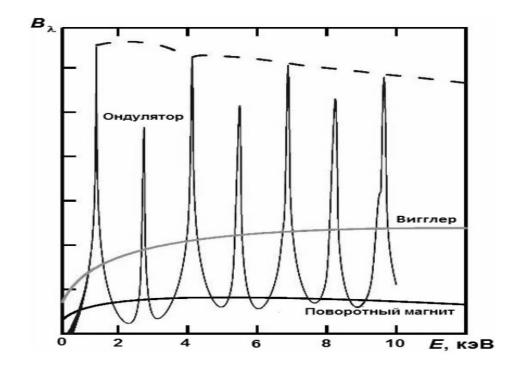
Сверхпроводящие ондуляторы: статус и перспективы

Шкаруба В.А.

Действующие контракты Лаб.8-2 по сверхпроводящим вставным устройствам:

	Источник СИ	Параметры	Срок сдачи	Стоимость, млн.руб.
1	DELTA, Germany	Вигглер, В=7 Тл,	Октябрь 2020	72
		Период = 127 мм		
2	DLS, UK	Ондулятор, В=1.2 Тл,	Июнь 2021	68
		Период = 15.6 мм		
3	AS, Australia	Вигглер, В=4.5 Тл,	Декабрь 2021	90
		Период = 48 мм		
4	SOLARIS, Poland	Вигглер, В=4 Тл,	Февраль 2022	84
		Период = 48 мм		

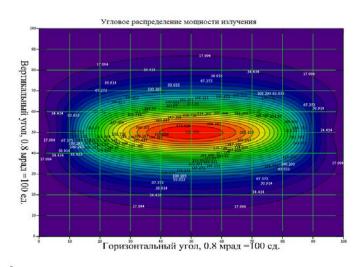

Действующие контракты Лаб.8-2:

	Место назначение	Название	Срок сдачи	Стоимость
1	FAIR, Дармштадт	Магнит СВМ	2024	~ 5 млн. Евро
2	ЦЕРН	Система вывода энергии	2020	20 млн.руб

Сверхпроводящие вставные устройства (вигглеры и ондуляторы) - ключевые устройства для генерации СИ на источнике СКИФ, в отличие от поворотных магнитов

Запланированные сверхпроводящие вставные устройства для источника СКИФ:

Вид вставного устройства	I очередь	II очередь	Итого:
Вигглер (4Тл, 35 мм)	2	2	4
Ондулятор (1.2 Тл, 15.6 мм)	3	6	9

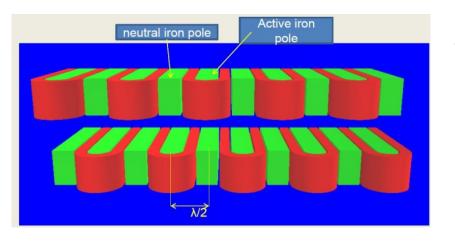


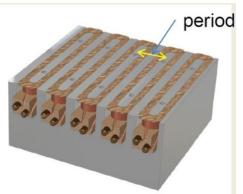
Сверхпроводящий ондулятор для источника СИ DLS, UK:

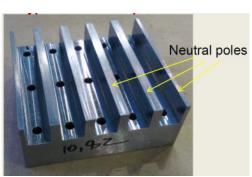
Параметры СП Ондулятора:

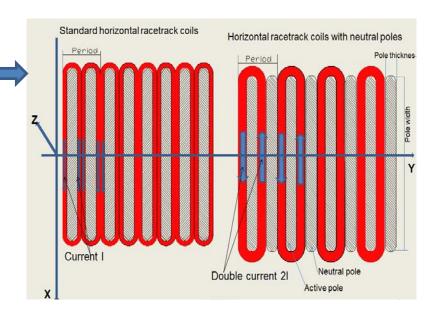
Номинальное магнитное	1.2
поле, Тл	
Период вигглера, мм	15.6
Вертикальная апертура для	6
пучка, мм	
Горизонтальная апертура для	60 mm
пучка, мм	
Межполюсный зазор, мм	8
Число периодов	119
Магнитная длина, мм	~1997
Длина магнита, мм	~2170
Длина между фланцами	~2840
Высота от пола, мм	2146
Ток в обмотке, А	500
Мощность излучения (В=4 Т,	7.18
I=0.4 A, E=3 GeV), кВт	
Горизонтальный угол	± 0.4
излучения, мрад	

