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ABSTRACT

The values of few first moments of the nucleon wave fumection
are found hy!uﬁing the method of QCD sum rules. The model for
the nucleon wave function is propeosed based on the knowledge
of these moments. It is shown thet with the help of this wave
function one obtains the sign and the value of the proion ma-
gnetic form factor in egreement with the experiment. The ratio
of the proton to neutron magnetic form factors is predicted:

N D
\r 14 /GM ~=-0.5.
Predictions for the inclusive nucleon producticn crosa=

secthone are presented.



L. Introduction,

The esymptotic behaviour of the nucleon electromagnetic
form factﬁrﬂ in QCD has been investigated in papers /1-4/, It
wag shown in /1/ that in the formal limit |{"|So0: sl

Q;u‘ @:‘ Q‘.ﬂ > \ &ﬂ \1 kcla; [\u{\\h Moo : GL wy(;; () mg&ebﬂ ‘
?(e) \- u_%“‘:.
where GH (’l\l\ - is the proton (neutron) megnetic form fackor.

(1)

Trerefore,the neutron magnetic form factor changes the sigm
st least once,because Ghﬂkli(l-::ht-—i,@,}{ﬂ{l}- The results obtained
in /2/ (teking the "erratum" into account) differ from /1/ in
overal sign. It was shown in /3/ that if the nucleon wave fen-
ction is such that each quark carries 1/3 of the total mucleom
momentum,then (neglecting the logarithmic correctioms):
q:\g'“\q}‘]m, '6u()>0 st |@P151GN" The generml formuime
obtained in /1/ coincide with the result /3/ in thie 1limit¥,
wirile those from /2/ differ in overal sign.

- For the reader convenience the contributions of varioms &i-
agrams into the nucleon form factor asymptotic behaviour are
presented in Table I (see /1/ ). Here Vﬁt‘kﬂ' F\l&ﬁ\ dehi‘.i;‘} are
the leading twist nucleon wave functionms which determine e
distribution of quarks (with the virtuality up to ]41 ) inwide
¢we nmucleon in the longitudinal momentum: in the ;> % frame
j-th quark carries the fractiom 0<Xi<i of the total mo=
mentum, ".;1_‘7'.1 =1,

One can see from Table I that different diagrams comtribute
with different signs and so the total nnn;rer is very sensitiwe
to the precise form of the nuclson wave functions \f.', A 'T.l
Using the umtotic wave function: N HL, ]“1“"‘-"‘“\ =\ (‘{,—,_}F;Qy:
':,an:l—iﬂﬂh A>0, one obtains that the proton magnetic form fac=
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The organization of the paper is as follows. In sect, II

tor is zero while the meutron one is positivef1,4/, Therefore,

1 3 main definitions and notations are presented. The sum rules
if the nucleon wave function with the virtuality W~ 4 GV

owe for the nucleon wave function moments are obtained and treated
iz much a.l:l.ka the asymptotic one obtains the same results:

a in sect, III and the model wave function satigfying sum rules
\G \i{i Q- >0 which are in conflict with the experi=-

is proposed here, It is shown in sect,IV that this model wave
ment. Prom our point of view,this shows clearly that the wave

3 5 5 function leads to the predictions for the nucleon form factors-
functions with the virtuality W~ 1GV" differ greatly from

which are in reasonable agreement with the experiment (both
the aﬁymptntic one.

in sign H-ﬁd magnitude). The conclusions and predictions for
. It is the main goal of this paper tc study the properties

7 2 other experiments are presented in sect.V.
of the nucleon wave function with the virtuality M~iGV. It is

II. Main definitions and notations.

just this wave function which determine the asymptotic bebhewi-

Following /1/ let us define the matrix element of the three-
our of the nucleon form factor (and other amplitudes) at

4 2 2 : local cperator (at ?1—1 oQ )-
\ﬁul\wi.ﬂ «10 GeN . Besides,the dependence of the wave function

wk_ LA _
on the virtuality M is determined by the remormalizetion <U\ Uak%i\‘»\g.b:m&?a)\?>ﬁ e EH&PQ\A%\X;NM\T}‘L&;?M
g;z:p ;?d :M%i’;:'Ei;tm?m:; W i m e Py Yy P‘Ei‘h A8ty K‘mw\ﬁ.&aﬂ& Sw=z Y, fo).

