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Limitations on Current Ripple of the Power Supplies for the SSC Bending
Magnets

Valery A. Lebedev
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Abstract

Noise and ripple in the bending magnets of large proton collider
cause the beam emittance growth and the luminosity degradation. The
emittance growth due to voltage ripple of the bending magnets power
supplies is studied. The role of the collider transverse feedback system is
shown to be very important to facilitate the requirements to value of ripple.

;r The longitudinal emittance growth due to slow variations of power supply
| current are studied as well.
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1. Introduction

Noise and ripple in the magnetic field of a storage ring produce the beam
betatron motion which leads to the emittance growth due to the betatron tune
spread in the beam and, consequently, leads to the luminosity reduction. It is
especially dangerous for the Superconducting Super Collider because of very low
revolution frequency and beam emittance. The main sources of this external
perturbation are the transverse displacements (oscillations) of quads and ripple and
noise in power supplies of magnets and correctors. This article is devoted to the
analyses of power supply ripples and noises on beam dynamics and stands limits
on the acceptable amplitude of power supply ripples and noises.

The Collider will have a lot of different power supplies for the magnets.
They are 10 powerful sources for the regular dipoles and quadrupoles, some tens
of power supplies for quads of the utility sections and the interaction regions,
about 5000 small power supplies for correctors. Potentially, ripples of all these
power supplies will affect the beam and will lead to the emittance growth. Because
of a huge number it will be very difficult to identify the real sources of the
emittance growth. Therefore all measures have to be undertaken to decrease the
harmful influence of power supply ripples and noises. To do this we consider the
next measures should be undertaken. '

1. The powerful transverse feedback system should be used to suppress the
emittance growth which originates from dipole beam kicks. This can reduce
the emittance growth rate in 100-500 times.

2. The collider tunes should be chosen between power line harmonics that
practically removes any their influence on beam dynamics because of small
betatron tune spread in the beam.

3. To suppress the current ripple from the power supplies, the system of
passive filters should be used.

4. The use of the damping resistors in parallel to the superconducting magnets
dumps the ripple wave propagation in the string of magnets that decreases
the beam kicks from the magnets.

4

2. Transverse Emittance Growth and its Suppression by the
Feedback System

There is a lot of different processes that can lead to the emittance growth.
First, we consider the emittance growth due to random dipole kicks when all
particles are affected by the same sequence of transverse kicks. This excites the
betatron coherent motion which, due to unavoidable betatron tune spread, will

. pump up the beam emittance. The sources of these dipole kicks are field

fluctuations and ripples in dipoles and transverse oscillations in positions of
quadrupoles.

2.1. The Emittance Growth due to Noise and Ripple.

The emittance growth due to external dipole noise and suppression of this
emittance growth by the transverse feedback system was studied in the refs.[1] and
[2]. It was shown that in the general case where one can neglect coupling between
the vertical and horizontal motion, and the spectral density of external perturbation
is a smooth function of frequency (i.e. the spectral density does not change
significantly in a frequency band of the betatron tune spread), the emittance growth
rate is equal to:

2 =
(%):%E BS(®,), @, =w,(v-n). 5 Ak L)

Here w, is the revolution frequency, v is the betatron tune, S(w) is the spectral
density of beam kick summed over one turn and referenced to B-function p. This
spectral density is normalized so that the correlation function of the beam kick is

K(t,-1,)=(0(x,)0(1,))= f S(w)e' " g | (2.2)

where O(t) is the angle kick summed over one tum (O=dx/ds for horizontal and
O=dy/ds for vertical directions) excited by magnetic field fluctuations in particle
motion. One can express this "summed" spectral density through the cross spectral
density of angle kicks from different magnets as

N
BS(m)=z; /BBS @)cos(p,~p 01y . (2.3)
U:
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Herc N is a number of magnets, B, and P, are the B-functions in magnets i and

#;-p; is the betatron phase advance between the magnets i and j, T; is the time
nf flight from the magnet i to the magnet j, S;; is the cross spectral dcnsuy of angle
kicks from the magnets i and j. This cross spectral density is bound up with the
cross correlation function of angle kicks by the expression

K (7, -1)=(0x,)8(1,)= [S(w)e " do (24)

where 8,(7) and 9,(t) are angles excited by kicks of the magnets i and j. Eq.(2.1)
is justified for both the vertical and horizontal planes. It is important to note that
the coupling between the vertical and horizontal motions will redistribute the
emittance growth between both planes. In the SSC case, the beam has equal
vertical and horizontal emittances, so the emittance growth rates should be equal
for both transverse planes

dﬁf’dt-((dsfdr) +(de/dt) )/2.

In Eq. (2 1) one can see that nnly resonance frequencies contribute to the
emittance growth. As a rule, the main contribution is determined by the lowest
frequency wg=w min([v],1-[v]) because the spectral demsity of perturbation
decreases very quickly with frequency. Here [v] is the fractional part of the
betatron tune.

2.2. The Emittance Growth due to Harmonic Perturbation.

In the case where the harmonic perturbation (ripple) is added to .the
general noise, the sharp (8-function) peaks appear in the spectral density. If there
is no overlapping between a harmonic of the perturbation frequency and betatron
frequencies of particles this ripple (or harmonic perturbation) does not produce any
emittance growth as follows from Eq.(2.1). But in the case where perturbation
frequency is inside the betatron tune spread the general picture is much more
complicated than it was considered in Section (2.1).

