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ABSTRACT

The Ashtekar-like variables are introduced in the Reg-

ge calculus. A simplified model of the resulting theory

is quantized canonically. The consequences related to
quantization of Regge areas are obtained.
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1. INTRODUCTION

The new variables by Ashtekar [1] provide the polinomial form
of general relativity constraints which appear in the Hamiltonian
formalism. These variables were also shown [2, 3, 4] to arise natu-
rally from a 341 split of the first order tetrad formalism with the
action '
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where of’ = —wy® is an element of so (3,1), the Lie algebra of

SO (3,1). Namely, let us (i) set the connection w2’ to be complex
and seli-dual one, i.e. an element of SO (3, C),

O —iTg/D  EBCRE. . po1:03 (2)
and (if) impose the Schwinger time gauge [5] on the tetrad e:
et=0, a=1,23. (3)

Here *M% is dual to a matrix M%:
*JMHI&E%EEU&‘E:&MCL{! Eﬂl23= +1 ! [,_1_]

The set of self-dual matrices i~ '3, can be chosen to satisfy algebra
of Pauli ones. Raising and lowering frame indices is performed with
the help of metric ne=diag(—1, 1,1, 1). Under conditions (#), (i)
the action takes the form
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The N, N are linear combinations of ef, a=0, 1, 2, 3, and
h'= —wo
On the other hand, the formalism analogous to the first order
tetrad one has been constructed for Regge calculus in the author’s
works [6, 7] including also self-dual representation and the case of
the continuous time required for constructing the Hamiltonian for-
malism. This opens the possibility of introducing an analog of
Ashtekar variables in Regge calculus or, equivalent'y, Regge discre-
tization of Ashtekar gravity. Resulting formalism is still rather
complicated. To get a soluble model we consider a simplified
(14+1)D (1-+1-dimensional) system modelling such the Ashte-
kar —Regge gravity. In the continuum language the simplification
amounts to limiting the range of variation of world (Greek) space
indices in (5) to only one value (hercalter omitted in this case).
The SO(3, C) (Latin) index takes on three values as before. This
model can be considered as a degenerate case of (34 1)D system
rather than pure (1+41)D gravity. Then we are left with only three
-component Gaussian constraint:

I=\(76—Ch) dxdt, Ch=F(@7i+iXa). (6)

These constraints imposed on three canonical pairs (&, @) are first
class ones. Therefore (6) presents at most [inite number of the deg-
rees ol freedom which depends on the specific form of boundary
conditions.

In section 2 we describe Regge counterpart of (6) which is then
quantized in section 3 with the help of functional integral approach.
Gauge symmetry, physical status of the model and consequences of
it’s quantization are disscussed in section 4. :

2. THE MODEL

Let us begin with the resulls of [6, 7] ol interest. In these
works the Euclidean time version of the formalism is considered.
Transition to the Minkowsky signature amounts to the formal sub-
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stitution A"*"—iAd"*" for the time components of tensor quantities.
The set of vbariables consists of link vectors 1§ and finite SO (3, 1)
rotations Qi These are analogs of the tetrad e and connection
of’, respectively. The subscripts 4, AB label links and 2-simplices
(triangles) of the 3D leaf of the foliation (3D Regge manifold),
respectively. Notationally it is convenient to prescribe a definite
structure of the leaf: it is topologically equivalent to the collection
of cubes each divided into six tetrahedra [8]. Then multiindex A
runs over seven unordered combination of unequal indices 1, 2, 3,
23, 31, 12, 123 and AB runs over twelve ordered pairs of miltiindi-
ces A, B with empty intersection. The A and AB label the links and
triangles of a cube erected from one of it’s vertex. Also six ordered
combinations of three different indices 1, 2, 3 can be introduced to
label the 3-simplices of a cube, These serve as the subscripts at the
variables fﬁfgveso{& I), the analogs of —w§’ of the continuum the-
ory. T!IE h.p, play the role of Lagrange multipliers at the analogs of
Gaussian constraints. The latter possess a simple geometrical sence:
they express the closure of surfaces of the tetrahedra. Finally, let T,
be operator of translation to the neighbouring vertex along the link
A. Having in view the subsequent reduction to the 2D model write

out here only the Q and Gaussian constraint terms in the Lagrangi-
an [7]:

2L = — 13185 (Qa2 Qa2)ap — 155 13" (Dos Das) ap — 95 12°(F1y D10)es —
— I35 N3 (Qa1 Qay)as +-cycle permutations oi (1, 2, 3, (7)
22 =[ 15 B354 83 s+ 503 1§ — T3 (Qa1 1) (Qo1 L21)® | " hisgy oy +
A2 4 (Qus Li23) (Qas L12)® 4 (R4 1) (g L123)° —
—T1(Q23 123)" (Q23 £2)" ] " hty03 s +cycle perm. (1,2, 3). (8)

Index ld means AB at A=1, B=23, etc. The Lo, Ly should be
summed over cubes (vertices) of the 3D leaf.