Угловое распределение мощности излучения

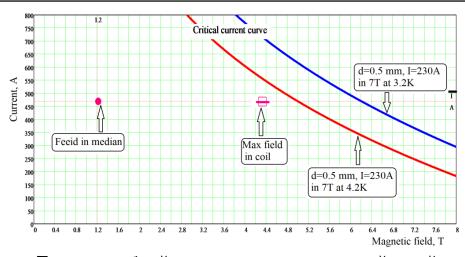



Сверхпроводящий ондулятор с нейтральными полюсами


Чередующиеся нейтральные и активные полюса (две соседних обмотки с со-направленными токами объединены в одну толстую обмотку и замкнуты по-очередно на одну либо на другую сторону)


Преимущества структуры с нейтральными полюсами:

- Вдвое меньше обмоток и контактов(хотя обмотки вдвое толще);
- Отсутствие сил раздвигающих обмотки (силы направлены внутрь обмотки) не нужно дополнительное бандажирование;
- Обеспечивается точность периода (обмотки вставляются в пазы между нейтральными полюсами)



Магнитная система сверхпроводящего ондулятора

Основные параметры		
магнитной системы:		
Магнитное поле, Тл	1.2	
Период, мм	15.6	
Магнитный зазор, мм	8	
Число периодов	119	
Магнитная длина, мм	~2000	
Ток, А	450	
Диаметр провода, мм	0.55	
Число витков в слое	12/11	
Число слоёв	7	
Ширина обмотки, мм	146	
Крит. ток в 7 Тл, А	250	
Соотношение Cu/NbTi	0.42	

Положение рабочей точки относительно критической кривой провода (1.2 Тл на медиане) для 4.2 и 3.2 К

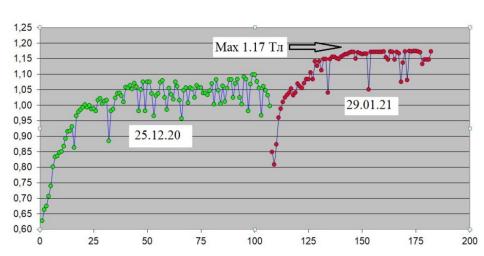
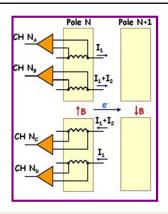


График тренировки 119-периодного ондулятора в жидком гелии

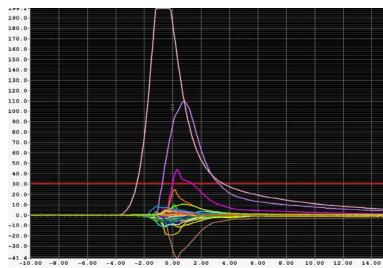
Новые цифровые многоканальные осциллографы для регистрации напряжений на сверхпроводящих обмотках при срыве сверхпроводимости (А.М.Батраков и Ко)

Параметры системы регистрации срывов

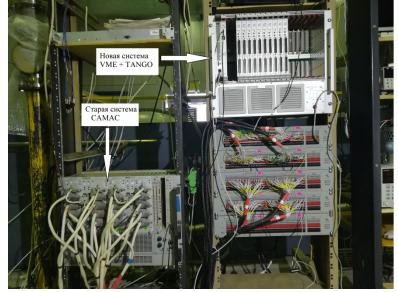

Применяемые модули ADCx32 + ADCx32 RIO

Количество каналов - 32*10 = 320Входной диапазон - ± 200 В Синфазный сигнал - до ± 350 В

Быстродействие - от 8 мкс/канал до 1 мс/канал

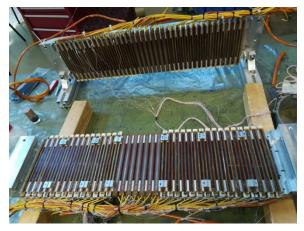

Память - 520 кслов/канал

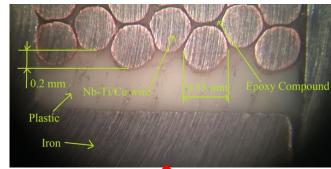
Формфактор модулей - 6U VME BINP



Способ съёма сигналов с обмоток полюсов

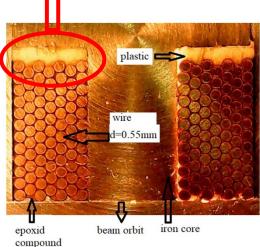
Напряжения на обмотках ондулятора при срыве сверхпроводимости, измеренные новыми блоками цифровых многоканальных осциллографов в стандарте VME под управлением TANGO (разработка A.M.Батраков и Ko)