Let only harmonic perturbation affect the beam. Then resonance particles
will increase their amplitudes and should go out of resonance because of tune
dependance on amplitude. This means that after short time the emittance increase
should be stopped by nonlinearity. But in real conditions there are some effects
which will prevent from it.. They are: the general noise which will push new
particles to the resonance; slow fluctuations in particle tunes due to final accuracy
of beam aiming and slow current flucthiations in magnets; a change of counter-
rotating beam profile (due to its emittance growth) that also changes the tunes of
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particles; and some other effects, such as intrabeam scattering, etc.

Let us consider a simple estimate which determines the upper limit of the
emittance growth rate. We will neglect the coupling between the vertical and
horizontal degrees of freedom and the motion nonlinearity. To simplify solution
we introduce the complex vanable

=%+m.§;(i), (2.5)

which changes as
Z -2, g “2nivn (2.6)

for the unperturbed betatron motion. Here x stands for the particle deviation with
respect to the closed orbit, B is the B-function and s is the path length along the
orbit, v is the betatron tune and » is the turn number. Let the beam be influenced
by harmonic perturbation so that on tum n it gets an angle kick equal to
0.cos(2nv,n). Thus, one gets an increment for the variable Z equal to

2nivn . “2mivon
AZ =if, pce e ; (2.7)

where 0, and v, are the amplitude and frequency of the perturbation, P, is the p-
function at the point of perturbation. Using Eqs.(2.6) and (2.7) and taking into
account the motion linearity one gets that after n tumns the particle coordinate is

equal to

n

n
- 2niv(n-k) _ -2niv
/ =ZG€ an‘vn_l_; azte niv(n }_zae nivn

(2.8)
0, <, 2nivk  -2ni : :
e: nivk -Imiv RN -2riv(n-k) _ 2niv
+‘/[3_¢ E:kz:ﬂ: (e +e Ne (Zu+E Jt(v)]ﬁ' d
where Z,=lZJe' is the particle initial coordinate and
=Ini(v+v n =2mi(v-vn
E 1_ ) {2.9)
= (\?) FZ ( $2 —‘lm{uw‘} l_E—ZnI{v v,) ;
After averaging in the mitial phase
ZD, =ZgH+B(v). (2.10)

and averaging over the function distribution, one has the change in the r.m.s. beam

i



emittance after n turns
de(n =%({]zjb-ﬂz§[>}=% [EilRvy 2.11)

where f(v) is the distribution function over the betatron tune. For a very large
number of tums, the second resonance addend in Eq.(2.9) will produce the main
contribution in the integral (2.11). If m»1/Av, then [Z.°(v)l can be replaced by
the &-function and the integral (2.11) can be easily calculated. In this case one has

BE
6e(n)=%iﬂv on Lo

where Av is the betatron tune spread. Taking into account that in the collider
mode the maximum of the distribution function is about 1.75§ (see Appendix A),
we finally have the emittance growth rate in the resonance

de pe; (2.13)
(5] =022 -
0 §
Here E is so called interaction parameter
2
_ & Noarice (2.14)
dnEe °
N, 5q. is a number of particles in the bunch, E is the particle energy.

One can see that Eq.(2.13) can be derived from (2.1) if the spectral
density in Eq.(2.1) will be'equal to

2

& Lk (2.15)
S(wyv,)=0.44 ok

It looks like that the spectral density of the harmonic perturbation, which is
proportional to 8(w-wgv,), has to be smoothed within a frequency band of about
the betatron tune spread.

2.3. Emittance Growth Suppression by the Feedback System.
The transverse feedback system will damp coherent betatron oscillations

what will suppress the emittance growth due to dipole kicks of the beam. This
process was carefully studied in refs.[1] and [2] and we will use the results of this
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study here. The numerical simulations showed that the emittance growth rate can
be approximated as'’

do g 33 o) | g0, @S, | (239)
dt g2+3.3%? dt 0

where (de/dt), is the emittance growth rate without feedback system, g=2M1, is
the dimensionless decrement of the feedback system.

To demonstrate an accuracy of the given above analytical estimate a
comparison of the numerical simulation with prediction of the estimate is shown
in Figure 1. There are two curves. Curve 1 is built for the case when the harmonic
perturbation only influences the beam. One can see that if there is no overlapping
between frequencies of particles and the external noise frequency the emittance
growth rate is close to zero. In reality it is even negative because of stochastic
cooling in the numerical model”. If we subtract the stochastic cooling effect the
emittance growth rate will be equal to zero within accuracy of simulations as
predicted by the analytical theory. For curve 2 the "white" noise was added to the
harmonic perturbation. Because of small spectral density its influence is negligible
for resonant tunes but outside of the resonance this addend determines the
emittance growth rate which value does not depend on the tune. To build curve 3
equation (2.16) was used where the emittance growth rate (de/dr), was fitted by
the below equation

. (_(v-v;OAGE)z]
19€) Loy P ey (2.17)
dtlo 2™ o

following from Eq.(2.12). The coefficient 1/2 appears here because the excitation
in simulation was applied in horizontal direction only. The constants A and x are
the fitting parameters (A=0.6, x=0.15). As one can see the simulation gave 10%
smaller results than the considered above estimate. The coincidence is much better
than one should expect.