‘Now we can-attribute to each 2-simplex the area SO(3, C) vec-
tor variable,

o T F1af e il =
Spg= “;*‘fA lag Zas = T{fg lag — g Ly +ily X Lip) s (9)
and analogs of Ashtekar coordinates @, A:
Qus=exp (Bap-5/2), h2b =Fopy - T%/2 . (10)
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A definite form ol X-matrices is used which can be read off just
irom (9). The analogs of Ashtekar momenta m,; are then introdu-
ced via

S=y(w) T+ —;%_JXJ:E',
o=(3-a)'?, x(m;n:%ctg% (11)
Besides that, it is convenient to denote
§™—yo) i——

w X T (12)

Then eqs (7), (8) take the form

L= Tgy* Wy -+ Mgg* Wag + Mg Wy + Ty - Oy +

+cycle perm. (1, 2, 3), (13)
Zi=hys-(— TS5 — Sz +S5 +S12) +haes (Ts 831 +Ssa —Sar —S30) +
i +cycle perm (1, 2, 3) (14)

There are some qualitative differences from the continuum Ashtekar
theory: '

(i) the lack of the time gauge [}=0 since multiindex A takes on
more that three values;

(ii) the functional dependence between different i, since the
number of 2-simplices is largen than that of l-simplices (links).

In view of (i) we should not restrict ourselves to the purely
imaginary s, However, according to (9) the following condition
should be fullfilled:

Shs+Sip =0. (18)

One and iwo primes denote real and imaginary part, respectively.
The point (ii) becomes irrelevant and the terms in the Lagrangian
other than &y, &, are absent il one permits the subscript at 7, to
take on only one value (hereafter omitted). Thus the fields are defi-
ned on the 1D chain of vertices. In what follows it will be conveni-
ent to consider the Lagrangian of this system as e—0 limit of the
following e-modified one:

ZFe=aa —Ce.h,

i el [,ﬁ(xﬁj+“_5}2+]+ﬁ ffxu—j]. - (16)

Summation should be performed over the index j at %, @, /& (here
omitted) enumerating the vertices. The operator T enlarges | by

unity; A=T7—1. The eqs. (16) should be supplemented by the con-
straint (15) of the type

fnzﬂ, (l?;'

where f=S5%/2. Strictly speaking, 4; refers not to the vertex j but
to the 1-simplex with vertices j, j+ 1. Note that in the original non-
canonical variables S, @ the Gaussian constraint takes the simple
form

RS —-T85=0, . (18)

where R=R(— o) =exp(—e&* w;) is SO(3, C) rotation, T=7T"",

3. QUANTIZATION

Proceeding with functional integral quantization of complex
Lagrangian (16) one should bear in mind the equivalent real one
which gives the same equations of motion. Separating real and ima-
ginary parts ol these equations and using the Cauchy— Riemann
relations one realizes that the same dynamics is generated by the
Lagrangian which is real part of (16). '

3.1. Gauge fixing

To construct the functional integral measure one should add n,
gauge conditions y to the system of constraints ¢ to get the second
class system @= (g, x) (that is, Det {®, ®}=£0; {-, -} being Pois-
son brackets). The n; is the number of first class constraints among
@. It is equal to the multiplicity of zero eigenvalue of the matrix {q,
@}. In our case there are complex constraints C=C’'+4iC” equiva-
lent to the pairs of real ones C’, C” and the constraints (17) of the
type [“=0 where C, [ are analytical functions of &, &. The P.B.
(Poisson brackets) of real parts of two analytical functions
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by Cauchy—Riemann conditions. Here {., -}, are complex-valued
P.B. Analogously.
{CT, C8) = —{Cy, Coft. . (20)

