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ABSTRACT
Continues and discrete spectrum states near the
ionization limit are considered. The origin of the
continuous spectrum narrow resonances is
elucidated. It is shown that the wave functions
structure is- intermediate between the regular

structure and chaotic one.
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In the work [1] at the photoionization of the Lithium
atom in the magnetic field the continues spectrum narrow
resonances were observed. The energy of the resonances was
comparable with the cyclotron frequency w. The magnetic
field was 6.1T and corresponding w= S.7cm . The excitation
was carried out from the 3s-state by the laser beam linearly
polarized along the magnetic field. Therefore the projection
of the orbital angular momentum on the magnetic field L;D.
In the present work we will use the atomic units. In these
units the magnetic length is equal to a = 1/Vw =~ 196. The
Coulomb turning point is r~ I/E ~ /& ~ 196°. It is obvious
that at such a size the difference of the Lithium atom from
the Hydrogen atom is negligible and therefore we will
discuss the Hydrogen atom.

At Lz=0 the Hamiltonian in the cylindrical coordinats is

of the form

2,~1/2 SN (1)

1 Z 2 4
H—T[pZ+Pp}-(p+Z} +'§&Jp.

The ionization limit corresponds to the energy of the free
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electron at the lowest Landau level i % w. Since rQ::n)a

the states we are interested in are strongly streched along

the magnetic field. Therefore we can expand the Hamiltonian
(1) at small pz/zg.

H = %{pz + p;} - 1/Z + —;(wz+ 4/23];::«2. (2)
2/3_ _4/3

At z » w  =a the eigenstates of the Hamiltonian (2) are

of the form

y (z,p) = A ot exp(iijp dz) ¢ (p), (3)
n,& V(p—z 0 2. n ‘
where 1 = o ; :
¢ (p)= — R e (TS Y (4)

is the wave function of the electron transverse motion in

the magnetic field [2]. (F is the confluent hypergeometric

function), p is the longitudinal momentum: pz:¥2[1/z—cn+g]1,
A

€ = wln+1/2).
The first impression is that the explanation' of the
continuous spectrum resonances is very simple: These are the
one dimensional Coulomb levels which are built on the states
(3):F 8= € " Se. The value of 8t as well as the normalization
constant A in the state (3) can be found using the Bohr

quantisation rule. s

6€=1/2n; , A=l /:m'; | | )
Let us stress that the WKB phase as well as the normaliza-
tion of the state is determined by the region z» S wh:ere

the approximatioﬁ (3) is applicable. :The further sceparim
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could look as follows. For example Coulomb state built on
the Landau level with n=1 (but with the total energy E>£:IF]
acquires the width due to the small mixing with the n=0. The
problem is that the mixing of the asymptotical states (3)
which happens at z = a'’" is not small. The stationafy state
is a rather complicated combination of the basis states (3).
Narrowness of the resonances is due to the special structure
of the mixing matrix.

In the region aa'mc(zi:{rﬂfvnz the problem of .the states (3)

mixing can be reduced to the scattering problem. Let from

the right side (z>0) the wave incident on the origin.

[n‘;-in: exp{—ijpzdz) gbn[p]. (B R
0

o,

Z
It is reflected and we should calculate the scattering

matrix to the states
=

|m>~cut: 1 exp[ijp dz) ¢ (p). , L7
;—p gl 2 m

ra
The S-matrix in the quasi-classical approximation is calcu-

lated in the Appendix (A22). We denote it by S{m to stresé
that this is the scattering at the Coulomb center. It is
shown in Apf}endix that the transmitted wave is small. Just
therefore it is ommited in the basis of the [dut} states.
Due to this reason all the stationary states of the opposite
parity (reflection z->-z) aré‘-;iegenerate (cf. with Ref. [3]).

Let us consider first of all the states of the discrete

spectrum: The energy level lies below the ionization limit.




The matrix s'?” defines the boundary condition at small
distance. To solve the eigenvalue problem one should add the
boundary condition at the large distance. It is convenient
to introduce this condition wusing the formal scattering
matrix S from the state (7) to the state (6) on to the

Coulomb turning point. Due to the standard quasi-classical

formulae
Zn :
e exp(Zin (e,e )dz-in/2)=3 exp(—"fl"?—- -in/2) (8)
nm nim 0 z n nm m
n
Here =z =1/(e¢ -g) is the Coulomb turning point. One can
n n

represent the stationary state wave function in the form
U=yi+, where the Y is combination of the states (6), and Y=
= Sm}gﬂ is combination of the states (7). Then the equation

for the stationary states looks as follows

s s eyy = y. (9)

