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.

1 Introduction

As it is well known the multi-Regge form of amplitudes at high energies is a
base of various theoretical constructions in quantum chromodynamics (QCD)
and supersymmetric Yang-Mills theories (SYM). The most famous appli-
cation of the form resulted in the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[1, 2, 3, 4] approach to the semi-hard processes description in QCD. The
simplicity of this form has recently given the powerful tool for various factor-
ization formulae verification in SYM.

Let us now remind the state of art for the Reggeization hypothesis proof.
In QCD gluon Reggeization hypothesis (i.e. the multi-Regge form with only
gluon exchanges in all ti channels) was proved in leading logarithmic approxi-
mation (LLA) by the authors of the BFKL approach roughly forty years ago.
The analyticity and t-channel unitarity were the principal tools of this proof
[5]. It proved to be the strong base of the BFKL approach in the leading
approximation.

In next-to-leading logarithmic approximation (NLA) we developed the
general method based on the compatibility of the hypothetical multi-Regge
form of the amplitude with s-channel unitarity [7]. The compatibility is for-
mulated as a series of so-called bootstrap relations which fulfillment ensures
validity of the multi-Regge form order by order. The same method turned out
to be fruitful in the proof of the multi-Regge form with the quark exchanges
in LLA [8]. Then we used the bootstrap approach to prove the NLA gluon
Reggeization hypothesis in QCD. The calculation of the quark and gluon
one-loop corrections to all bootstrap components gave us possibility to verify
all bootstrap relations [9, 10, 11, 12]. Once again our general method was
successfully applied to prove NLA gluon Reggeization within supersymmetric
Yang-Mills (SYM) theories with arbitrary N and in the theories with gen-
eral form of Yukawa interaction [13]. Theoretically our bootstrap approach
is applicable for the quark Reggeization NLA proof. But the only unknown
component of the NLA amplitude is the Reggeon(G)-Reggeon(Q)-quark one-

loop vertex γQ
G1Q2

.
The only missing link of the recurrent bootstrap procedure is the “ini-

tial condition”. For NLA it is one-loop amplitude with arbitrary leg number
n. We supposed these amplitudes to have the correct factorized form cor-
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responding to the multi-Regge anzats. It has been verified for small n and
should be proved in general.

The main goal of our investigation is to complete the quark Reggeiza-
tion hypothesis formulation in NLA. For this purpose one should know all
effective Reggeon vertices appearing in the multi-Regge form with the quark
exchanges up to next-to-leading order. The vertex γQ

G1Q2
in NLO is the final

uncalculated component of the amplitude. Another aspect of interest is the
construction of the evolution equation kernel in NLO for the Reggeized quark.
The vertex γQ

G1Q2
is the final ingredient for the kernel construction. The ker-

nel is of concern since its conformal properties in SYM theory can illuminate
the integrability property of this theory and give the connection between dif-
ferent approaches as it occurred for the gluon NLO kernel. Finally, there
are some processes (as for instance, recharging processes p + p → n +∆++,
p + p̄ → n + n̄ with u- and d- quark exchanges) where the quark exchange
amplitude (sub-leading in comparison with the gluon one) might dominantly
contribute. Our Reggeon vertices are of some phenomenological interest for
these processes.

The article is organized as follows. The second section is devoted to
our method explanation and the kinematics description. The third section
presents the Reggeization hypothesis, components of our Regge amplitude,
and Lorentz and color structures of our one-loop amplitude in the multi-Regge
kinematics. In the next section we present the result of our calculation both
in fragmentation form reproducing different components of our Regge ampli-
tude and as the full expression. At the end of fourth section we present the
resulting expression for the required vertex γQ

G1Q2
. In the Appendix we intro-

duce the technique of the loop integration and give the explicit expressions
for the master-integrals of our calculation.

2 Amplitude of the quark production in MRK

There are several stages in NLO effective vertex γQ
G1Q2

finding in the next-to-
leading order. To calculate this Reggeon vertex we can consider any simple
process with the vertex in one-loop approximation. We choose the amplitude
SQ → S′Q′γ of the scalar, quark, and photon production in scalar and quark
collision: see Fig. 1. It does not matter for the vertex calculation whether we
analyze amplitude in Yang-Mills theory with Nc gluons, with photon, with
nf quarks (in the fundamental color representation), and ns scalars (in the
adjoint representation) or simply QCD amplitude.
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Fig. 1. Regge amplitude of the process SQ → S′Q′γ. G and Q are Reggeized
gluon in t1-channel and Reggeized quark in t2-channel respectively. Here

blob 1 is the effective vertex ΓG
S′S , blob 2 — unknown vertex γQ′

GQ, and blob 3 —

vertex ΓQ
γ′Q.

