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ABSTRACT

We show that the high-temperature phése of 2D Coulomb
scalar gas model near the Kosterlitz-Thouless phase transi-
tion at a large length scale is equivalent the free fermion

model and define more precisely the Kosterlitz estimate for.

the correlation length.

@ Institute of Nuclear Physics

1. Kosterlitz and Thouless [1, 2] have proposed a
theory for a phase transition in two-dimensional planar spin
systems and helium films, and for two-dimensional theory of
melting. These systems have singularities, vortices for
planar spins and helium, dislocation in the case of melting,
which interact = with logarithmic potential, as well as
charged particles in 2D. The 2D Coulomb scalar gas model
(2DCSGM) is defined by the partition function
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where € is dielectric constant, p is fugacity, T s
temperature and a is elementary scale of the model in the
lattice. The Kosterlitz-Thouless theory harmonic approxima-
tion is exact at all temperatures below the transition tem-

- perature TKT, provided one only investigates fluctuations at

a sufficiently large length scale and allows for a renorma-
lization of the constants K,y of the theory due to bound

pairs. Above "I‘I{T correlations are expected to decay exponen-

tially with a correlation length of order of the mean = spa-
cing between free vortices, but there isn’t full-length in-
formation about the high-temperature phase. :

In the high-temperature phase the Kosterlitz-Thouless
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renormgroup scale movement from initial elementary scale a
to renormalized elementary scale RD and, essential, from

initial constant K, y to renormalized constant Kn’ Fn is

correct to leading order in z = exp(-y), z « 1. We show it’s
possible to choose renormalized scale R in such a way that
2DCSGM with, renormalized constants KD, V. is equivalent the

free fermion model. The latter allows to ~define more
precisely the Kosterlitz estimate for the correlation length
in high-temperature phase [2].

The Letter ‘is organized as follows. In sec. 2 we brief-
ly introduce the 2DCG self-consistented renormalization
group and present the crude estimate of the correlation
length -in  high temperature phase [l - 4]. In sec. 3, we
then present the equivalence between the massive Thirring,
the quantum sine-Gordon and the 2DCSG models [S - 7]. Using
the renorm-group analysis from sec. 2 and the exact equiva-
lence of the models from sec. 3, in sec. 4, the exponential-
ly decaying connected correlation function and the correla-
tion length in the high-temperature phase are obtained.

2. The central result of the Kosterlitz-Thouless theory
is a self-consistent integral equation for e(r) the sca-
le-dependent constant to leading order in exp(-y) = z:

e(r) =.ela) i+ om Jinletlialn) L2 (2)
; d
where n(r) is the density of charged pairs separated by r
K(r)
R r
n(rk=e 5 ) ; (3)

o(r) is the polarizability of a single dipole of separation
r. The equation (2) is invariant about a scale transforma-
tions’ of the constant of the theory (K, z)

a->all +&),
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So the equation ( 2 ) is equivalent the pair of coupled
Aifferential equations

-1

d K 2
d__g = 4 zZ .
di-Z K
E (2 - 7] Z (5)
where £€=ln(r/a). The trajectories which follow from egs. (5)
4 K T2 C
*ﬁ—' + lnT e I R —§'§- ; (E‘r]

are shown schematically in Fig. The trajectories with ¢ = 0
are long dashed lines (separatrices) in Fig., which separate
the plane on three regions. Region 1 is an infinite correla-

tion length phase, the low temperature phase of the model.

Region 2 and 3 are both finite correlation phases with
free charges. The separatrice with K > 4 is the phase tran-
sition line. In this Letter we discuss only the high tempe-
rature phase in region 2 near the phase transition AB tra-
jectory in Fig., where

el
9k

cC~T = XL 4els el >0 (7)

KT
We cannot use (5) for £ > E;'B, where Z L because the ap-

proximations z « 1 used to derive it break down. However
it’s possible to appreciate the correlation length above TKT

[2]. Let us assume that higher degree term in (5) stop =z
growth near zB~ 1. This hypothesis looks probable, so the

dissociation of the pairs begins from the Ilargest scale
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Fig. The renormgroup flow induced by the scaling
equation (5). Long dashed lines are separatrices, separating
the plane on three regions. Solid AB line is a typical
renormgroup trajectory in high-temperature phase. Dashed
vertical line is the bench mark’s line (K = 2). The model
(1) with constants K, y from the bench mark’s line is
equivalent a free fermion model.

pairs. The small scale pairs "nobody know" about the large
scale pairs 'behavior. From (5) and (6) it’s straightforward
to obtain for small ¢ :

(8)

This is the Kosterlitz crude estimate of the correlation !
length. :

In the forth section we will show, that the AB
trajectory on the Rrscale intersects the bench mark’s line

(the dashed line on the Fig.). 2DCGM with the constants of
the  model (K, y) from the bench mark’s line and the

smallest scale R is equivalent the free exact solvable
5 .

theory. The last permits to obtain the large scale behavior
of the model and to specify the Kosterlitz estimate of the
correlation length in the high-temperature phase.

3. We can represent the partition (1) as a functional

integral with an action of the sine-Gordon model [S]:

Z J Dy exp( - fd’r £

; 1 2 3 e Y -
£ = = (9 = cos ({(2nK) y) . (9)
SG 2 2
F R =
On the expansion (9) in powers of h it has been recognized
the relation between the quantum sine-Gordon- and massive

Thirring partition [6 - 8]. The Thirring model is described
in terms of Dirac fermions with an action

.

Z = J D-;B Dy exp (—Idzr .ET )
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in which ;r“is y-matrices in 2D. The correspondence is then
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where R is the minimal length scale and R’ is the arbitrary
length scale of the model. The correspondence between the
connected correlation functions can be calculated too:

<< cos(J[ZnK} l;ff(r}) cus(J[ZnK] lﬁff; ]) >26

m?R* 2 o = '
= e Y << PleWr)Pie Wir’) 2o ' (12)

We observe that the value K = 2 correspondence to a free
fermion field theory. Thus, the line K = 2 is the bench
mark’s line.

4. Trajectory AB intersects the bench mark’s line in
the point D. There are renormalization coordinates KD = 2,

¥ and minimal length scale R in the point D. We find z_

and RD to leading order in ¢ from (5), (6)

Sy | 1-1n2 C 2
Shem e T (1+ 64(1—1112})_
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All the following results are true to leading order in ZD-@:L

Making use of results from sec. 3, the model (1) are
equivalent the free fermion field theory , where the mass is

m = el (15)

It i1s naturally to identify reverse mass with correlation
length R
¥ L

Do oneitre SO0 ] S Ge0i0SIE) 5l (16)

So, one obtains the dependence Rc on c, T (14, 16), defining

more precisely the Kosterlitz estimate (8).
According to (12), connected correlation function in
point D takes the form

<< CDS(W;{;&}] cus(@(ZnK) l,b(rfj) SRl
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41
where ﬂ = a’up“and Kﬂ(r}, --Kl{r) are modificated Bessel

functions. So, one obtains exponentially decaying order (17)
above TKTon large distance in comparison with powerly de-

caying order in low tempe'rature phase [8]. :
Finally, it should be emphasized that the equivalence
of 2DCSGM above TKT the free fermion model has been obtained

on the expansion in powers of znand only in the large length

scale. One differs from the exact equivalence of 2D Ising




model to the free fermion model near the phase transition
[10]. :

Author is grateful to prof.A.Z. Patashinski for the
suggesting of the problem and simulating discussions.
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