Equation for the energy levels is
15'%'s™e) - 1]=0. (10)

According to Eq.(A22) 5! strongly mixes different
Landau levels, and besides that s has rather complicated
dependence on € (8). Therefore it is very natural to suppose

that the solution of the Egs.(9),(10) is of the form

N
max

=Y «|n>, (11)
n=0
where all the @ are of the same order of magnitude |ncn[~rx.
n

What is N ? To formulate the scattering problem we need
ma

2 ] :
the condition a’ %« Fo”ﬂﬂ for Coulomb turning point rD be
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fulfilled (see above). If the total energy e~w the turning
point for the state (3), (4) built on the n-th Landau level
is equal rQN(wn]"J. Thus the condition we need is violated
at. n>a”’>. There is other argument*f At n>a”’the splitting
between the Coulomb levels built on the. n-th Landau level is
larger then the cyclotron frequency: 1/n3>m (remind that
€~0), and due to the usual perturbation theory arguments
this is the case of regular dynamics. Thus the upper limit

2/ 3

in (11) s N . ~ ' is ' '
(11) is N .~ & . The solution (11) is written down in

terms of unnormalized states (6). In the basis of normalized

states (3) it looks as follows

W
1 max
v=— 1 By _,
1"(5 n=0 L
where
M
i ey max g
B“-*Ctn[td[n*i'lle -c] : = z JBH’ : (12)

o

We remind the reader that e< ; w. Thus the contribution of
the higher Landau levels in (12) is suppressed. At ]Ew—s € W
the state (12) is saturated by the zero Landau level, and we
have the case of regular dynamics. The spectrum of these
states i1s Coulomb one: é""’_e =I/2nz, s » a. As far as we
understand such the levels were observed in the Ref. [4].

At |e| » w many Landau levels (~ e/w ) are mixed in the
state and we can say that this is chaotic state. However it

Is known that there are the regions of regular dynamics even

0 : &
This explanation was suggested by D.L. Shepelyansky.
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at |€| » w i3]

At Lw-& ~ w we have intermediate case. For example the
z :
contributions of the different Landau levels into

/2 . ; o
4 So the main contribution comes

normalization drop as n
from the lowest levels. The opposite situation is with the

value <p2> which was measured in the work [1]. Due to the

Eq.(12) it equals.

N
> l NITI.EL}{ 5 > maix i >
Wle’ly>== L B |78 [p7|0 >+ L B B <o |p 1¢m>} (13)
n=0 n
m=nX2
To estimate the mean value of <p™> we should omit the inter-
ference term. If dg = %w—c is not very small we get from

(13)

-3/2 Z ' 2
<<t,b|p2|:,b>>~ 2a° Y (n+1/2)(n+1) s AN ~ 43" a
maX
n=0
Double brakets mean the double averaging: over the quantum

1f3' ' (14)

state and over the states. The value (14) reasonably agrees
1. | - 1/3 -2/9
with the data from Ref! [1]. Iiiiés = SWTE W N ~Ww a

max

the sum in the Eq.(13) is saturated by the term with n=0,

and therefore v<p°> = V2a.

Now we consider the states of the continues spectrum.

For example 3/2w > >1/2w. Let us switch off by hands the
coupling with the continues spectrum. Say we change Sé?
from Eq.(8) to" any ei¢. Then the state becomes the sta-
tionary one and the wave function has the same form (12).

However the physical sense have only the components with

n=l. Similar to the discrete spéctrum case alt dg = gw—e €« W
the state is saturated by the first Landau level (n=1), and
the spectrum is Coulomb like: 55=1/2n2, nq» N oy -l L
there are many Landau levels mixed in the state with the
averaged weight ~ n™> ~.

.Let us switch on the coupling with the continues
spectrum and calculate the widths of the levels. The most

simple to do it for the levels with g « w.

r= v|so] %= = 0.88 - (15)
Here v=1/T=0Q/2n is the frequency of classical motion; Q=Ace=
=l/n; is = the splitting between the reson-ances. The value
|Sm|2=0.188 is calculated using (A22). Thus

0.188
21
It is evident that at &g ~ - the ratio T/ﬂe is of the same

} e (16)
order of magnitude.

