для слайдера

Институт ядерной физики им. Г.И. Будкера СО РАН разработал и поставил новый ускоритель серии ЭЛВ на Подольский опытно-экспериментальный кабельный завод – ОАО «Экспокабель». Ускорители такого типа используются для облучения проводов с полиэтиленовой изоляцией, чтобы повысить их термоустойчивость, которая имеет принципиальное значение, например, в нефтедобывающей промышленности, судостроении, авиапромышленности. В результате появляется возможность заменить дорогие кабели из тефлона и полипропилена на более дешевые с аналогичными свойствами. Средняя рыночная стоимость ускорителей такого типа составляет 30-50 млн. рублей, в зависимости от модификации.

 

За 7-10 дней цветения одна береза продуцирует примерно 1,5 кг пыльцы, или несколько центнеров на гектар березового леса. Ученые Института химической кинетики и горения им. В.В. Воеводского СО РАН (ИХКГ СО РАН) установили, что на пике цветения березы и сосны доля пыльцы в массовой концентрации атмосферного аэрозоля в Новосибирской области может достигать 50 %, а в отдельных пробах – до 80 %. В Сибирском центре синхротронного и терагерцового излучения Института ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН) они определили элементный состав пыльцы 13 видов деревьев, распространенных в Западной Сибири. Результаты представлены в журнале Интерэкспо Гео-Сибирь.

Ученые из Физико-технического института (ФТИ) им. А.Ф. Иоффе РАН при участии специалистов Института ядерной физики им. Г.И. Будкера СО РАН завершают модернизацию сферического токамака Глобус-М (в дальнейшем – Глобус М2) - установка станет одним из лидеров по удельной мощности нагрева плазмы. Таким образом, появляется возможность испытать аппаратуру для международного экспериментального реактора ИТЭР. Результаты опубликованы в журнале Nuclear Fusion.

Ученые Института ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН) и Новосибирского государственного университета (НГУ) разрабатывают для гамма-обсерватории TAIGA уникальные детекторы, которые помогут зарегистрировать гамма-кванты в недоступном ранее диапазоне энергии – от 100 ТэВ и выше. Источником таких частиц считается Крабовидная туманность. В будущем оборудование ИЯФ СО РАН и НГУ позволит найти новые источники, а также проверить гипотезы происхождения частиц с высокой энергией.

Ученые Института ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН) и кафедры материаловедения в машиностроении Новосибирского государственного технического университета (НГТУ) разработали принципиально новую технологию сплавления титана и тантала. В результате был получен особо стойкий к коррозии материал, который почти не разрушается от контакта с агрессивными средами. С помощью этой технологии был создан экспериментальный химический мини-реактор и проведен эксперимент. Оказалось, что срок непрерывной работы реактора из такого материала составил бы 30 лет, что в несколько раз больше, чем реактора из особо стойкой стали. Проект выполнялся в рамках ФЦП «Исследования и разработки».

Российско-немецкая группа исследователей изучает свойства полупроводниковых структур под воздействием электромагнитного излучения терагерцового диапазона. Ученые исследовали образцы легированного сурьмой германия на лазерах на свободных электронах в Новосибирске и в Дрездене. Результаты оказались неожиданными - динамика релаксации возбуждений отличается от теоретических предсказаний. Исследование свойств полупроводниковых структур актуальны для создания детекторов электромагнитного излучения, например, в астрономии для сверхчувствительных телескопов.

28 октября 2016 г. завершились первые после 5-летнего перерыва выборы в Российскую академию наук. Всего избрано более 300 новых членов объединенной Академии, среди них – 4 сотрудника Института ядерной физики им. Г.И.Будкера СО РАН (ИЯФ СО РАН). Главный научный сотрудник Виктор Сергеевич Фадин и заместитель директора по научной работе Юрий Анатольевич Тихонов избраны член-корреспондентами РАН, а заведующий лабораторией Василий Васильевич Пархомчук и директор Института Павел Владимирович Логачев – академиками РАН.

В Европейском центре ядерных исследований (ЦЕРН) прошли успешные испытания одной из секций линейного ускорителя ионов Linac-4 – нового инжектора для Большого адронного коллайдера. В ходе проверки достигнут проектный темп ускорения и энергия 100 миллионов электрон-вольт. Испытанное оборудование разработано и изготовлено «под ключ» в России – специалистами Института ядерной физики им. Г.И.Будкера (ИЯФ СО РАН, Новосибирск) и Всероссийского научно-исследовательского института технической физики имени академика Е. И. Забабахина (РФЯЦ-ВНИИТФ, Снежинск). Переход на использование нового инжектора планируется в рамках модернизации Большого адронного коллайдера, которая, как ожидается, позволит более чем вдвое увеличить производительность установки.