\mk‘il.?‘@”ﬁ (then this difference wj_lil: peraist uwp 1o snormsnely

Mj; Here: \?> is the proton state with the momentum p, Nf is
To study the properties of the mucleon wave function the proton spinor, C-is the charge conjugation matrix, W : d =

( \
N lﬁll,}e’"" Ak )  we use the method of the QCD sum rules deve-

quark fields, i,j,k-c'oEor indicea, Let .us present the functions
loped in /5 '/ This method gives the possibility to caloulate \,’&1‘?\1 P\L&ﬂ La.n& TK:ZL?\ in the form:

the a.ppraximﬂfe values of the wave function moments:
5

P R A3 ¥:3: \"Ii,l. (4)
N Ak ddedSle-Tw), Vg “\*g e HQ{L DIV 1) :

- ‘L ‘!{f ”r'> *"1“1 ® ‘hi 5 7’*3.

The wave functions V\ ,M tﬂand ,}') describe the distri-

bution of gquarks inaide the proton in the longitudinal momentoms

wave function satisfying sum rules. Such approach has been & Prnottorine 04y €14 Sy, = s

5 3 e Lol 1 1
Using the found values of moments we propose then the model

The identity of two W =quarks

used in /6,7/ for investigation of the properties of various Sheat TSR SR

\ ki'-lﬁ’\: \ k‘}'!{"r%} ) P\(ﬁ'!‘lla\= “AF:&&) ) Tt Fﬂ:ﬂl.i,ﬂ : (5)

neson weve functions. It is shown in these papers thei wave fun-
cticns obiained in this way can,in generel,differ greatly from
the asympiotic ones and lead to the predictions for the Two- |

particle charmonium decay widths which egree with the experiment.

4 ; 5



Requiring the total isotopic apin of three quarks to be equal
1/2, one obtains the relation=:

T kiﬂﬂ :\!Ki1311\- M& ﬁ'.ﬂ + \H\?,lf;_'i\Jp Ak;)‘}.i\ .. _ (6)

Therefore,there is-only one independent wave function,say
VUJ > P\U"’-\ ~
If the logarithmic corrections due to higher order perturba-
tion theory diagrems are taken into account,the wave function de-
iepends weakly on the normalization point J‘\l (the value off.i is
~# equal to the characteristic virtuality of the comstituents in
.t the given procesfa. The dependence of the wave function on the

‘g)?' is determined by the renormalizetion group /1,2/:

N k\h’rﬂ \QM@Q Z%“ Bul )@. “'t? W ()= 420%1¥a Yo,
b= s BN (0 16)

Ly dakiel
& 7T de(mW)
where REHUL\E ~1a the orthogonalized system of the Appel polino-
mials, E... -are the corresponding anomalous dimenaionﬁ.
The direct investigaetion of the wave function properties

can be replased by the investigation of the values of its mo=-
ments. It follows from (2)~-(4) that the wave ftmut%nn moments
are determined by the ¥ollowing matrix elements of local ope-

rators:

ol utack(Fafun(Bar )|

=@ P\“MMM }fm\f“mm : 2= 0, -
(D) vOeRpBay veBay Ko ey n
< gy vsnan)
&

J

We use alau the fulluwmg cu.rrent-

<ol > 2o| (B2 e Wi )y 5% -
"(\.bq:f.ﬂ\m W L.E‘\.tl C\-}(&} (K{.U‘ }}k E',HK \{‘)\> = | (10)
=t Q?\M‘ri NmK_‘%‘: (V-— Aﬁminn\*}_“ (100)

The current jh has the isotopic spin equal to 1/2 and so we

expect that the proton gives large contributions into the

correlators containing this current.

- Let us conaiﬂar now the currelatar
PUTLLA N AN woolt
I£ ; *LS&L@, <a\ Yy '3 U\D>2H (11)

(and analogous cuarelntnr with the replacement N - A }
where the factor EHK is introduced to separate out the comt=-
ribution of the function \?L ﬂﬂﬂ

The proton contribution into the sl}ectral dendity (11) is:

“ijLhLﬂlh-,ﬁ( \l VUHL“L“!J ¢ %(é Mx)*"u % TLH Wais) :E(é N )*

¢ = -\\;'kinﬂ‘!_ A{ua]l L Tl (12)
‘{‘ﬂi 1"!\-;.\}

(the conatant in (12) will be called "the residue" in
what follows).