Let now {_nDHXZ}w E >[n0-lf2}w. Similar to previous
consideration we switch off for a moment the coupling with
the continues spectrum. (Change of S::} ‘from Eqg.(8) to any
ei¢n at n< nﬂ]. The wave function of the obtained in such a
way stationary state has decomposition (12). Physical sense
have only the components with n = n.. At 6£:=(n{j.+1/2]w—s:<<- W
the wave function (12) is saturated by the level |nn> and

the spectrum is Coulomb like. The width arises due to the

coupling with the channels with n= n-




(0),2 _
=v Yy |SITm |” = 5m 0.16. [lT].
m<n 0
We take into account that due to the (A22) ¥ |S (D}sz 0.16
m'{ntj ™o

at n »1. Thus I'/Ae~0.16/2n. At 3¢ ~ w our arguments are not
applicable, but it is obvious that the magnitude of the
ratio should be the same. We would like to stress that

narrowness of the resonances is due to the peculiarity of

0 ; : ch : 3R ;
S{ Lmatmx: The probability of downwards transition is

relatively small.
One can estimate the numerical value of the width for

the conditions of the experiment [1]. If &8¢ wl/Zném % w then

n ~ a and
0

i o0 16 0.16
X 2n e 21

This reasonably agree with the experimental values [1].

w/n ~10"%cm ™. (18)

In conclusion we would like to remark that the results.

of the present work can be easily generalized to the case ;

L = O.
Z
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APPENDIX
Here we calculate in quasi-classical éppmximation the
scattering matrix between the states (6),(7ki I »hhis
approximation the wave function is of the form. '

ir(p,z) (A1)

where ¢ is classical action. At t - -® the Y- coincides with

Ylp,z) = Blp,z) e

the state (6) and

z P :
olp,z) = -Jpzdz + Jppdp
0 0
= /2{1Xz—€n+ £), 1/2 - W pz} (A2)
n:w{n+1/’2]. B(p, z)= 1 C‘ :
- vop i ¥p
z P

normalization constant For the

Here C=Yw/m is the
transv_ersal motion. To calculate the variation of the action
at motion we find the classical trajectories of the particle
in the field (1), (2). In the region of validity of expansmn
(2) the equations of motion look as follows.

z :_-l/zz+ = pz/z4- e ' (A3a)

i

D= [w+4/z : " - (A3b)
Neglectmg the terms of the order of p/z as well as the
energy of the Ilongltudmal motion we find the solution of Eqg

(A3a) in zero approximation

1




z (£)=(9/2)"° [t *” (A4)
After substitution of z to the Eq.(A3b) we find p(t)
p(t)= V]t] I:bJMﬁfwlt[/Z] + dJ_Uﬁ{w|t|/2J], RS
' : ; _ 43 :
where JP is the Bessel function. At z » a (w|t]»1)
o(t) ﬁi_ l:b coslw|t|/2-n/3) + d cos{m|f]/2—1r/6]:], (A6)
Viw |
It is evident from this equation that b~d~¥n. At z «
403 (w|t]«l)
5 7 -1/6 (2o 1/6
~d W {{-d;/4] ‘I/E +b W [E{}/4} P {A?]

2/3

i ; ; : 2/3 4/3
This expansion is valid at na "« z « a AL Z=Snd the

condition p2<<22 is violated. To go through the region zs=

273 4,3
na one should observe that at z«a

magnetic field in
the Hamiltonian (1) can be neglected, and therefore the
problem is reduced to the pure Coulomb one. Actually the Eq.
(A7) 1is the equation of parabola slightly rotated with
respect  to =z-axis.  This exactly:.corresponds. to. the .motion
with zero  energy in the Coulomb field. After the' flying
around the nucleus an electron moves at other branch of
parabola. This corresponds to the reflection d-»-d. Thus
after the 'scattering on the center the solution (A5)
transfers into itself with substitution d-»-d. Just due to

the compleet reflection of the trajectories we omit the

transmitted wave in the basis of |out> states for S- matrix

12

(Eq. 47
Let us fix the initial time rﬂ= ~T, so that wlel, wT/2-

-n/6=2nl+n/2. Let at this moment p[tﬂ}=pn, p[tﬂ}=pﬂ. Using

(A6) one can easy verify that at the moment t1=+T the .

trajectory comes to the point
= = — . I:AS}
plt)=p, Pt )=p, V3uwp,

At the scattering the transversal energy is changed

R 2 1 g2
€l=En=p§/2+§wpD—>Em=p/2+-8——wp=
= g + o .wzpzi@.up %2’{8 g wzpz} (A9)
n 2 n 8 : y

It g exvident  from | thoe ‘relation that the scattering
strongly mixes the states. After simple calculation we find

the limits in which & lies
; m

I/As € /e = A, A=T+4V3 » 13.9. (A9a)
T n

To find the correction to the solution (A4) for z(t) we

use the energy conservation low.

g—? = iw/z[l'/’z e ey ) At YAzl L S 25/2 7 zcl/Z] (A10a)
JI2 : :
= P L v als A10b)
g, F s o (w + &/zﬂ]p ; ( |
The transversal energy should be ‘calculated using the Eqs.