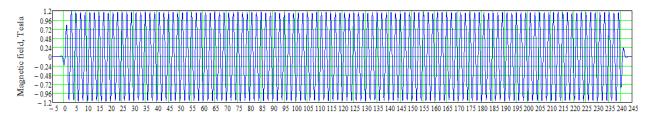


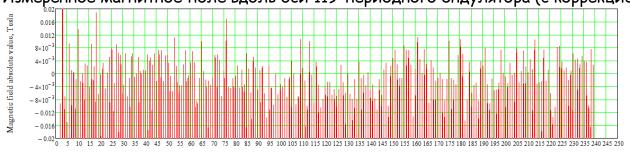

Минимизация фазовой ошибки сверхпроводящего ондулятора:

Отработка технологии изготовления обмоток:

- □ Требование на точность изготовления 10-20 мкм (в том числе для положения витков внутри обмотки) для фазовой ошибки <3°;</p>
- □ Использование 3-D принтера для изготовления пластиковых деталей;

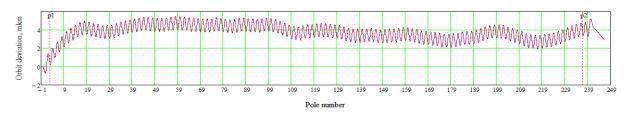





Минимизация фазовой ошибки сверхпроводящего ондулятора:

- Фазовая ошибка с катушками без коррекции ~ 3°
- □ Использование дополнительных локальных корректирующих токов ~5 A (~1% от основного тока 500 A.
 Типичное отличие поля между полюсами также ~1%;

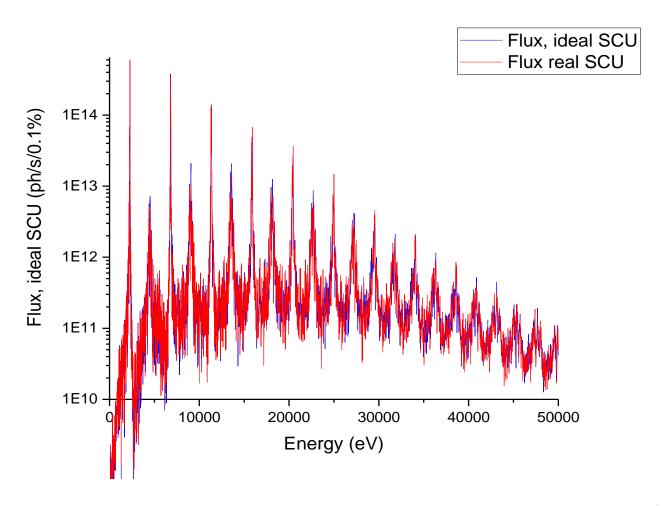
ошибки до ~ <mark>2°</mark>;



Измеренное магнитное поле вдоль оси 119-периодного ондулятора (с коррекцией)

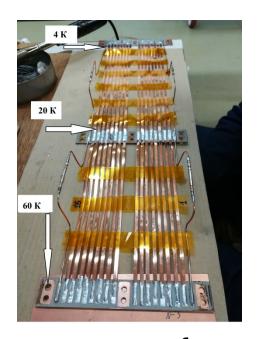
RMS phase error ~ 2°

Магнитное поле (модуль, увеличенный масштаб) вдоль оси 119-периодного ондулятора



Траектория пучка вдоль оси 119-периодного ондулятора

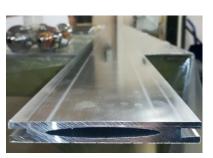
Минимизация фазовой ошибки сверхпроводящего ондулятора:


□ Спектр излучения ондулятора DLS (по результатам магнитных измерений датчиком Холла в жидком гелии, январь 2021). Расчёт в программе SPECTRA.

Минимизация фазовой ошибки сверхпроводящего ондулятора: Ввод корректирующих токов в обмотки ондулятора

- □ Проблема: Как ввести дополнительные токи в сухой криостат?
- Предложено: Использовать ВТСП провода с последовательным перехватом тепла на ступени криокулеров 60K, 20K и 4 K.
- Основная тепловая нагрузка на наружную ступень 60К через медные провода оптимального сечения.
 - Система ввода токов успешно протестирована.

Система ввода корректирующих токов в ондулятор в «сухом» криостате

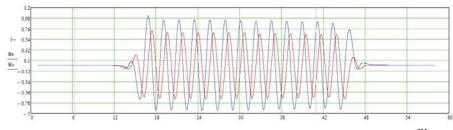

Сборка сверхпроводящего ондулятора для DLS:

Этапы сборки полноразмерного сверхпроводящего ондулятора.