We consider all one-loop Feynman diagrams contributing to the process
SQ → S′Q′γ at first. There are twenty three different nontrivial one-
loop Feynman diagrams: see Fig. 2. There are diagrams labelled ac-
cording those belonging to pentagons, boxes, triangles and bubble diagram
class. First of all we perform the reduction of the amplitude to the mas-
ter integrals by the “LiteRed”[15] Mathematica package (author R.N. Lee:
www.inp.nsk.su/ ∼ lee/programs/LiteRed/). As a result of the reduction
one has pentagon, box, and self-energy nontrivial master integrals. Our mas-
ter integrals are listed in the Appendix. The method of the tensor integral
calculation is presented in Appendix as well. The algorithm of our master
integral calculation is presented in Ref. [14]. The next stage is to take Regge
limit of the resulting expression for master integrals analytically continued
in the physical kinematic region. Finally we compare the result of our calcu-
lation with one-loop expression resulting from the hypothetical multi-Regge
form [7] of the amplitude in question. In such a way we extract the required
vertex.

2.1 Kinematics, color and Lorentz structures

of the amplitude

Momentum of the initial scalar S is k1, of the final scalar S′ — k2, of the final
quark Q′ produced in the central rapidity region — k3, of the final photon γ
— k4, and of the initial quark Q — k5. In Fig. 1 all momenta are considered
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[3.3] [3.3c] [3.4]

[3.4c] [3.5] [3.5c]

[2.1] [2.1c] [2.2]

[2.2c]

= + +

nf

+

ns

Fig. 2. Nontrivial one-loop diagrams for the process SQ → S′Q′γ: pen-
tagons(labelled as [5] and crossed diagrams [5c]), boxes ([4.X ] and crossed
diagrams [4.Xc]), triangles ([3.X ] and crossed diagrams [3.Xc]), and bubbles
([2.X ] and crossed diagrams [2.Xc]). The last line is the self-energy insertion
with gluons, ghosts, nf sorts of fermions, and ns sorts of scalars.
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to be incoming and light-cone: k1 + k2 + k3 + k4 + k5 = 0, k2i = 0. For
the final photon we use the physical gauge with a light cone vector along k1:(
e(k4), k4

)
= 0,

(
e(k4), k1

)
= 0.

We present Sudakov’s decomposition for our momenta with incom-
ing scalar and quark momenta being along light-cone momenta n1,
n2 (n2

1 = 0, n2
2 = 0, (n1, n2) = 1): k1 = k+1 n1, ki = k+i n1 + k−i n2 + ki⊥

for i = 2, 3, 4, and k5 = k−5 n2. Here n1, n2 are light-cone momenta, where
k±i = (ki, n2,1). Here and below the ⊥ sign is used for components of mo-
menta transverse to n1, n2 plane. The scalar productions of particle momenta
are expressed through Lorentz invariants:

s = 2(k1, k5), t1 = 2(k1, k2), t2 = 2(k4, k5), s1 = 2(k2, k3), s2 = 2(k3, k4),

u1 = 2(k1, k3), u2 = 2(k3, k5), u = 2(k1, k4), s
′ = 2(k2, k4), u

′ = 2(k2, k5).

(2.1)

And we express the other invariants through independent set:
u1 = t2 − t1 − s1, u2 = t1 − t2 − s2, u = s1 − t2 − s, s′ = s − s1 − s2,
u′ = s2 − t1 − s. It is important that the invariants have the following signs
in the physical region of our process: s1 > 0, s2 > 0, s > 0, t1 < 0, t2 < 0
(and u1 < 0, u2 < 0, u < 0, s′ > 0, u′ < 0).

The multi-Regge kinematics (MRK) means that we have particles well
separated in rapidity space in the final state:

k+2 ≫ k+3 ≫ k+4 , k−2 ≪ k−3 ≪ k−4 . (2.2)

Since momenta ki are on the mass shell one has k−i = − k2
i⊥

2k+

i

, i = 2, 3, 4.