Denote by A/, —A”, & the (real) Lagrange multipliers at C’, C”
[”. Let (h', —h”, &) be eigenvector of the matrix {¢, ¢}, ¢=(C",
C”, f”) with zero eigenvalue. It satisfies the linear system

{ } {C C”j”h”—{-— {: n h__{]
{ {f: E)2k +(C, O\ " — (T, flah=0 (1)
{1V +{f, CYe " — (|, fle A=

or, in the complex form

{ (C,Cleh —i[C, [l =0
(

(. Cleh —i{[.ft M)"=0" (28)

The P.B. at €40 can be read off from
(C.F—ifp, Cok —if ) =—0C, -EXE +5.-AEX AR +

+ixgo-TX AR L —iy Go- T X AR 2
ge=go— %I’j X w4 ey,

2y
4 sin” (w,/2)

R FLET (23)

X,

gn=

The first term in the expression for P.B. corresponds to usual gauge
algebra of the continuum theory; others are lattice artefacts which
spoil gauge algebra. Eqgs. (22) take the form
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{ AM— gz><1f;+1aygn><n}-ﬂ (24)

(xBoX A R)” =0

One of the solutions is #; =&, A;=0. It corresponds to the 3-compo-
nent first class constraint

C.d=a-y @ X (25)
; _

the generator of global SO (3, C) rotation . If requires imposing the
three complex SO(3, C) breaking gauge conditions. Introduce the
latter as some boundary conditions. Choosing arbitrarily large num-
ber of vertices N and the fields Ax, @ sufficiently rapidly falling off
at infinity we disengage ourselves from complications connected
with explicit taking into account SO(3, C) symmetry breaking.
Other than a@ parameters which define solution to (24) are A; and
complex u;:

AR =—ilxg:? 8. X(Go X 7) +ug. . (26)

Thus there are three real parameters per vertex. As corresponding
gauge conditions we choose the fﬂllnwing ones:

57 =0. (27)

Suppose reality boundary conditions are imposed on S. Modulo con-
straints C. and ®” this leads to the reality of S. Possibility of such
the gauge is considered in section 4. But then (17) is satisfied
authomatically and should be replaced by some another condition.
As the latter we choose the following one:

(@) =0. (28)

The resulting equivalent set of constraints is thus ®=(C, ReF)
where F= (—iw, n®), and after calculation of the P.B. &, @ should
be set real. The determinant of P.B can be found in the following
way:

Det{®, m}—':g SIC. Cloh < 1C CiEh™ it FlLA)

8(C, CY)
8({F, C}) F:E

—

ch +{C,Cleh” 4+ (C, FIEA) (29)
— {F,Ci4h” 4 |F, F)2 A ) DR’ DR” DA .
Here A=(z, A) is real. The complex-valued P.B. at ¢=0 can be
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read off from

+iEB)A—UZER,  T=p— 00y (30)

Upon setting &, @ real the determinant (29) becomes
Det {®@., ) ' ={ 8(— A@F. X AR+ 1))

8 (— M@ X BI) 4 Ay 2) + S 7 5)

ﬁ(xﬂﬁ'ﬂ_l_{ﬁx (1 _PJZ"I"' l+¢ Eﬂ)

8(x7- AR’ DR’ DR” DZ D)=

=(§ e ) " Det™? [agﬁﬂ ey i;““ ELH!]{:I (31)

where @,-i=¢eyn®. The Det {D,, @, takes the form &' -D where
D|E:D?&0 .

3.2. Functional integral

The set @, is thus second class one at ££0, and the functional
integral measure can be defined by known expression

dp = exp (i) Det {®,, ®,}'"* §(D.) DRD& . (32)

Here §(®,)=086(D)8(DY), Da=Da’'Di", Da=D&'D&”. It is
well-defined at es40. At e=0 Det {®,, ®.) =0. This nullification is
in some sence accidental one connected with existence of the discre-
te symmetry

f>—1t, T>T=T"" &>—&, h>—Tk (33)

After including ¢" into overall normalization factor it becomes clear
that the limit e—=0 is also well-defined and we can set £e=0 in the
resulting expression.