For the collider the feedback system with ultimate parameters g~1 can
suppress the emittance growth rate by about three arders of magnitude.

BZ
seﬂve) vl R

2.4. Emittance Growth due to Ripple in Quadrupoles.
The random change of quadrupole focusing strength produces transverse

kicks of particles displaced from closed orbit. It also causes the transverse
emittance growth, This process was studied in ref.[3]. As follows from results of
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this work in the case of noise in one quadrupole and for the gaussian distribution
of particles in the phase space the emittance growth rate is equal to

2 =
1de _ o (B)z 2.18
e E e —| S (o W, =W,(2v-n). (2.18)
E d 4“ it F q( q-}! q:‘l ﬂ( )
Here F and f are the focusing strength of the quadrupole and P-function in its
location, S (w) is the spectral density of the noise normalized so that relative r.m.s.
fluctuations of the focusing strength are equal to

o

(ﬂ; 2)= [ (0o, (2.19)

- Similarly to the case of dipole excitation the resonance frequencies only produce

an emittance growth. But unlike in the dipole case the resonance frequencies are
on side bands of the double betatron frequency.

If there is a lot of quadrupoles in the ring with independent noises in them
one should replace in equation (2.18)

2 N B2
qu(m)*g -F—;qu(m), (2.20)

where N, is a number of quadrupoles, p; and F; are the B-function in the location
of the quadrupole with number j and its focusing strength.

For harmonic perturbation we can do the same estimate as for the dipole
case (see Section 2.2). Let the frequency of the external perturbation v w, have an
overlapping with a sideband of particle betatron frequencies [(2v-n)wg,(2v-n+E)w]
and the focusing strength of the quadrupole is changed as

SRy cos(v 00). e

Averaging the spectral density of the perturbation over betatron tune spread by the
same way as in Eq.(2.15) we have an effective spectral density equal to

A

. (222)
28w,

.SF:::

After substituting Eq.(2.22) into Eq. (2.19) one has an upper limit of the emittance
growth rate for the case of the resonance harmonic perturbation in the quadrupole

11



field

i i B et Sl F -

edt 8nE\F

Note, that this is the upper limit in the sense described in Section 2.2.

It is important that the emittance growth due to the quadrupole noise
cannot be suppressed by the general transverse feedback system which damps the
dipole motion only.

1de _ 9 (ﬁ)2 A2 (2.23)

2.5. Limitations of Noises and Ripples for the Collider.

The most rigorous requirements on the external perturbations are for the
collider mode operation when a large beam life time is required. We put here the
limit on the emittance growth time &/(de/dt) equal to 24 hours, that is ~2 times
larger than the damping time due to synchrotron radiation (SR) and means that
beam heating is small in comparison with the SR cooling. The limitations of the
external noise ripple are shown in Table 2 and relevant collider parameters are
shown in Table 1.

Table 1
Main Parameters of the Collider

Energy E 20 GeV
Revolution frequency fy 3.441 kHz
R.M.S. Emittance £ 0.047 nm
i Average B-function B =200 m
Damping time due to SR e/(de/dt) 13 hour
Head-on beam-beam tune shift for 4 IP g 0.0036

We show in Table 2 the effective spectral density of angle kicks summed over one
turmn

Sy~ i S(w,) (2.24)

nﬂ'—ﬂ!

for the case of noise (see (2.1)-(2.4)) and the summed over one tum kick 0, (see
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(2.7)) for harmonic perturbation. For convenience in the case of noise we also
show the effective r.m.s. kick value for the white noise

Br.n.s. =\|'| Sa_ﬂ’m 0° (2'25)

For the beam storage and acceleration the requirements to noises and
ripples are not so stringent because of 10 times larger emittance (the same
normalized emittance) and almost 10 times smaller limit on the emittance growth
time (the storage time is ~1 hour). It means that the relative value of noises AB/B
can be ~10 times larger or, taking intc account 10 times smaller energy, it means
that the absolute value of perturbation AB can be of the same level.

Table 2
Limitation of Summed over one Turn Kick for the Collider

0

I.Jm.s.

noise or 6, for
ripple [nrad]

for white

S, [nrad®s]

General noise

without feedback system 7-10°® 0.04 |
with feedback system 3-10°7° 0.8 |
Ripple : ?
without feedback system 0.004 *
with feedback system 0.09

3. Transfer Function from Power Supply Voltage Ripple to the
Beam Kick.

There will be 10 power supply units distributed along the ring (); each of
them covers a sector of average one-tenth of circumference. One sector contains
96 half cells. Each half cell consist of 5 dipoles and 1 quadrupole. All together
there are 480 dipoles and 96 gquadrupoles in each magnet string. The electrical
circuit of a standard sector is shown in Figure 2. To decrease a bus voltage during
a quench the power buses change their places each half cell.