In addition to the perturbation theory conmtribution the
nonperturbative corrections <ﬁ\ ‘i‘;i @:¢\ﬂ> and(ﬂ\m ﬂ'\l\'{bz

taken into account below in the sum rules. We use /5/:
s d]. i -2 _ 4 ST ; -} .
ol RS 42407 eV, <0\\E\N\ﬁ>%‘%~m CeV®,
It is convenient to calculate the nonperturbative contribu-~
tions into the sum rules using the gauge '“ipA]i-'*G /8,9/.

e 5 4 Sum rules and nucleon wave function,

The sum rules have the following form (the corresponding
diagrems are shown at figs.1,2):

7
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Analogous sum rules have been congidered IJI‘E"T:I.OI.ZE].F in

ﬂlﬁl“l 'ﬂ-'.'ﬂ.l'ﬂ_; S
"

/10,11/. The estimated in /10,11/ accurasy of the results ob-
tained from such sum rules igs =~ 10-15%., Our mean accurasy
will be the same. _

The sum rules (13)-(27) has been treated in the following
way.
1e At the first stage the best fit has been performed in
such interval of values of ME that the nonperturbative power
corrections were = 15-40% of perturbation thenr:,r contributions,
The residues TL and the duality intervals ‘3,;, were found,
while the proton mass has been considered as known,
2. At the second stage the "effective resonance"” contributi-
on has been added to the spectral dengity: ij(S} =(prutm)+
"eff. res."+continuum (resonance mass: Mg= {5V that corres-
ponds to the experimental spectrum in the 1/2-isotopic spin
channel). Now the best fit was perfofmed with two resonances
( p+"eff.res.“j in the same interval of Iuig-values. (Nearly for
all the sum rules this is the inter?al:iﬁe‘iﬂ% Mié i@x’_\‘l )« The
parameter $;’ has been varied within * 15% around its value
found at the first stage, The variation of the residue value
as compared with its value determined at the first stage show
the uncertainty in the residue which arises when the form of
the "continuum" is varied.

The results are presented in Table II.

Using the sum rules (13),(15),(22),(23) and the relation

we have for the IV@GQ\".

L=\ (53¢ 02) 10 v 5



The value of \[®®®) has been determined also in fi{]}ﬁf,where it
was obtained: \\ft““}:(%tg iﬁiﬁuﬁ This value doea not contra-
dict to our result (24). The result/lﬂ,’ﬂ/ has lower accuracy
because the sum rules uased in/iﬁ;ii/ are much more sengitive to
the precise form of the "continuum",

Let us note here the following.

a) Bﬂcdﬁse in the sum rules we have not introduced explicitly
the logarithmic corrections due %o the anomalous dimensions,
the values of the moments presented in Table II correspond to
the normelizations at suitable intermediate points., The mean
normalizetion point for all the sum rules can be taken as:

S{Q: i_(;u.\f with a good enough accuracy.( Let us note also
that the values of the anomalous dimensions are not large,see
/1:2/).

9 ee0)
b) It is seen from Table II that the_ratloa\

- 3 ; 2 -
\Jkﬂﬂ/\l kape) are much larger and the ratios \JLG-%E“&}; \,"““")wua?

and \xrm”l{;i’ﬂﬂi are much smaller than the corresponding ratios
for the asymptotic wave function: \Pmﬂ;kﬂt}‘iﬂﬂs_]‘.et us empha-
gize also that the following ratios

Q\I- ﬁjﬁy(\['- P\\mnﬂ - (‘\I-}k}kmyﬁ-h\mﬂ : ‘-\ it (25)

are very large in comparison with the corresponding ratios

for the wave function Ww bh,\,
These results show unambiguously that the largest part of

the proton longitudinal momenitum is carried by one u-quark

with the spin directed along the proton spin. mhis interpre-

tatic:n‘ becomes egpecially clear when one rewrites the formula

(3) for the pr?_ton wave function in the form:

5= ot D] [ GRS +

10

;'r \_. \l_*’;%kﬂ \ ‘d“' Uﬂ \F [{D d*bh)) "T (i..\\ uh l q u*‘uq i\ U}»‘E (26)