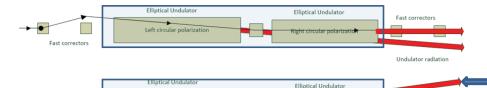
AL 6063 вакуумная камера

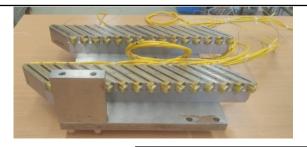
Испытание в криостате с жидким гелием

Система защиты обмотоку при квенче

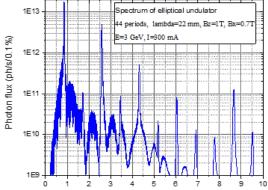


Сверхпроводящие ондуляторы. Перспективные разработки.


Короткий прототип сверхпроводящего эллиптического ондулятора:


- □ Предложена и реализована на коротком прототипе конструкция эллиптического ондулятора на основе обмоток периодом с 15.6 мм, расположенных сверху и снизу перпендикулярно между собой и под углом 45 градусов к оси ондулятора.
- □ Изготовлен короткий прототип с периодом 22 мм и соотношением компонент магнитного поля 1/0.7 Тл
- □ Продемонстрирована работоспособность и проведены магнитные измерения в жидком гелии

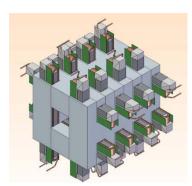
Параметры эллиптического ондулятора	
Вертикальное магнитное поле Вz, Тл	1
Горизонтальное магнитное поле Вх, Тл	0.7
Период, мм	22
Верт/гор апертура для пучка, мм	6/60
Магнитный зазор, мм	8

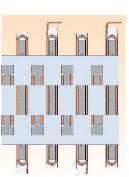


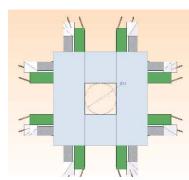
Измеренное магнитное поле Bz/Bx 12 - периодного прототипа эллиптического ондулятора

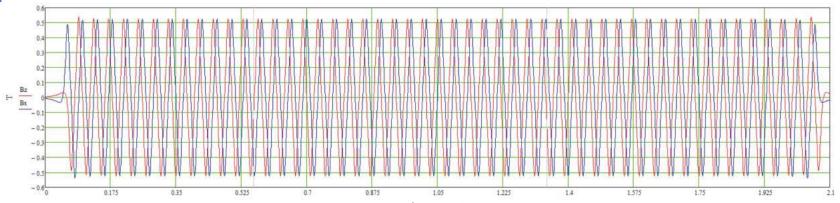
Спектр излучения 90 - периодного эллиптического ондулятора

Предложена схема двух последовательных эллиптических ондуляторов с быстрым переключением поляризации корректором. Можно использовать для изучения магнитного дихроизма


[1] P.Kanonik, S.Shruschev, N.Mezentsev, V.Shkaruba, O.Tarasenko, V.Tsukanov, A.Volkov, A.Zorin, A.Erokhin, A.Bragin. Superconducting elliptical undulator. AIP Conference Proceedings 2299, 020013 (2020).

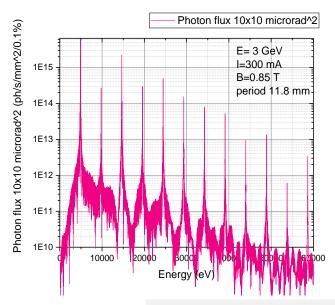

Сверхпроводящие ондуляторы. Перспективные разработки.

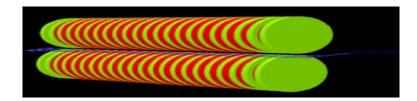

Сверхпроводящий ондулятор изменяемой поляризацией:

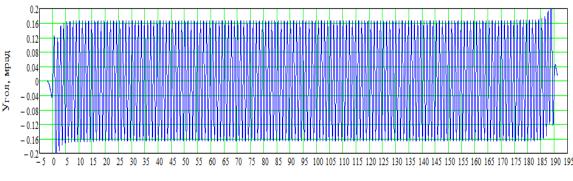

- Предложена конструкция сверхпроводящего ондулятора с изменяемой поляризацией, представляющая собой два планарных ондулятора с периодом 15.6 мм, повёрнутых между собой на 90 градусов и вставленных друг в друга.
- □ Запитываются независимыми токами, что позволяет создавать либо эллиптический ондулятор с различным соотношением компонент магнитного поля, либо планарные ондуляторы с линейной поляризацией излучения по вертикали и по горизонтали