13
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Detail A

3.1. Propagation of Ripple Wave in a Dipole String

Because of an inductance of superconducting magnets and capacity
between magnet coils and ground the magnet string looks like a transmission line.
The electrical model of this transmission line was developed in ref.[5] and is
shown on Figure 2. To increase the wave damping along string the damping
resistors R, will be connected across each magnet in parallel with series
impedance. Below we will neglect quadrupole influence on wave propagation
because its inductance is much smaller than for dipole.

For further analysis let us introduce the following string impedances: the
impedance of infinite string Z,, and the impedances of differential Z;=U,/I and
common Z_=U/I modes for a string of finite length. Here for infinite string the
voltage is supplied between the bus and the ground; for differential mode the
voltage is supplied asymmetrically between buses +Ug; and for common mode the
voltage is supplied between the ground and both buses. In the given definition the
impedance of differential mode is two times smaller than that in the general
definition. We use it for consistency with other two definitions. The dependencies
of the modules of these impedances on frequency are shown in Figure 3. One can
see that for high frequencies (f>30 Hz) when the damping length is smaller than
the string length all impedances are equal. It means that in the frequency range of
the betatron motion (f2500 Hz) we can always use the model of infinite string for
calculating the interaction between the ripple wave and the beam. So, for infinite
string the complex current in the magnet with a number & is equal to

—_.g_ i -._1- =
Ik-zm(m)exp((lx(m) o) ), k=0, 1T - P (3.1)

where N (o) is a damping length expressed in a number of dipoles and y%(w) is the
phase advance per dipole. The dependencies of the damping length and the phase
advance on frequency are shown in Figure 4. Formulas for the calculation of the

string impedances are obtained in Appendix B.
3.2. The Amplification Factor

To find the beam kick summed over whole string we shall use the
complex variable introduced in Eq.(2.5). Then the summed kick referenced to the
drive point is
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ﬁZ=i§: /B, A8 e™ (3:2)
k=

Here P, is B-function in dipole the k, y, is the betatron phase advance between the
drive point and the dipole k,

A8,=6,¢ " *cos(d,-wr) (3:3)

is a beam kick from dipole k, 0, is the kick value from the first dipole in the
string, ¢, and &, are the phase advance and the damping coefficient of the wave
propagation between the drive point and the dipole k. Substituting Eq.(3.3) into
Eq.(3.2) one has

AZ(@)=i8, Y /B, e™* cos(wt-¢)) . (3:4)
k=-w

For further analysis we need to take into account that there are two groups
of dipoles. The magnets of the first group (marked by bold letters in Figure 2 are
connected directly to the power supply while the other magnets are powered by
return current. This magnets have a very small effect on the beam because the
ripple wave is strongly damped before it reaches them. We shall neglect kicks of
this dipoles. To simplify a solution we will neglect B-function variation in the
lattice and symmetrize the electrical circuit (see Figure 5b). As was already said
we also neglect the quadrupoles influence on the wave propagation.

To understand the influence of the dipole connection type we consider two
cases of magnet connection. In the first case (case a) all magnets are connected
serially. In the second case (case b) we take into account that the power buses
change their places after each 5 dipoles as it was discussed. The electrical circuits
for both cases are shown in Figure 5. One can see that the electrical circuit shown
in Figure 5b is close to the real magnet disposal shown in Figure 2.

First, we consider the beam kick from differential mode. Take into
account that the current wave propagates symmetrically, so that 6,=0,, ¢,=¢,
and for the betatron motion g, =-t,, one obtains from Eq.(3.4):

AZ (1)=2i0,/P ie“'* cos(mt—-d:t) cosp, . (3:3)
k=0

The amplitude of the summed kick is equal to |AZ,|_. /B"?, thus for differential
mode we finally have
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a aaqa aaa,

4 ¢ 0 6 6,0 a . a.a ¢

iy
8, =28, |§ e % cosp, | . (3.6)

Similarly, taking into account that 8,=8,, ¢=¢,+n for common mode the
summed kick is equal to

0, =26, |3 ™™ sinp,| . (3.7)
k=0

For the case @, when magnets are simply connected serially, we can write

k
=ky(w) , 8, = i =nk, 3.8
¢ =ky(w) N ) Be=h (3.8)
and sums (3.6) and (3.7) can be easily calculated. As a result one has
Ry
- {trﬁ—ﬁ
6, =26, 13 e 7 cos(ub) =
k=0
(3.9
=eﬂ l 1 7 = 1 2 =
i ) =— x-p)-—
1-e B e Nq
for differential mode, and
° (K
8, =26, 1Y e ¢ sin(pk)| =
k=0
(3.10)
1 1
=au‘ M~ | gt
R}y -— =L n—
je ' o g Y

for common mode where u is the betatron phase advance per dipole.

For the case b the power buses change their places with each 6-th dipole.
As has been mentioned we shall neglect here the dipoles powered by return current
(see Figure 5b). Although these dipoles do not kick the beam there is a betatron
motion in them and, consequently, the beam gets an additional betatron phase
advance in these magnets. In this case the summed angles will be equal to
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2P

2 (-

0,=26)[Y e "¢ cospk+
k=0 (3.11)
o 4 [EI-EI-)(hSmEI)
g i 7l cos(p (k+10n+8)) |,
n=0 k=0
for the differential mode, and
2 ok
Bb‘=26u|Ee ¢ sinpk+
k=0 (3.12)

= A (- kesned)
I % en sin(p(k+10n+8))|,
=0 k=0
for the common mode.