¢) The sum rulea for the moments (\,_Aiﬂiﬂ)? (q-ﬁ'\\hm\} and
L\T-P\mﬂ are sensifive to the contribution of the "effective
resonance”, This leads to the uncertainty about 30% in the mo-
ment values in spite of that the values of nonperturbative core
rections are not large here. Newertheless,the values of thege
momente allowed by the sum rules are essentislly smaller than
the corresponding values for \?m['ii]. Let us emphasize also that
using the mentities;%(‘f;\,a ={ (1;}:?\%‘13) it is possible to
diminish essentially the uncertainties at the complex analyais

of all the sum rules (17)-(23).

In order to clarify the properties of the nucleon wave fun-

ction let us introduce the Mandelstam plane for the variables

{l.‘ix,'{s, %_\{*Fi, The maximum of the function is denoted as &
and the minimum -as ©, The asymptotic wave function ‘Q,Fi?.mii,}(}
is shown at fig.3a, The values of the moments presented in
Table II imply that the function V (V) has its maxima in the
vicinity of ¥,*4 ana \,>1{ ,fig.3b,while the function
(\]-A) hes its maximum at Y\,%{. ,fig.3c.

Let us discuss now in short the behaviour of the higher mo=-
ments, As W=2W, grows,the relative values of the nonpertur-
bative correctkiom (with respect to the perturbation theory
contributions) increase. This means that the corresponding to-
tal duality intervals increase also,so that at large N\ 4
they will be very large. However,it is clear from the physicel
considerationa that at large W41  the nucleon contribution

¥
into the correlators fills not the total duality interval ‘SJL“{,

11



"
S "
but has its own intervalywhich is much smaller thﬁns‘toﬁ and
h -
tenda to some finite value: %H-a?:u::tmﬁ at W»i, In this
cage the duality relations imply that at w»1i:

V {\"ﬁ. i"l'l.:r_l-"l.;) i gm : F U’lﬁﬂ\ T Q'l"l 1*‘1\ Tk“ }J"Q-\] ; (27)
N g7 ‘
T (thﬁlﬂ.l"'“s'\" 3.)
This relation shows that the moments of the true nucleon wave

function V(1)

have the same dependence on (!, at N.»4 as
the moments of the asymptotic wave function \?fi'lﬂhil‘;(;_ We cone
clude from this that the true wave functions V({.), A(k) end
TH,,\] have at Y,>1 the same behaviour as ‘{’m[\m_

Based on these considerations,let us choose the model for

the nucleon wave function in the form:
: n=1
P2 ) -2 CuRaliy)

where &P“H;\H are Appel polinomials /1,2/ and ﬁln -are gome

=Wyl ey, (28)

congtanta. In other words,we confine ourselves by two lowest
polinomials. The experience with the meson wave functions //§ /
shows that such a form can reproduce correctly the main charac-
teristic properties of the true wave function,

We propose the following model wave functiona:

N o) 2 )| L35 (12) 83204 298,
AK‘L, T:L.: Uﬂﬂ: \Qmﬂa\[ Q],‘}i(ﬁ_ﬂ\,}ﬁh &n ”"'5-3163{;@,\4’2, (29)

(V- il = )| 18,03 e 433: 42926 -1k, -24 |

The values of the moments of these functions are givem in Table
II.and agree with the sum rule results, These function=z are
shown at-figs. ga,b The a.s:,rmptcﬁti; wave function ‘{‘muh\:ﬂ{jiﬁ[l}s

is shown for comparison at fig.' Using the relation (6) one has

12

y
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To check the conasistency of the whole method it is useful
to calculate the moments of the wave fmctionT(}L‘) from inde-
pendent sum rules snd then to compare the results with ihe va-
lues obtained from (30).