We introduce two dimensionless large (in the Regge limit) parameters:
y1 = k+2 /k

+
3 ≫ 1 and y2 = k+3 /k

+
4 ≫ 1. In what follows we will use

dimensional regularization D = 4 + 2ǫ taking the limit ǫ → 0 before the
Regge limit. MRK applies also that all transverse momenta are not increas-
ing as yi → ∞. One can express all of the transverse scalar productions
through independent ones (k22⊥, k

2
3⊥, k

2
4⊥): 2(k2, k3)⊥ = k24⊥ − k22⊥ − k23⊥,

2(k3, k4)⊥ = k22⊥ − k23⊥ − k22⊥, and 2(k2, k4)⊥ = k23⊥ − k22⊥ − k24⊥.
Further we consider one-loop amplitude SQ → S′Q′γ as a power function

of y1 , y2 within the accuracy of logarithmic terms (i.e. up to the terms lnk[yi]
technically originating from the ǫ decomposition of master integrals). In
the Regge limit the leading amplitude behavior is expected to be ∼ y1

√
y2.

Here y1 comes from Reggeized gluon in the s1-channel and
√
y2 — from

Reggeized quark in the s2-channel: see Fig. 1. Our basis bispinor structures
(2.4) are proportional to

√
y2, that is why the order of the multi-Regge limit
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calculation for the amplitude is as follows: expansion in ǫ → 0 with accuracy
O(ǫ) followed by retaining leading asymptotic power expansion in yi → ∞.

There are only two independent color structures: “tree” structure T a
S′St

a

and “cross-box” structure T a
S′cT

b
cSt

bta. Here ta are SU(Nc) quark generators

in the fundamental representation, and T a
S′S = −ifaS′ S are generators of

scalars in the adjoint representation. The “tree” structure (i.e. color octet in
t1 channel) turns out to give the leading contribution to the real part of our
amplitude. Next, we use the following notation for the Casimir operator:

tata = CF =
N2

c − 1

2Nc

. (2.3)

The amplitude depends not only on the invariants of s1, s2, t1, t2, s but
on the helicity states of the external particles as well.

We assume that external momenta ki are embedded in a four-dimensional
subspace of the momentum space with D = 4+2ǫ dimensions, while the pho-
ton polarization is D-vector. In that case there are six independent Lorentz
helicity structures:

ū(k3)e/u(k5) , ū(k3)k/1k/4e/u(k5) , (e, k2)ū(k3)k/1u(k5) , (e, k2)ū(k3)k/4u(k5) ,

(e, k3)ū(k3)k/1u(k5) , (e, k3)ū(k3)k/4u(k5) . (2.4)

In the multi-Regge kinematics we can choose the following independent struc-
tures with only transverse (D − 2) components involved:

ū(k3)e/⊥u(k5) , ū(k3)k/2⊥k/4⊥e/⊥u(k5) , (e, k2)⊥ū(k3)k/2⊥u(k5) ,

(e, k2)⊥ū(k3)k/4⊥u(k5) , (e, k4)⊥ū(k3)k/2⊥u(k5) , (e, k4)⊥ū(k3)k/4⊥u(k5). (2.5)

In the limit D → 4 the first two structures become dependent since one can
express e/⊥ in terms of k/2⊥, k/4⊥:

eµ⊥ = kµ2⊥
k24⊥(e, k2)⊥ − (k2, k4)⊥(e, k4)⊥

k22⊥k
2
4⊥ − (k2, k4)2⊥

+

+ kµ4⊥
−(k2, k4)⊥(e, k2)⊥ + k22⊥(e, k4)⊥

k22⊥k
2
4⊥ − (k2, k4)2⊥

.

(2.6)

This means that the part of metric tensor gµνD−4 ∼ O(ǫ) vanishes in the
dimensional limit D → 4.
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3 Regge amplitude structure

According to the hypothesis of the quark and gluon Reggeization in NLA the
real part of the amplitude A+B → A′ + J1 + · · ·+ Jn +B′ in the MRK has
the form

ℜA2→n+2 = Γ̄R1

A′A

(
P

n∏

i=1

eωRi
(qi)(zi−1−zi)D̂Ri

γJi

RiRi+1

)
×

× eωRn+1
(qn+1)(zn−zn+1)D̂Rn+1

Γ
Rn+1

B′B , (3.1)

where P∏ is the product ordered along the fermion line. We use the notation

D̂Ri
=





1

q2i⊥
, Ri = Gi,

−q/i⊥
q2i⊥

, Ri = Qi,
(3.2)

for the Reggeon Ri (gluon or quark) propagator. Then zi = 1
2 ln

k
+

i

k
−

i

are

rapidities of the final jets Ji. In next-to-leading logarithmic approximation
(NLA) jets Ji are either one parton or the partons couple with close rapidities.
Lastly, ωR(q) in (3.1) is the Regge trajectory of the Reggeon R (gluon or
quark) with momentum q.