The value /6, is the summed (over the whole string) kick expressed in
the Kick value of the first magnet in the string. We shall call this value the
amplification factor. The plots of the amplification factors (3.9)-(3.12) against the
frequency for the SSC parameters are shown in Figure 6. As one can see the
maximum value of the amplification factor is about 10 for the case a (ideal string)
and ~2 times lower for the case b (real string). The value of the damping resistor
has rather weak influence on the amplification factor.

3.3. The Summed Beam Kick

To get the kick angle for a given string voltage it is required to find the
ripple of the magnetic field in the first dipole. In the considered above model of
the dipole the magnetic field should be produced by an alternate current which
flows through the inductances only. Thus, we need to introduce the field
impedance Z; of the infinite string, so that the ripple of magnetic field in the first
dipole is

af 1/

o ’

B, Zl,
where U is the ripple voltage on the string, B, and I, are the nominal magnetic

field and current of the string. Dependance of Z; on frequency is shown in Figure
7. Here we assumed that magretic field of the dipole is equal to

(3.13)
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B_=Bu L1 +L,L,+ Lyl : (3.14)
Iy Li+Ly+L,
where I, I, and I, are the currents flowing through inductances L,, L, and L, (see
Figure 2). There is also shown the coil impedance which characterizes the aliernate
current flowing through the dipole itself (see Figure 2).
Finally, to get the kick value the skin effect suppression of magnetic field
by vacuum chamber walls should be taken into account. For a single layer vacuum

chamber with a radius a and uniform external magnetic field in the dipole one can
calculate that the magnetic field inside vacuum chamber is equal to

d
o (1+)—=
Al s FiE” S B (3.15)
1+—(A+A7- (A-17Y)
2 3(1-9)

where d; is the thickness of the vacuum chamber wall and

§ni 2 ; (3.16)

Y2TOoWw

is the skin layer thickness. For small frequencies, when d»d,, the asymptotic of
Eq.(3.15) is well known

o
ad,

1+i—
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The SSC vacuum chamber is to consist of two layers: an internal copper layer with
thickness of 0.1 mm and a stainless steel vacuum chamber with thickness of 2
mm." For low frequencies (fs10 kHz) when the asymptotic (3.17) is justified one
can neglect by the stainless steel influence because its surface conductivity is =50-
100 times smaller than that of copper layer. The magnetic field suppression in
accordance with (3.17) is shown in Figure 8. For frequencies higher than 10 kHz

(3.17)

' We consider here the worst case when the internal liner is not
used. In the case with the liner the value of the magnetic field
suppression will be higher.
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Figure 8.  Suppression of magnetic field ripple due to the skin effect in vacuum
chamber walls; the vacuum chamber radius - 17 mm, the thickness of

copper layer - 0.1 mm, RRR=30 (temperature of copper 4 K9).

I P " i:—-_—;_q:__:__ | I
0.1
0.01
0.001 -
B \
1410 4 | | ] \
10 100 1000 1+104 1410°
f [Hz]

Figure 9.  The transfer functions from coil current to magnetic field ; solid line -
the experimental measurements[3], dotted line - without skin effect
suppression, dashed line - with skin effect suppression.
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the skin layer thickness in stainless steel becomes comparable with the wall
thickness, then the stainless steel conductivity should be taken into account that
yields an additional suppression of magnetic field in comparison with Eq.(3.17).

The comparison of the experimentally measured suppression of the
magnetic field ripple!® for the dipole at room temperature with predictions of-the
model are shown in Figure 9. One can see a satisfactory agreement for frequencies
lower than 30 kHz. For higher frequencies the developed dipole model is not
applicable.

The dependencies of the summed kick values on frequency for different
values of damping resistors and string voltage” of 1 V are shown in Figure 10. One
can see that the summed kick for the damping resistors of 10 Q is =2 times
smaller than for 30 €2 resistors.

3.4. The Amplification Factor for Quadrupole Kicks

The dipoles and quadrupoles are connected serially in the collider arcs as
shown in Figure 2. Thus, the current ripple in quads is the same as in dipoles.
Without the feedback system due to a very small beam size the ripple in quads
produces much smaller emittance growth than ripple in dipoles. But the use of a
powerful feedback system allows to suppress strongly the contribution of the dipole
kicks while the contribution of the quadrupole kicks cannot be suppressed (see
section 2.4).

To find the emittance growth rate it is necessary to take into account that
kicks of different quads are correlated. For the electric circuit shown in Figure 2
the effective value of quadrupole kick for the differential mode is

2 According to the definition given above it means that for the
differential mode the voliages on input buses are 1 V with respect to
the ground and have opposite polarities. For the common mode the
voltages are 1 V with respect to the ground and have the same polarity
for both buses.
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= 10{ix(w)- W 10(ix(w)- J(k+1)

ﬁp"ﬂFﬂ,s;u ¢ s Ny
B

1
10ix(w)- (3.18)
ok e W T
? )5 )
1-e

Here N (w) is the damping length expressed in number of dipoles and () is the
phase advance per dipole (see Eq.(3.1)), Ag=AG/G is a relative amplitude of
gradient perturbation in the first quad, and we took into account that an active
quadrupole occurs after each 10 dipoles. The first and the second addends in
Eq.(3.18) determine contributions of the left- and right-hand branches of the string,
respectively.

