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ABSTRACT

The quadrupole distribution of the weak nuclea_tr
charge causes P-odd mixing of S, and P atomic

states. The measurement of the corresponding P-odd
effects in atoms would allow to determine the neut-
ron quadrupole moment of a nucleus. The experiments
with rare earths are of a particular interest in
this respect. A simple derivation 'is presented for
the imitating effect which originates from the
combined action of the total weak charge and the

quadrupole hyperfine interaction.
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1. Parity nonconservation in atoms is now a firmly
established phenomenon.  Its investigations bring a
first-class quantitative information about the  weak
interactions of elementary particles (see, e.g., book [1]).
Not only nuclear-spin-independent effects have been studied,
but the fiirst evidence has been obtained of much smaller
nuclear-spin-dependent ones, caused by the so-called nuclear
anapole moment [2]. Due to this progress it becomes
reasonable to consider more subtle P-odd effects in atoms
which depend on the nuclear spin, to be more exact, on the
quadrupole distribution of the weak nuclear charge which is
close to the quadrupole distribution of neutrons. These
effects have been previously mentioned in Ref.[1].

One more proposal should be mentioned here [3]. The
idea is, by using the accurate value of sin°@ obtained at
Z-boson peak at electron-positron colliders, to extract from
the atomic experiments with different rare-earth isotopes

the information on the neutron distribution in their nuclei.
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2. The Hamiltonian of the P-odd electron-nucleon interaction
which does not depend directly on nuclear spin is
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where Gzlﬂ_ﬁfms is the Fermi weak interaction constant; Q is
the weak nuclear charge close numerically to -N, N being the
neutron number. The quadrupole component of the nuclear
density p(¥) introduces in fact the dependence on nuclear
spin into this interaction and causes the mixing of the ele-
ctronic states S5 and p The relativistic wave functi-

G i
ons behave at small r as r = where 3’2_=%[j+1/2}2—22m2 ;
J
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Therefore, the mixing discussed is suppressed as compared to
the usually considered mixing of the states Stz and P,
due to the spherically-symmetric part of the nuclear density
p{r_"}], by factor cleose to ZrD/’a where a/Z is the Bohr radius
for the wunscreened nucleus, Z the nuclear charge, r{}. its
radius. At Z ~ 80 this suppression constitutes about 1075
Evidently, we loose here also the factor Q as compared to
the nuclear-spin-independent mixing. But some enhancement of

the effect should occur in deformed nuclei.

3. We start our quantitative consideration from the case of
deformed nuclei not only due to this enharncement, but

because this .case is slightly simpler technically. The

density of nucleons in a nucleus can be considered with a
good accuracy as a constant. Therefore, for spherical nuclei

we can present this density as

3 - 0(r 7). (2)
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The density of a deformed nuclei is conveniently parameteri-

zed in its rest frame as [4]

p(F) = 3 - £ : (3)
b % Sl

Since the deformation f is small, we can use the expansion

of this expression:
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p(P)=p () + -Byzna{r—rﬂi. (4)
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The nuclear rotation is fast as compared to the electron
motion. So we have to average the quadrupole part of this
expression over the rotation. This procedure is carried out
at the fixed projection Q of the nuclear spin i onto the

spheroid axis. As a result the quadrupole P-odd Hamiltonian

is presented as

H=——£- gg e -BS(r—ro)*A-Z-Y R (5)
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where A= ; S_ are the spherical compone-
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nts of the tensor I I +I 1T - = S I(I+l); S =I%- i I(I+1).
R R 2h " 3

It is convenient to choose the wave functions of the

states p and s as
3/2

1/2
s
—fp[r] . {u::rn]S'ZBﬂ,2 fg{r) le’z,ﬂ
¥ L= R ) =| , EEay ¢ (6)
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Here le are the spherical wave functions with spin corres-
ponding to the total angular momentum j and orbital angular
momentum . Using for the radial wave functions f and g the
following expressions at small r (see, e.g., [1])
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we get for the mixing matrix element
ZZRI o _
Pl ]5,,,) = i 2. Ryx
< ezt gl 1e foia }azz &
£ °p
1/2
Zrn'Ra B .BQE—I[IH]_{ VI/(2I+43) (8)
v Ri"z 6Vomr  I(I+1) - V(I+1)/(2I-1)

Gm «

vam

are the principal quantum numbers of the s and p states;

Here g =

-17 -
= 3.65°10 ; m is the electron mass; v, v
i, .0 p

Rydberg Ry=mocz/2; R1 and R3 are relativistic enhancement

factors:
| 2=y
R;xz= 41 [ a 3 ,
rE23r3+ 1) ZZrG
: (9)
RL:z: 2 ‘ [ a ]1_?1.
1"[2';{1+ 1) ZZrD

Here and below the upper line in the curly bracket corres-
ponds to the total atomic angular momentum F=I+1/2, the
lower to F=I-1/2. In the second case the mixing is always
larger. The best nuclear situation corresponds to Q=I, i.e.,
to a nonrotating nucleus.

In the first line of formula (8) we single out the
factor equal to the mixing matrix element <p1,fzIH|51xz}'
Then the second line is a kind of a suppression factor which
constitutes about 10~ at B ~ 0.3 and Z ~ 60.

If the nucleus is described by the shell model, the
mixing matrix element for the atomic states is

Z°R
1
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the weak charge of the valence nucleon. It

K ==1/2 for

n
numerically for a proton: K = (1/2)(1-4sin”

Here Kk is
is much smaller

e) = 0.04 at the

constitutes a neutron, and
experimental value of the mixing parameter sin“6=0.23. Even
for a valence neutron the mixing constitutes about 10_5 only
as compared to the nuclear-spin-independent effect.