There are several effective vertices (Γ̄R1

A′A, Γ
Rn+1

B′B ) for the particle–jet tran-
sition in the “fragmentation” kinematic region. As for particle–particle tran-
sition (pure multi-Regge kinematics) one has the following vertices in QCD:

ΓG
G′G , ΓG

Q′Q , ΓQ
G′Q.

There is an extra vertex ΓG
S′S for SYM. All these vertices are calculated within

the NLO [16] (for SYM case see [13]). The vertex the quark-photon transition

ΓQ2

γ′Q may be found in [16] as well. For quasi-multi-Regge kinematics (QMRK)
case of particle–couple transition one has in QCD:

ΓG
{G1G2}G

, ΓG
{Q1Q2}G

, ΓG
{G1Q2}Q

, ΓQ
{G1G2}Q

, ΓQ
{G1Q2}G

, ΓQ
{Q1Q2}Q

.

All these vertices are known: see [17, 18]. For SYM there are some addi-
tional vertices (ΓG

{S1S2}G
, ΓG

{GS′}S , ΓG
{Q1Q2}S

, ΓG
{Q′S}Q): the corresponding

calculation one can find in Ref. [13].
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There are several effective vertices (γJi

RiRi+1
) for the jet production in

Reggeon-Reggeon collision in the central region of rapidity. For one-particle
production we have QCD vertices

γG
G1G2

, γG
Q1Q2

, γQ
Q1G2

.

Vertices γG
G1G2

, γG
Q1Q2

were calculated in NLO [21, 22, 23, 6]. Effective vertex

γQ
Q1G2

was calculated in the leading order only. Our purpose is to find one-
loop corrections to it. Vertices for couple production (QMRK) in the central
region of rapidity

γ
{G1G2}
G1G2

, γ
{Q1Q2}
G1G2

, γ
{Q1G2}
Q1G2

, γ
{G1G2}
Q1Q2

, γ
{Q1Q2}
Q1Q2

are calculated in QCD with required NLO accuracy [17, 18] as well. In SYM

one has an extra vertex γ
{S1S2}
R1R2

that was calculated some years ago [19].
Note that QMRK is sub-leading kinematic i.e. all necessary vertices are

on the tree level. For QMRK amplitudes with gluon and quark exchanges
the Reggeization hypothesis was proved in [20].

In the following we will use the standard momentum notations for the
Regge amplitude SQ → S′Q′γ (see Fig. 1):

q1⊥ ≡ (k2 + k1)⊥ = k2⊥, q2⊥ ≡ (−k4 − k5)⊥ = −k4⊥, k⊥ ≡ −k3⊥, (3.3)

with k being momentum of the quark produced. According to the hypoth-
esis of the quark and gluon Reggeization in NLA (3.1), the real part of the
amplitude SQ → S′Q′γ in the multi-Regge kinematics reads as

ℜA8 = ΓR1

S′S

(
s1√
q21⊥k

2
⊥

)ωg(q1) 1

q21⊥
γQ
R1Q2

(
s2√
k2⊥q

2
2⊥

)ωq(q2)[
−q/2⊥
q22⊥

]
ΓQ2

γ′Q.

(3.4)

3.1 Regge trajectories and effective vertices

Now we present an expression for the one-loop trajectories of a quark and
gluon:

ωq(q) = −2CF g
2(−iaΓ)

(−q2⊥)
ǫ

ǫ
, ωg(q) = −2Ncg

2(−iaΓ)
(−q2⊥)

ǫ

ǫ
. (3.5)

The constant aΓ emerges from the integrals as a common factor (6.8). The
combination of Ncg

2(−iaΓ) will arise often and it relates with ḡ2 notation as
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follows:

Ncg
2(−iaΓ) ≡ Ncg

2Γ(1− ǫ)

(4π)2+ǫ

Γ2(1 + ǫ)

Γ(1 + 2ǫ)
= ḡ2

(
1− π2

6
ǫ2 +O(ǫ3)

)
. (3.6)

Now we present the scalar to scalar Regge vertex in the following way
[13]:

ΓR1

S′S = 2k+1 gT
R1

S′S(1 + δS) , δS = δcS + δs.e.S + δvS + δAS . (3.7)

Expressions for the corrections (δ’s) to vertex of the scalar scattering can
be found in [13] (there are corrections in the framework of supersymmetric
Yang–Mills theory, but the QCD result can be obtained easily):

δAS + δcS = (−iaΓ)g
2Nc(−q21⊥)