Let it be, the same as for the dipoles, the damping resistors R, are
connected across the quads in parallel with their impedance. Then the current
ripple through quad is

fre s (3.19)
Z, Rd+iqu
where L is the quadrupole inductance and U is the string voltage. Unlike in the
dipole case we neglect here the complications in quad circuit because its
inductance is much smaller.

Taking into account the quadrupole magnetic field suppression due to skin

effect (compare (3.17))
S
.ad,
1+2i—
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we finally have the relative perturbation of the quadrupole field summed over all
quads of the string

(3.20)

1
1y (w)-
R Ny 1% 1ie A7 a21)
F~ . : ] ’ :
ILZ, Rd"'”-'JLq 1+2fﬂ ] 10(:1{1'.-1}*”‘@))
.

where I, is the nominal string current (d.c.). Substituting Eq.(3.21) into Eq.(2.23)
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one can get the emittance growth rate due to the resonance harmonic perturbation
of power supply voltage.

To get the amplification factor for the common mode one should replace
the sign "plus”" between addends in the first part of Eq.(3.18) with "minus". As a
result one has the amplification factor for the common mode equal to 1 and the
last factor in Eq.(3.12) should be replaced by 1.

4. The Collider Tune and the Transverse Emittance Growth
Rate due to Power Supply Ripple and Noise

In the general case a perturbation of power supply current should consist
of two parts: a random noise and a ripple on harmonics of the power line. For the
design of power supplies!” under consideration with a passive suppression of the
voltage ripple the main part of perturbation should be due to the ripple. As follows
from previous sections the emittance growth due to the ripple will be equal to zero
if no harmonic has an overlapping with the betatron frequency and its sidebands.
The condition of overlapping is that a frequency of one of power line harmonic
(n*60 Hz) should be inside one of betatron resonance bands

[|v-k|fs, |v-k+E|f,] - for the dipole perturbation and

[|2v-k| £, |2(v+E)-k| (] - for the quadrupole perturbation.

Unlike to the Tevatron and the SppS for the SSC the betatron tune spread
Ef=12.5 Hz is smaller than the distance between harmonics (60 Hz - for the
dipole case and 30 Hz - for the quadrupole case). It allows one to choose the
collider tune between the power line harmonics at least for the lowest ones which
have larger amplitudes. Unfortunately, one cannot avoid an overlapping at higher
harmonics because the revolution frequency is not a harmonic of the power line
frequency. The diagram of mode overlapping for the collider is shown in Figure
11. Here the fractional part of the unperturbed tune f=[v]f, is put on abscissa axis.
The harmonic number and its frequency are put on the ordinate axis. Horizontal
bars show the regions where the overlapping occurs with a given harmonic of the
power line. For example, for a fractional part of the betatron tune [v]=0.4635
(f=f,*[v]=1595 Hz) we have an overlapping with a harmonic of 203 (frequency
12180 Hz) which produces a dipole perturbation and a harmonic of 53 (frequency
3180 Hz) which produces a quadrupole perturbation. So although we cannot
absolutely avoid the mode overlapping we can choose the collider tune at which
the overlapping occurs at high ‘frequencies only.

Contribution to the emittance growth time (1/e-de/dt)” due to the ripple
of the one from ten power supplies are shown in Figure 12. The effects of dipoles
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Figure 12. A contribution to the emittance growth time t from a harmonic which
frequency has an overlaping with a sideband of the particle betatron
frequency: solid and dotted lines are built for contributions due to
perturbation in dipoles without and with feedback system suppression,
consequently; dashed line is built for contributions due to perturbation

in quadrupoles; R =10 (), the harmonic voltage amplitude on the string

is 100 mV. Plots a) and b) are built for the differential and common
modes, consequently.
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and quadrupoles are separated on this plot. It is suggested that only one harmonic
of power supply ripple affects the betatron motion; that this harmonic is in
resonance with the betatron motion and its amplitude is 100 mV. One can see that
the emittance growth time increases rapidly with frequency. Although for a fixed
frequency the emittance growth due to ripple in quads is smaller than that for the
dipoles the real contribution of quadrupoles can be larger. For example at a tune
[v]=0.4664 (f=1605 Hz) we have a dipole resonance with the 84-th harmonic of
the power line frequency (f=5040 Hz) what, in accordance with Figure 12,
determines the emittance growth time equal to 3-10° hours for the case with a
strong feedback system suppression. While for quadrupole resonance we have an
overlapping with fourth harmonic (=240 Hz) which gives the emittance growth
time 1.5+10° hours in assumption of the same voltage amplitude of 100 mV on
the magnet string.

Nevertheless, for a correctly chosen tune the frequencies of dipole and
quadrupole resonances are close which determines that the dipole perturbation
gives a larger emittance growth than the quadrupole one. It means that the minimal
emittance growth rate will be for the tunes which are close to a half integer
resonance, and where the frequency of the dipole perturbation is higher. Of course,
the tune cannot be too close to a half integer resonance where the effect of the
quadrupole perturbation strongly increases.