10

....-w?-__ :

e

Consider now integration of 8-functions in (32). The {D&” is tri-
vial due to 6(®w”) and { D" results in

T+1

{6 (a (x 7) + % ﬁ"’x&i)Dﬁ"’z Det~! (ax 5 - e mf) (34)

which cancels the same nonlocal factor in (31). The functional mea-
sure is thus reduced to the local one in terms of real variables
A=, 0=,

Let us rewrite the measure in terms of original noncanonical
variables S, ®. Then we have in (32) &-functions of
R(—®;)S;—S;_ and S;-&;. The { D& gives 8-functions of S?—S2_,.
Integrating them we get the measure in terms of S=|§;| and
j=38;/S. Let us use the same variables to rewrite the action. Upon
solving the constraints C, 7@ the Lagrangian reads

E:j_L—]—ﬁ:j o Ly
— i ;. 35
A j—1 XM (39)
j

L=—3§

At Tfirst sight it presents one degree of freedom per vertex. This
would correspond to the naive counting: originally we had six real
(or three complex) canonical pairs and seven constraints per vertex
three of which were first class ones. (Remind that each first class
constraint or the pair of second class ones annihilates one degree of
reedom). However, the sum in (35) proves to be full derivative.
This remarkable property is easily seen upon substitution, 7=2z%6z
[8] where o' are Pauli matrices and z is the two-component com-
plex (SU(2)) spinor normalized as ztz=1:

L] .'i' w
L=5Q, . Q=25 . a;=%“ﬂzhz‘—‘=arg(zﬁ'-!zf-}1 (36)
|

; EIT_|EI;

This means that we have found as a byproduct the exact discrete
version of the topological 6-term in the Lagrangian density of O(3)
o-model [10]:

— BELEN  Xese™ g (0, 1) (Bunt)nt, 2= 41 (37)
L +-mj— 1 A

Thus effectively we have only one, nonlocal degree of freedom des-
cribed by the canonical pair S, Q. The resulting functional measure
takes the simple form
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du—exp (i | SQdt)S"dS]| & . (38)

i

3.3. Effective action

Now we are in a position to change variables so that «;, S form
subset of the new ones and integrate out others. First, pass to the
integrating over z;. The latter are defined by #; up to phases
exp ({@;). Inserting {d®;/2n (=1) we get

dﬂn,-f,-%auzn =1y d'z;, |zj|*=2z 2. (39)

Let us treat now z as a quaternion, i.e. make the following identifi-
cation with 2 X2 matrices:

z2=(ao+ia, ias+ as)<ap—iap " . (40)

Conjugation will be defined as

z=Z=aqy+ia, c* (41)

and = will be usval matrix multiplication. Define also arg z as
argument of complex number ay—+ia,. Then a;j=arg(z;—i*z;). Besi-
des, the Jacobian of linear change of variables z—zo*z, zo==const,

is |z0l2%(= %trén*zn}. This prompts to make the sequence of substi-

tutions Zz;_*2;=u;. The action depends on u; only via aj=arg y;
and integration over d'u; can be reduced to that over da;. The
result is quite simple:

du=exp(i{ SQdf) $"dS [[ da;, Q=2) q;. (42)
i i

It describes (degenerate) system of free fields S, «; although with a
nontrivial rule of quantization. Essential is that a; vary in the com-
pact region from 0 to 2m. Therefore 28 can have only (non-negati-
ve) integer eigenvalues. Nontrivial is also the factor S" in the mea-
sure. It can be interpreted as purely imaginary effective Hamiltoni-
an

H=iN1n(S/Ss) . (43)

When imposed on the Hilbert space of states the reality condition
12

leads to the only possibility of H being zero and S=3S,. For that
2S, also should be (positive) integer. Corresponding physical state
can be described by the wavefunction

b= exp (giSUZI: af-). (44)

Thus the physical Hilbert space of the effective theory degenerates
into the complex line.

4. DISCUSSION

4.1. On gauge fixing and physical relevance of the model

Let O, be a set of SO(3, C) matrices. Our model Lagrangian in
the noncanonical variables S, ® takes the form

L=Z—;“Em SR R —hjg(Rj 1 Sj 1 — S (49)
i

where R;=R(—&;) =exp(—¢"s o). It is invariant under substitu-
tion

(0jhj) + “é— £ (0; Oj)u - (46)

R;—*(J;_:R;fjj, S}—}U;S;, hi—
This substitution is an analog of local gauge transformation of the
continuum theory. *