Параметры	Значения
Номинальное вертикальное. поле Вz, Тл	-0.5 - +0.5
Номинальное горизонтальное. поле B _x , Тл	-0.5 - +0.5
Период, мм	40
Фазовая ошибка, град	< 3
Вертикальная/горизонтальная апертура	16/16
Межполюсной зазор, мм	20
Число периодов	50
Магнитная длина, мм	2200
Длина от фланца до фланца, мм	2840

Распределение магнитного поля Bz/Bx на 50 - периодном спиральном ондуляторе


[1] P.Kanonik, S.Khruschev, N.Mezentsev, V.Shkaruba, O.Tarasenko, V.Tsukanov, A.Volkov, A.Zorin, A.Erokhin, A.Bragin. Superconducting undulator with variable configuration of magnetic field. AIP Conference Proceedings 2299, 020014 (2020).


Сверхпроводящие ондуляторы. Перспективные разработки.


Сверхпроводящий короткопериодный ондулятор с вертикальным рэйстреком:

- 🖵 Предложена конструкция короткопериодного ондулятора по классической схеме вертикального рейстрека.
- □ Период 11.8 мм и поле 0.8 Тл. Число полюсов на 2 м ~160.

Параметры	
Период, мм	11.8
Полная длина, м	~2
Число периодов	160
Магнитное поле	
- межполюсный зазор 7 мм, Т	0.8
- межполюсный зазор 6 мм, Т	0.85
Фазовая ошибка, град	<3
сп провод, диаметр мм	0.56

Продольная координата, см

Публикации Лаб. 8-2 за 2020 год:

- 1. В.А.Шкаруба, А.В.Брагин, А.А.Волков, А.И.Ерохин, А.В.Зорин, В.Х.Лев, Н.А.Мезенцев, А.Н.Сафронов, В.М.Сыроватин, О.А.Тарасенко, С.В.Хрущев, В.М.Цуканов, Сверхпроводящие многополюсные вигглеры для генерации синхротронного излучения в ИЯФ СО РАН, Письма в ЭЧАЯ. 2020. Т. 17, № 4(229). С. 567—575.
- 2. V.A.Shkaruba, A.V.Bragin, A.A.Volkov, A.I.Erokhin, A.V.Zorin, V.Kh.Lev, N.A.Mezentsev, A.N.Safronov, V.M.Syrovatin, O.A.Tarasenko, S.V.Khrushchev, V.M.Tsukanov, Superconducting multipole wigglers for generating synchrotron radiation at the Budker Institute of Nuclear Physics. Physics of Particles and Nuclei Letters, 2020, Vol. 17, No. 4, pp. 542–547.
- 3. V. Shkaruba, A. Bragin, A. Erokhin, Ye. Gusev, P. Kanonik, S. Khrushchev, V. Lev, N. Mezentsev, A. Safronov, O. Tarasenko, V. Tsukanov, A. Volkov, A. Zorin. Superconducting 3 Tesla 54-pole indirect cooling wigglers with a period of 48 mm for Kurchatov synchrotron radiation source. AIP Conference Proceedings 2299, 020005 (2020).
- 4. S. Khrushchev, P.Kanonik, V.Lev, N.Mezentsev, A.Safronov, V.Shkaruba, V.Tsukanov, A.Volkov, A.Zorin. Magnetic measurements in small aperture of indirect cooling wiggler. AIP Conference Proceedings 2299, 020012 (2020).
- 5. V.M.Tsukanov, S.V.Khrushchev, N.A.Mezentsev, A.N.Safronov, V.A.Shkaruba. Development of indirect cooling cryogenic system with nitrogen and helium heat pipes for superconducting insertion devices at BINP. AIP Conference Proceedings 2299, 020018 (2020).
- 6. P.Kanonik, S.Shruschev, N.Mezentsev, V.Shkaruba, O.Tarasenko, V.Tsukanov, A.Volkov, A.Zorin, A.Erokhin, A.Bragin. Superconducting elliptical undulator. AIP Conference Proceedings 2299, 020013 (2020).
- 7. P.Kanonik, S.Khruschev, N.Mezentsev, V.Shkaruba, O.Tarasenko, V.Tsukanov, A.Volkov, A.Zorin, A.Erokhin, A.Bragin. Superconducting undulator with variable configuration of magnetic field. AIP Conference Proceedings 2299, 020014 (2020).
- 8. F.Kazantsev, P.Kanonik. Pulsed wire field measurements of 38-period superconducting undulator prototype. AIP Conference Proceedings 2299, 020015 (2020).

Спасибо за внимание!