It is necessary to note that if one takes into account the effect of all power
supplies ripple the emittance growth will be larger. So, if the ripple of all 10
power supplies is in phase the emittance growth time will be 100 times smaller.

Besides the routine work at the collision mode with a constant tune the
collider needs to have a possibility to change the tunes without a beam loss or an
emittance degradation. Let us assume that the collider tune is varied in the region
[0.25-0.45] or [0.55-0.75]. Then during the installation tuning the beam should
cross the dipole resonances at frequencies higher than 800 Hz and quadrupole
resonances at frequencies higher than 170 Hz. As follows from Figure 12 for a
differential voltage of 100 mV and the worst case when all the power supplies are
in phase the minimum emittance growth time will be 300 hours (0.6 hour in the
absence of the feedback system) for the dipole perturbation and 70 hours for the
quadrupole perturbation. Taking into account that the time of resonance crossings
is much smaller we can conclude: that tiere will be a large safety room if at the
feeding points of the magnet strings the amplitudes of all harmonics with
frequencies higher or equal to 180 Hz are smaller than 50-100 mV. Of course, it
is more difficult to suppress the harmonics at low frequency. We also can see that
requirements are roughly the same for the common mode.

For random noise the string voltage requirements are much softer. As
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follows from Eq.(2.1) and Figure 10 the spectral density of noise $S(w,) has to be
smaller than 5:10"* V*/Hz. For the white noise in a frequency band of 3.4 kHz it
gives r.m.s. string voltage of about 1 V.,

S.Longitudinal Emittance Growth and Limitation of the Noise
Spectral Density at Synchrotron Frequency

As was shown in Section 1 (see also Ref.[1],[2]) the low frequency
perturbation does not produce a transverse emittance growth. Nevertheless, the
transfer function from the string voltage to the magnetic field increases fast with
frequency decrease. So, even a small low frequency voltage perturbation should
produce a large perturbation of the orbit length, which can cause a longitudinal
emittance growth. '

As was shown in ref.[8] the growth rate of the r.m.s. phase size of a
bunch is equal to

L=mons,@, , 5.1)

where a is the momentum compaction factor, g is the harmonic number of the RF
voltage, m, and €, are the revolution and synchrotron frequencies and S;(Q,) is the
spectral density of relative length perturbation normalized to

<1"‘f;—2>= [sy(@)do . (5:2)

From Eq.(5.1) one can see that as in the case of the transverse motion the

resonance frequency only produces an emittance growth’. The synchrotron

frequency of the collider is changed from 8 Hz at injection to 4 Hz at the top

energy. So the noise of the power supply at these frequencies should be dangerous.
The relative length change of the closed orbit is equal to!®

*We neglect by sidebands w,=Q +nw, n=+1, +2,... because their
frequencies are three order of magnitude larger then synchrotron
frequency.
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N
L N :
—==——Y y,A86,, (3.3)
L ZT[R;FI ¢n 1

where 0, is the angle kick associated with perturbation of magnetic field in the
magnet n, P is the dispersion function at the magnet » and R is the average
storage ring radius. For the case of very small or zero frequencies, when
AB,/0,=Al/l, Eq.(5.3) is transformed to a well known expression

AL_ A8 _ Al (5.4)
L B 3
where AB/B and A/l are relative perturbations of the magnetic field and current

in dipoles.

One can see in Figure 3 that both common and differential modes have
the resonance behavior in vicinity of the synchrotron frequency. Distributions of
voltage and current amplitudes in the string for the differential mode are shown in
Figure 13. One can see that the wave damping in the synchrotron frequency range
is small, and due to a resonance the current amplitude at the string center is even
larger than at the string ends.

As can be seen from Figure 7 for frequencies smaller than 10 Hz we can
neglect the magnetic field suppression by vacuum chamber walls and current
redistribution in the coil, so a full string current produces the magnetic field. In
this case the kick of the magnet # is

AQ, = Al % 7 e < : (5.5)
0 I ZJ

n

where U, and U, are the voltages on the input and output of the dipole n, Z,=iwL,
is the impedance of one dipole and L, is its inductance. Substituting Eq.(5.5) into
Eq.(5.3), averaging over one lattice cell and summing up one can get

Y e | s 0 Uml-Un:{ﬂl} UH_UU=u UH- UD (5.6)

LomEes LRl RONEF U NRE

where () is the dispersion function averaged over a lattice cell, Uy-U, is the full
string voltage and a=p)/R is the momentum compaction factor. As one can see
the expression for the orbit lengthening (5.6) is just the same as in the case of very
low frequencies where we can neglect the wave propagation in the string.
Substituting Eq.(5.6) into Eq.(5.1) we finally have the growth rate of the r.m.s.
phase size of bunch to be equal to
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where S () is the spectral density of string yoltage.

For the Collider a=9.1-107, L =65.6 mH, wg/2n=360 MHz, I=6500 A,
the bunch length 6,=6 cm which for RF frequency of 360 MHz determines the
r.m.s. phase size of the bunch ($?'?=0.45. Supposing that the noises of all 10
power supplies are independent one obtains that the longitudinal emittance growth
time T=(0?/(d(p?/dt) from 10 power supplies will be 10 times smaller than for
one. For the growth time equal to 30 hours (that is five times larger than the SR
damping time) one obtains from Eq.(5.7) the limitation on the spectral density of
the string voltage, Sy=10™* Vs in a frequency band of [4-8] Hz. It means that the
noise voltage in this frequency band has to be smaller than 70 mV.