Ученые Института ядерной физики им. Г.И.Будкера (ИЯФ СО РАН) совместно с коллегами из Японии и Кореи разработали электронику регистрации и программное обеспечение для калориметра в международном проекте BelleII на коллайдере KEKB (Цукуба, Япония). Перед физиками стояла непростая задача – установка будет производить более 30 тысяч полезных событий в секунду, которые нужно анализировать, что более чем в тридцать раз превосходит поток полезных событий предыдущего эксперимента – Belle. Система уже прошла предварительную проверку и через год будет запущена в работу. 

22-24 августа 2016 года в рамках финансируемого Евросоюзом проекта «КРЕМЛИН» в ЦЕРН (Женева) пройдет совместная конференция ИЯФ СО РАН и ЦЕРН для молодых ученых, занимающихся разработкой и экспериментами на электрон-позитронных коллайдерах (CERN-BINP workshop for young scientists in e+e- colliders). Трехдневный семинар посвящен новым результатам в области создания и проведения экспериментов на электрон-позитронных коллайдерах. Особый акцент будет сделан на разработках для российских и европейских mega-science проектов.

Один из участников совещания, младший научный сотрудник ИЯФ СО РАН Сергей Глухов исследует методы моделирования динамики частиц в циклических коллайдерах будущего. Его расчеты уже используются для разработки FCC, установки, которая в будущем может прийти на смену Большому адронному коллайдеру (LHC). «Двигаясь в ускорителе по искривлённой траектории, – объясняет ученый, – частица излучает, то есть теряет энергию.

Раньше учитывалось только излучение из поворотных магнитов, но оказалось, что, если речь идет об ускорителях с предельно высокими энергиями (в ЦЕРН планируется энергия электронов и позитронов 175 ГэВ), нужно брать в расчет еще и излучение из квадрупольных линз, чем я сейчас и занимаюсь. Исследуемый эффект, пренебрежимый в существующих установках, важен в коллайдерах будущего».

Специалисты Института ядерной физики им. Г.И.Будкера СО РАН изготовили промышленный ускоритель семейства ИЛУ-8 для Особого конструкторского бюро кабельной промышленности. Он позволит заказчику в 100 раз повысить производительность и удешевить процесс производства на 25 % по сравнению с методом, который используется сейчас. После облучения у изделий повышается прочность, а также увеличивается жаростойкость, они становятся пригодными для использования при температуре, достигающей 200 градусов Цельсия. С помощью ИЛУ-8 специалисты ОКБ КП планируют организовать массовое производство нового типа проводов для военной промышленности. «Обработка кабельной продукции на ускорителе ИЛУ-8, – комментирует научный сотрудник ИЯФ СО РАН Вадим Викторович Безуглов, – позволит специалистам ОКБ КП увеличить производство в сто раз – провод толщиной 0,12 сантиметров облучается со скоростью 120 метров в минуту. Этот процесс существенно повышает прочность изделия. По требованиям, провод должен выдерживать не менее 300 циклов воздействия стальной струной. Изделия, обработанные на установке ИЛУ-8, выдерживают от 600 до 1300 таких воздействий».

Ученые  ИЯФ СО РАН разработали и изготовили для Технологического института Карлсруэ и ЦЕРН уникальный сверхпроводящий вигглер – устройство, предназначенное для генерации синхротронного излучения. Его уникальность – в использовании нового, более практичного способа охлаждения – без погружения магнита в жидкий гелий. Сейчас новосибирская разработка, стоимость которой составляет около 1 миллиона евро, установлена на ускорительном комплексе ANKA в Германии. Здесь с ее помощью будут проводиться эксперименты с биологическими объектами, а для исследователей из ЦЕРН вигглер станет испытательным полигоном по отработке технологий для разрабатываемого линейного коллайдера CLIC. Европейские ученые уже приступили к работе с вигглером. «Мы начали с базовых экспериментов по проверке работоспособности и надежности всей системы, – комментирует руководитель Лаборатории технологий сверхпроводящих ондуляторов Технологического института Карлсруэ Аксель Бернхард, – в частности, криогенной. В затухательных кольцах CLIC будет напряженный режим работы для сверхпроводящих магнитов. В наших первых тестах вигглер оказался очень надежным. В настоящее время мы готовимся к экспериментам по изучению влияния вигглера на динамику пучков в накопителе ANKA».