 3 2
o ( 0 ~—%—é£_) 0y ( e 0 ) (43)

and gains therefore in the basis (41) the internal-mixing form given by the
sum of eq. (42) and r.h.s. of eq. (43). Using the formula (36) of the previous

H

1)

0) =

12

-

section and the experimental data by Bonn group [18] we can find the energy
difference of the constituent states (38}

I6¢| = 296.6 keV . (44)

b) The system of p and w mesons

The system of the two neutral vector mesons p° and w? is another example of
resonance mixing caused by violation of the isospin conservation [19]. These
mesons are composed of the two two-quark states, |u%) and [d&), which can
decay into a number of channels, the 27- and 37 channels being the most
important ones. Two orthogonal states with opposite G-parities and isospins

1 and 0 decaying only into 27- and 3w channels are formed provided that the

light quarks have equal masses and one neglects the electro-weak interaction.
In the basis of these states the matrix of real decay amplitudes looks like

(T %)

where we liave used the value of isospin to label the states and channels.
The mass shift §m=de of the constituent states due to different masses

of u and d .quarks breaks the isotopic symmetry and forms the two mixed

physical states |p) and |w). Suggesting that this shift is the only cause of
symmetry breaking one finds from eqs. (45) and (15) the complex decay
amplitudes :

ﬁj“ = €08 X+/71 j‘g’ = —sin x+/70 (46)
AT =sinx /1 ALY = cosx/To -

It leads immediately to

tan (aff —a)f) = —tan (cxf,” —arr) . (47)
and
3= I‘El# 3= 1n—4
Io = parTar ~0.63:107°T, . (48)
p

These relations have good accuracy in the frame of the adopted mechanism
of symmetry breaking since they can be violated only by e]ectmma.g;ngtic
corrections, which can create small off-diagonal elements in the amplitude
matrix (45). The width I‘f,‘ is not known experimentally. In view of our
discussion and the unambigous prediction (47) it would be interesting to
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measure this width. This can be done presumably at the planed Da®ne
accelerator.
The established relations (47}, (48) allow one to solve exactly the equation

(24). In particular , the second connection determines the relative sign of the
13
two terms in this sum rule. Up to the terms of higher order on the ratio Te

T,
one obtains

v e
sinh? 2y3 = (Lo —Tu) g ; (49)
(mw —mp)* +§ (T ~Tu)’ T
It leads to the expression for the mixing phases
: 1T,-T
2 3 ry P Wy
tan (O,'Pw = ﬂwﬂ‘) = —tan (QPT e ﬂ'w') — E"m":_—m & 0. 15 § (50)

which differs from that given in ref.[13] by sign in front of the width of w-
meson. We stress in this connection that the accuracy of the eq. (50) is
o ps

T {(or, more exactly, 2 oE with electomagnetic decays taken into account)

rather than %‘- 2

Since the matrix (45) of the amplitudes is diagonal the effective Hamil-
tonian of the p — w system has in the adopted approximation the internal
mixing form again. The formulae (34) and (49) give for the mixing mass shift

3
2

e 2 P
[6m| = 2 | (my — m)) +E(PP_F‘~') >

1
2
) A~ 5.07TMeV.  (51)
Lp
This value is only 7% less than the estimate of ref.[17] obtained by a somewhat
tricky one-channel approximation.

We have considered an unstable two-level system decaying into a number
of open channels. It is shown that the mixing phases of the two overlapping
resonances can be obtained from their partial width and one additional mix-
ing parameter. Applications are made to the doublett of resonances in ®Be
and to the p —w-system. In particular one obtains the 37 decay width of the
p meson to be I‘f,’ = 0.6310~4C,.
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