6.Discussion

The main conclusion that follows from this work is that the transverse and
longitudinal emittances grow only under the influence of resonance frequencies,
i.e. the frequencies which are inside the betatron or synchrotron frequency spread
and their sidebands: f,=f,(v-n) for the betatron motion or f=f, for the synchrotron
one.

In the betatron frequency range f=180 Hz the spectral power of the power
supply voltage should consist of two parts. The first one consists in narrow peaks
at power line harmonics f,=k*60 Hz which make the main contribution to the
voltage perturbation. The second one consists in the plato of random noise which
originates from the noise in the power line voltage and from the internal noises of
magnets®. Fortunately the betatron tune spread (~12 Hz for 4 IPs) is smaller than the '
power line frequency (60 Hz). It allows one to avoid an overlapping of betatron
and power supply frequencies up to at least 10 kHz. It facilitates the requirements
to power supplies because the overlapping can occur only during a small time of
the resonance crossing. The important role is played by the transverse feedback
system which can suppress the emittance growth time by three orders of

magnitude. .
In the synchrotron frequency range (4-8 Hz) a noise in the power supply

‘Due to helium flow, its evaporation, et.c.
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voltage should produce a longitudinal emittance growth. Similar as for the betatron
motion the longitudinal emittance growth can be suppressed by the longitudinal
feedback system but a value of th¥s suppression will be much smaller because of
a large synchrotron tune spread.

The main requirements to the power supplies of collider bending magnets
(for each of ten power supplies) are:

1 The amplitude of any power line harmonic with frequency equal to or
larger than 180 Hz should be smaller than 100 mV.
2. The spectral density for frequencies larger 180 Hz should be smaller than

5-10" V*/Hz. For the white noise in the frequency band of 3.4 kHz it
gives r.m.s. string voltage about of 1 V.

= The spectral density in the frequency band of the synchrotron motion (4-8
Hz) should be smaller than 10 V?/Hz. It means that the noise voltage in
this frequency band has to be smaller than 70 mV,
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Appendix A
Dependence of Betatron Tune Shift on Amplitude due to Beam-Beam
Effects and Distribution Function over Particle Tune

For a round beam the kick values of a particle with coordinates x,y at the
IP are equal to

x! Px“y! py . (Al)

, SuBay Lo
bp' == {1-ex(-3))
We use here the same coordinates as in Section 1. Taking into account that in the
first order of the perturbation theory the tune shifts are

1 ;
. Av_=
Av, 2mx{6pxsm(¢1)} y v,

1%

1 4 A2
ﬂ:ap,sm@a,)) ._. (A2)

we can express tune shift by an integra

(1 —exp( S +ays )) ) (A3)

x+=Y,

Av (ax,ay)——-—fdllr fdlily 3: ays

where a,,a, are the amplitudes of oscillations and ¢,, ¢, are their phases. We
evaluated thc integral numerically. The results of the calculatmns for hnnzont.al

tune shift are shown in Figure 14.
To ralculate the mean value {(Av) and the mean square value {Av?) of

the tune shift one has to integrate the tune shift with the distribution function

(Av)=(Av) =(Av) ——wmfda fda Av (a8 )exp(-— ass; +aysy)

(A4)

(AvD=(av), (v, =L f & f da, B’to penpl- D)

Here we took into account that because of oscillations, 26)=la,”). To calculate
the dispersion from (A4) one has to use the general equation

[ov2=/AvI-(AvYF . (AS)
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The numerical calculations determine the following values

Yov[£=0.21:0.001 , . (A6)
(Av)f€=0.67+0.003 .

To build the distribution function over betatron frequency the next expression was
used

1 a,s, +a,s
fv(vx)=£!dax!day 6(\? _ﬂvx(ax’ay)) EKP{_ 40? JF) ' (A7)
x=y .

Figure 15 shows the results of numerical calculations of this distribution function.
One can see that the maximum distribution function is about 1.75/&,

0.054

Figure 14. Dependence of betatron tune shift dv /E on
oscillation amplitudes.
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Appendix B
The Calculation of the String Impedances

To calculate the impedance of one dipole one can write down (see
Figure 2)

z- : ,
i i ai
R; iwL+Z +Z, R (B1)
ioL,R ioLyR,
Zimntll y AT i Jts. )
iwL,+R, iwl,*R,

The impedance of the infinite string is equal to

z-z. |22 42 (B2)
. iwC

For the finite length string consisting of N magnets the voltage distributions are

}.N-n_}_u
U =U , n=0,12..N (B3)

for the differential mode, and

;.N—! +lﬂ!

U=U s, n=0,1,2,.N (B4)
AN+1
for the common mode. Here U is the string voltage and
Z
A=1l-— 5
- (B5)

is the eigen number. The impedances are

zpoz A1 (B6)
AN-1-2¥14),

for the differential mode, and

AN

for the common mode.

AN+1

ANe1-AN1-,
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