Matrix element (10) was calculated under the assumption
that the radial density of the valence nucleon follows the
same law as the total one, i.e., is proportional to B[ro—rl
It simplifies the calculations since now they can be reduced
by integration by parts again to the &-function kernel which
in its turn allows us to use the usual Coulomb radial wave
According to our estimates,

about 30-50%. If

functions outside the nucleus.
the accuracy of this approximation is

necessary, it can be easily improved in this respect by
numerical calculations.

One should have in mind of course that in atoms with
some outer electrons formulae (8) and (10) cannot be applied
directly since at first we have to add the angular momenta
of these electrons to form the total electronic one J which

in its turn couples to the nuclear spin [I.

4. The effect discussed can be singled out in experiments on

the parity nonconservation in atoms through its specific

dependence on the total angular momenta F, F’ of the Initial
and final atomic states. Unfortunately, in the atoms being
thallium, bismuth, nuclei are not

shell

investigated now, caesium,

deformed and within the naive model the wvalence

nucleon is a proton. So, the effect is additionally

suppressed. As to lead, its only stable isotope 2Tpy  has

a quadrupole density

spin 1/2 and hence cannot possess

distribution.
But of '‘a particular interest in this respect could be

rare earth atoms. First, deformed nuclei are quite c¢ommon

one can find

here. in these atoms opposite-parity

Second,

levels with very small energy separation. If the difference

of the total electronic angular momenta of such levels is

AJ=2, they can be mixed by the interaction discussed only,

transitions can be

and P-odd effects in the corresponding

strongly enhanced. The analogous phenomenon for the P-odd
interaction of an electron with a nuclear anapole moment and

the close atomic levels ‘with AJ=1 in rare earths is

discussed in Ref.[5].
Some examples of such close opposite-parity levels in
rare earths taken from Ref.[6] are presented below. The

; : : : -1
levels’ energies are given in cm .




Sm 30753.72: (J=1) SIS 28 J=3)
31246.30 (J=2) 31234.62 (J=4) ;

Er 25861.232 (J=7) 25863.453 (J=9);

Dy 18472.71 (J=8) 18462.65 (J=10),
22061.29 (J=7) < 1 22045.79" (J=9)

23529.01 (J=6) 23534.50 (J=8) .

5. The effect discussed can be imitated by the combined
action of the usual, spherically-symmetric part of
Hamiltonian (1) and the hyperfine quadrupole interaction. An
analogous. effect takes place for the nuclear-spin-dependent
interaction caused by a nuclear anapole moment: it is
imitated by the same part of Hamiltonian (1) combined with
the magnetic hyperfine interaction. In that case the
imitating effect turned out not only parametrically
different from the anapole interaction, but also numerically
smaller [7, 8, 1].

To derive the effective operator of the imitating
interaction we shall use here an approach considerably
simplified as compared to that used in Refs.[7, 8, 1]. The
version of the perturbation theory used there consists in
the iteration in one of the interactions which is equivalent
in fact to the use of the-Coulomb Green’s function. A simple

observation is that the intermediate states of importance
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here are high-energy ones. So, using instead of the Coulomb
Green’s function the free one, we introduce an error at the
most of the order Zo«. Such an accuracy is here sufficient
for us. But with a free electron Green’s function we can use
the wusual Feynman technique in external field to calculate
the corresponding scattering amplitude which is equivalent
to effective operator for the imitating interaction.

In the approximation of a point-like nucleus interac-
tion (1) simplifies in the momentum representation to

H = *g*arar : (11)

s ‘/z 2 05

The matrix ?0 is introduced in this formula and in the next
one since we shall use the covariant Feynman technique. The
electric quadrupole interaction is in the momentum represen-

tation

P g

B e P
IR IR (12)
6 p

where @ is the nuclear quadrupole moment. Since the
ij
distances of the order of the nuclear radius rﬂ are of

importance now, we can neglect in the free electron Green’s
function both its mass and energy, simplifying its covariant

form as follows:

L (13)
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Then the effective interaction induced in this way (see

diagrams 1, 2) is

3. g g ilp =gl y {p -g)y
o dadqg “17 2 ko k™ k

Yy .

_Q_ 2T
5 Qij_ﬁe 50

G
L ) (2n)° g (pz—qr]2 Epl-q)z
' (14)
To simplify further the calculations we shall expand the
integrand in the ratio of pI’ZXq. Although in fact all the
momenta are of the same order of magnitude, such an accuracy
is sufficient for us now. Finally, we come to the following

closed form for the effective interaction:

2

H_ ()= - —i-9-%——-0__£_(pj6(r)+6{r]p_l'33 . (15)
. v ot e J
5 &
Here 2z = - is the relativistic spin operator. The
G o

accurate integration over q when going over from formula
(14) to  (15) requires the introduction of nuclear
formfactors in ©both vertices (11) and (12). We have
performed this procedure in a simplified manner, introducing
a cut-off momentum q_. Clearly, it is close to the inverse
nuclear radius ro In fact, the comparison of the results
obtained in Refs.[7, 8, 1] for other induced interactions
with their momentum representation derivation analogous to

presented here shows that the correspondence is qu= o

Just this relation was used to get 1/r in formula (13).
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Simple estimates confirmed by explicit calculations
demonstrate that the mixing caused by this induced
interaction is much smaller numerically, because of the
factor 2/45, than that due to the weak quadrupole
interaction. The only possible exception is the case of a
nondeformed nucleus with a valence proton since the proton
weak charge is very small numerically.

We are grateful to O.P. Sushkov for useful discussions.
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