With that end in view let us consider the correlator:

-ﬁ L"nl,'ﬂ;\ 8&1 'ﬁ‘l[ - H_ Lhih-.n_'aﬂ Kim:“lb; E\ﬁg\%}ﬁ o8

T8 _ g Cfswzqkﬁﬁ INCRAEIN
‘\ \TQI'-LM-U&«, k\}\?s LE?\“LJ(“HH“L ‘\{/3.,

The corresponding sum rules have the form:

R,
q : 77#':5{3‘)} :ﬁﬁoﬂjﬂh @ﬂﬁlé‘gef”f'f’ @fg;g}:g}z
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where: -MH /MI (RN ( M.'n; N > lj
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The results obtained from these sum rules are presented in
Table II and agree well with (30). It is worth noting that
the sum rule (33) allow us to obtain lndependently the value

\]‘luuu] -Tk@w\
" V= (5.2£03) 10 Gev’. (39)

This value sgrees well with (24),
Let us note alsc the following.
; (ood) v ooz}
2. The treatment of the sum rules farrF and \ shows
that the large contribution to the spectral density gives the
resonance with the following values of the mess and the residue:
Mg x5+ 0.4)GeV,
id':lﬂ Loga)
ST T AN = () 5!

One can see from the sum rules (24) (28) (35) that the lar-

(40)

geet part of the longitudinal momentum of this resonance is
carried by one quark with the spin directed oppositely to the

resonance spin.

Let us discuass in short why the currents we use are prefe=-
rable as compared with those used in /i0,14/.
1. We separate the leading twist contribution (i.e., the struc-

ture 4G,

2
has the behaviour~S at large ‘3?“?}( ,unlike the behaviour

in the correlator) and so our spectral density

2
fvS in /A0,14/. Therefore,our spectral density is less sensi-
tive to the preciase furm of the "continuum".

N (L00)

2, Choosing &8 the second current in the correlator

one reduces essentially "the effective resonance" contribution
into the spectral density and so the cantinuum begins at larger
values of su Therefore,such sum rules are more gensitive to

the nucleon contribution and allow one t¢o obtain the nucleon

14

residue with the better accuracy. Hbruovﬁr,the relative sign

: A0c 100}
of the residues \Ji ) and !&\L

unambiguously determined
here by the perturbation theory contributions.

IV. The nucleon magnetic form factor.

We use below for the calculation of the nucleon magnetic
form factor the results obtained in /1/. The contributions of

various Born diagrams are shown in Table I and the total answer

is /1/: 0 N kh \
- 5- o4
<?1\j.l.t‘m\}\h\> % 1;,‘!-1 . (41}

L e 2 thy T g
*Eﬁw o) ?,{Tékm\ﬁﬁ iﬂ‘iﬂ*%% ol ﬁﬁ,
where , ~-is the charge of those quark which interact with
the photon in the given diagram (for the case. of the proton
the lowest line in each diagram is the d-guark line,for the
neutron one should replace: kk4+-i )

It has been pointed out in/lG{l/ that using the value T\TLQQC}T.
D.%tiﬁ_l&w? and the asymptotic wave function “thﬂti‘l{}h‘{_l}{}
one obtains for the neutron magnetic form factor the value
which is two orders of magnitude smaller than the experimental
value of the proton magnetic form factor at \%;L:ZOG&#E lMore-
over,the sign of the neutron form factor is positive in this
case /1,3,4/.

The main result of this section reads as follows, Using the

nucleon wave functions obtained in the previous section and
Born diagram contributions from Table I and (41) one obtains
(ror L0'GeV£ |02 10% @)

a) the proton magnetic form factor is positive while the neut-

ron one is negative,

15



b) the value of {1‘1“ G;m}) at hﬂ-\\:gg{&w? is
l""l X R, : {42
P eul)x 06 Gu! }

¢} the ratio of the neutron to the proton form factor at

43=206y" is
o W\/GM\ i s

These results agree with the experimental data.

Let us describe now some detail, The distribution of the nu-
cleon longitudinal momentum between the guarks is more or less
homogenious for the case of the asymptotic wave function kaﬂ=
L20¥,Ys {<§LL>=L/5; l=i,'1"3>}. The diagram N°3 in .Table I gives
large negative contribution into the proton form factor in
this case.