Under the condition (17) the imaginary parts of S; can be nulli-
fied by an appropriate choice of matrices O;. Indeed, in the case
when O is looked for in the form of the purely imaginary rotation
exp (ie": @), ¢f=0, we have, setting the imaginary part of OS to be
Zero: ‘

@qwr (5”—({P—iﬂ~$)chcp—|—cﬁxf’mzﬂ (47)
s ¢ ¢

This equation an § has the solution if and only if §”-S”=0. Gene-
rally O can be represented in the form 0”07, O”=exp (ie"x @),
0” =exp (" W), Y7 =0 (this seems to be true intuitively and can
be readily proven). Now again § /.§ #=25"-5”=0 where S=0'S.
Thus the gauge with purely real @, @ does exist in our model.
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Remind that initial point was that world space index takes on single
value. Conversely, let S5 be real for all AB. That is, [, XI,z;=0
and all I, T,z are collinear. So we have effectively (14 1)D theory.
This shows seli-consistency of the model as some degenerate case of
physical (34 1)D theory.

Also there is correspondence between the degrees of freedom of
the model and of it's continuum counterpart. This is remarkable
although well-explainable property of Regge calculus inself since it
is a particular case of the continuum general relativity (for the pie-
cewise flat manifolds). In our case due to conversion of a nimber of
the first class continuum constraints into the second class discrete
ones the naive counting gives some extra degrees of freedom but
eventually these combine to give smaller number (one) of the deg-
rees of freedom just corresponding to the continuum theory.

4.2. On Regge areas quantization

The results obtained indicate that Regge areas are quantized as
positive integers (in units of Plank length). Eventually this is the
consequence of compactness of the group SO(3, R) in which dyna-
mical part of conjugate canonical coordinates @ vary. This rule has
no analog in the continuum theory: instead of conjugate variables
a;j varying in the compact region [0, 2n] we have there the infinite-
simal ones of the type B;dj where now j is the continuous variable
and B; is an arbitrary real function of j. Further, of integer eigenva-
lues of areas only one is admissible for a given world. This is due
to the requirement of the effective Hamiltonian being Hermitian. In
turn, possible non-Hermiticity of the Hamiltonian is due to the
power-like factor in the functional measure. Appearence of such the
factors is usually the case in various functional integral approaches
to quantum general relativity.

In conclusion, of am grateful to A. Zhitnitsky for useful dissus-
sion on topological properties of 2D models.

14

E

= L2 b —

o

.0 00

REFERENCES

Ashiekar A. Phys. Rev. Lett., 1986, v.57, p.2244; Phys. Rev., 1987, v.D36, p.1587.
Samuel J. Pramana—J. Phys., 1987, v.28, p.L429.
Jacobson T., and Smolin L. Phys. Lett., 1987, v.196B, p.39.
Schiicker T. Ashtekar wvariables without spin.
HD-THEP-88-12, 1988.

Schwinger J. Phys. Rev., 1963, v.130, p.1253.
Khatsymouvsky V. Class. Quantum Grav., 1989, v.6, p.L249.
Khatsymouvsky V. Continuous time Regge gravity in the tetrad —connection vari-
ables. Novosibirsk. Preprint INP 90-1, 1990; Class. Quantum Grav., 1991 to be
piblished.

Rocek M. and Williams R.M. Phys. Lett., 1981, v.104B, p.31.

Witten E. Nucl. Phys., 1979, v.B149, p.285.

Belavin A.A. and Polyakov A.M. JETP Lett., 1975, v.22, p.249.

Heidelberg, Preprint




B.M. Xayumosckuii

O pBymMepHOH MOJeaH
KBAHTOBOH rpaBurauuu Pemxe

V.M. Khatsymovsky

On the two-dimensional model
of quantum Regge gravity

OrsercrBennnlit 3a Buinyck C.T.Tlonos

Pa6ora nocrynuaa 11 anpens 1991 r.
[lopnucano B neuvats 12.04 1991 r.
@opmar Gymaru 6090 1/16 O6nem 1,3 neu.an., 1,0 yu.-u3p.a.
Tupam 220 sk3. Becnnarno. 3akaz Ne 40

Habpano e asromarusuposannod cucreme wa 6ase oro-
naboprozo asromara PAI000 u IBM «Iaexrponuxas u
oTnetararo na poranpunte Huwcruryra adepuod usuxu
CO AH CCCP,

Hosocubupck, 630090, np. axadesmura Jlaspentoesa, 11.