7

-'Ehﬂr}, "(A5). It should be noted that at 2z <« e the

correction. to (A4) is small: S8z«z. Nevertheless . the

production pzéz is not small and therefore the correction is

13




. 4/3
essential. At wt. > 1 (z » a ") the € is conserved and the

equation (AlOa) can be easily integrated explicitly:

2 o Bt 22
z{t}r«zﬂ{t][H = (c—sL}zﬂ[t]—G.DEO[e—cL] zﬂ{r}+...). (All)
To calculate the variation of action along the
classical trajectory
+T
2 =
Ao =
& jfpz + pliat (A12)
-T
we divide the trajectory into the three intervals: [-T,-l,
[-7,7], [*,T] with T chosen in such a way that na” « z(t) «

4/3 ; ; :
-a . At middle interval the magnetic field can be neglected

and pure Coulomb action is

Aol-t, T]= 41?22T+ D = 4¢22T+ pva/z
T

z_=z(t)~z(-1), p=(9w)""3(d/T(5/6))°. (A13)

At the first and second intervals Jet us represent the

integrand in (Al2) in the following form

i o I
(2% pAldt =2(1/z + & - — (&"+ 4/2%)p%)dt=

:(2/z+ E:—E:J_)dt +(s: % - —Ellm [m2+ 4/23}p2)dt =~
¥ Valz dz +(e+ /2 - —~ WP 4/2007)at. (A14)

We have used here the relations (Al1O). After the partial
integration of g~ with substitution of p from Eq.(A3b) -one
find

Ac[-T, -t] + AclT, T] =

=2x/_2-(fz{~T} - Vz(-1) + Vz(T) Vz(1) )+2ET+-

14

_—

1 ! : | .
T (PP|__T‘PF’|_T+ PF’|T“ PPIT)- (A15)

Using the explicit expressions (A6),(A7) for p(t) we

evaluate the sum of (Al3) and (Al5) which is the action on

the trajectory

Ac[-T, T] = 2}"2(1’2{1"] + ‘-"Z{—]lf“)_)-lL 2eT - Zﬁ r,dpz.

(Al6)
Finétlly summing (Al16) with the action before the scattering

(A2) (t=-T) one find the action after the scattering (t=+T)

p
olp, 'Z2iT)) = 2N2z(T) + [s:+£:n}T - ? mp2+ Jppdp. (A17)
0

We take into account that due to (A8) at t=T the trajectory
comes to the starting p:. p(T)=p(-T). For the initial state
(A2) all the trajecrories start from the different p(-T) but
from the same z(-T). However they come to the different z,
girice NOodd e N TA9)S ! (AR = Z[T)' is

Therefore it is more correct to write zp{T]. Thus the Eq.

function of' ' the p.

(Al7) gives the phase of quasi-classical wave function (Al)
on the line (p, z(p)).
Evaluation of B(p, =z) in (Al) is very simple. The
momentum before the scattering is practically the same as
that after the scattering: p = p_» pp' Classical trajectory
comes to the same point p. Therefore from the current

conservation equation

div(|B|°B) = 0 . JA18)
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we can conclude that |B(p, zp(]‘“)]ﬂﬁ[p, z(-T)|. Besides that
it is very easy to verify that the trajectory (A4), (A5)

touches the caustic 41+2 times. Therefore
B(p, ZP(TJ = -B(p, z(-T). (A19)

According to (Al), (A2), (Al7), (Al19) the wave function

on the line p, zp{T} af'ter the scattering is equal to

: exp(i[Z 2z (T)+(e+e )T- VE upzj]g&r (p). (A20)

g P n 2 _
’Dz

P T))=-
Yip ZP{ ))

qﬁn(p) is the wave function of transversal motion. To find
S-matrix we should decompose (A20) in the states (7) at

2=EP(T}. This gives

<m|S|n>= —exp[i(em+s:n11’”]<¢m|exp(—ig mpz] [q}nb (A21)

The standard calculation [2] wusing the representation of
qi?nfp] in the form (4) gives

m+n 1 V3 '
s = (0" Z(5) ™ "F(-m,-n,1,-1/3). (A22)

F is the hypergeometric function.

We have calculated Smn at m,n » 1. However (A22)
probably is applicable with good accuracy up to m,n =0. In
deriving (A22) we have supposed also that pz/pzfs:l up to z«
2"”°. This condition is fulfilled at m,n « 2>’

In conclusion we would like to stress that due to

Eq.(A21) the S-matrix is diagonal in the p-representation.
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