The largest part of the prutanu momentum is carried by first
u~-quark for the case of the realistic wave functiom (28 ) (%0)
(i.e. ({.11\?\ > (<\f-1>\ 3@%&5 P - tﬁia case the negative cone
tribution of the diagram N°3 in Table I is diminished while the
positive contributions of the diagrams N©1,9,10 in Table I are
enhanced., As a result,the proton form factor becomes posi-
tive and the neutron one~negative,

Let us discuss in short what is the value of Jg in (41)
(see also /7/). The typical virtuality of the lightest gluon
(see Table I) is: ﬁtﬁﬁﬁg}a‘?‘ he
virtuality: O;~(4-)(1-9,)4* The characteristic values of X
for the wave function (209 ) are: Ei: 1/%, i“;,':"h"i il{ﬁ- Therefore:

do (@) = ds(9736) dg (V) | Te(P=200v?) =03

|
The characteristic normalization point " ﬁ " of the nucleon

ywhile the res#t gluon have the

wave function is determined mainly by the smallest virtuality
and is about 0,5-1GeV< at Q°~ 20GeVS, It is worth noting that

16

L

the mean normelization point (i.e., the mean virtuality) of the
moment values obtained in section III from the sum rules is
¢1Gev2.* 5%

Using the wave functionss(29 ),(30 ) and Table I and (41)
one obtains the behaviour of the proton magnetic form factor
shown at fig. 4 '

We have calculated also the values of the nucleon form fac—
tors when the wave function was veried in the limits allowed
by the sum rules, The signs of the proton and neutron magnetic
form factors can't be changed in any case,the absolute values
change within a factor 2-3 and the ratio chenges &lightly:

G'L/Q,L ~ -(04205).

V. Summery,

The values of few first moments of the nucleon wave function
with the virtuality j*f'*: ACeV”™  bas been found above using the
method of QCD sum rules. Using these moment values the model
wave function of the nucleon is proposed which satisfies the

sum rules, The mosi characteristic property of this wave func-

tion is the following:about 60~70% of the proton longitudinal
) _is carried by one u~guark with the

ntum t = DO

spin parallel to the proton spin.while each of two other quaris

carries ab of the total momentum

Using the model wave function of the nucleon one can:

1) to obtain the right sign and the right value of the proton

p £
magnetic form factor Gn(q‘lj at lﬂf\’:{é’i‘-iﬂ)& s ; mMoreover,va-
rying the form of the wave function in the limits allowed by

: Let us remind that the dependence of the wave function on

the normalization point is extremely weak,
** Our results show that the overall sign obtained in /2/ is

WI'ONE .
b |



the sum rules it is imposeible to change the form factor sign
while ite sbsolute value changes witﬂh s factor ~ 2.

2) to predict the ratio: G—:&UV"H/G.?MH“\]:-U.E at \Gﬂt &0-‘_.5_[){)(;5.!'1
the value of this ratio remains nearlf conatant when the form
of the model wave function is varied in the limits allowed by
the sum rules;

3) to obtain the ratio of the proton to neutron deep-inelastic
gtructure functions in the threshold region:

¥;R1|Q1}/;:Qi,al\iilq ) K=>d ’.

(the SU(6)=-symmetric nucleon wave function gives:3%4 712 7y
4) to predict that the number of the leading protons is about
four times larger than the number of the leading neutroms in
the 00 wampiniiatian:

5). to expect that in the @Té' —annihilation into two jets the
presence of the leading proton in one jet will be strongly
correlated with the leading Il (but not .a ) =quark into f#.-
the oppbsite Jet:

i S r\a*q' - Pend +Guu+il a5 1
4 gs (&> ?w«&-?iuwrﬂ

I+ has been shown in fi%,ﬂif that at the two-loop level the-
re arise logarithmic corrections to the Born diagram contribu-
tions into the nucleon form factor which are not described by
the renormalization group. Since they are not caused by the
small distance interactions,there are no color nnutrtlizutiun
and Sudakov form factor will arise (due to the higher order
corrections) multiplying these two-loop contributions. This
form factor will suppress these correctiona at sufficiently

large QE. Moreover,because these corrections arise first at

18
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the two~loop level,one can expect they to be numerically small
(additional suupression 5@{“ &2/;4“‘ ~ 1077, Indeed,
using the results for these co;tributionﬂ presented in /14/
and our model wave function (29),(30) it is not difficult to

obtain that these contributions can be neglected with accuracy

‘about few percents,

I am deeply grateful to V,L.Chernyak for the guidance and
numerous fruitful diacussions. I am grateful also to A.I.Vain-

ghtein for the useful discussion,
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