ǫ

(
− 5

4ǫ2
+

1

2ǫ
− 1 +

π2

2

)
, (3.8)

δs.e.S = (−iaΓ)Ncg
2 (−q21⊥)

ǫ

ǫ

(
−
[5
6
− 31

18
ǫ
]
+ ns

[ 1

12
− 2

9
ǫ
]
+

nf

Nc

[1
3
− 5

9
ǫ
])

,

(3.9)

δvS = (−iaΓ)Ncg
2 (−q21⊥)

ǫ

ǫ2

([5
4
− 3

2
ǫ+ 3ǫ2

]
+
[
−2 + 4ǫ− 8ǫ2

])
. (3.10)

Here the superscript c denotes the universal contribution from the central ra-
pidity region, the index s.e. denotes the contribution of the mass (self-energy)
operator, the index v denotes the contribution of the vertex corrections, and
the index A represents the contribution coming from the rapidity close to
the initial particle. All corrections are presented in ǫ decomposition with
required accuracy.

Corrections to vertex of photon production is more complicated since the
structure contains helicity violating terms:

ΓQ2

γ′Q = −e
(
e/⊥ + e/⊥δ1γ +

(eq2)⊥
q22⊥

q/2⊥δ2γ
)
u(k5), (3.11)

δ1γ = δs.e.1γ + δv1γ + δA1γ + δc1γ , δ2γ = δv2γ + δA2γ . (3.12)

Expression for these corrections can be found in [16]:

δA1γ + δc1γ = g2(−iaΓ)(−q22⊥)
ǫ(−CF )

[
1

ǫ2
− π2

2

]
, (3.13)

δv1γ = CF g
2(−iaΓ)(−q22⊥)

ǫ 1− 4ǫ

ǫ
, (3.14)
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δs.e.1γ = CF g
2(−iaΓ)(−q22⊥)

ǫ 1− ǫ

2ǫ
, (3.15)

δv2γ = CF g
2(−iaΓ)(−q22⊥)

ǫ (−2)(2− 5ǫ)

ǫ
, (3.16)

δA2γ = CF g
2(−iaΓ)(−q22⊥)

ǫ 4(1− 2ǫ)

ǫ
. (3.17)

We parametrize the unknown vertex of quark production in quark-
Reggeon collision as

γQ
R1Q2

= −g
1

k+3
ū(k3)t

R1
(
q/1⊥ + q/1⊥δ1Q + q/2⊥δ2Q

)
. (3.18)

The term δ1Q is a correction to leading order structure. The correction δ2Q
stands before the structure, that is absent in the leading order (the mass
operator corrections contribute only in the δ1Q coefficient):

δ1Q = δs.e.11Q + δs.e.21Q + δv,c1Q , δ2Q = δv,c2Q. (3.19)

3.2 Lorentz and color structures of the Regge amplitude

Now we consider the real part of the amplitude in question.
In the first place we will be interested in octet color, or “tree”, structure

coefficient of Regge amplitude obtained in our calculation after the Regge
limit procedure.

Let us introduce the notation for the basic Lorentz structures of our Regge
amplitude. There is only one Born structure

ABorn = −2y1g
2eTR1

S′S

ū(k3)t
R1q/1⊥q/2⊥e/⊥u(k5)

q21⊥q
2
2⊥

. (3.20)

The next structure Ae
8 arises from the correction to the Regge vertex for

quark production in the central region and violates the helicity

Ae
8 = −2y1g

2eTR1

S′S

ū(k3)t
R1e/⊥u(k5)

q21⊥
. (3.21)

Structure Aq1
8 arises from correction to the Regge vertex for quark-photon

transition and violates the helicity as well

Aq1
8 = −2y1g

2eTR1

S′S

ū(k3)t
R1q/1⊥u(k5)(e, q2)⊥

q21⊥q
2
2⊥

. (3.22)
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The final structure that appears after the Regge limit in our calculations
is as follows

Aq2
8 = −2y1g

2eTR1

S′S

ū(k3)t
R1q/2⊥u(k5)(e, q2)⊥

q21⊥q
2
2⊥

. (3.23)

Decomposition of the multi-Regge form of the amplitude SQ → S′Q′γ
(3.4) in the coupling constant up to the next-to-leading order gives us:

ℜA8 = ABorn
(
1 + ωg(q1) ln y1 + ωq(q2) ln y2 +

ωg(q1)

2
ln
[ k2⊥
q21⊥

]
+

+
ωq(q2)

2
ln
[q22⊥
k2⊥

]
δS + δ1Q + δ1γ

)
+Ae

8δ2Q +Aq1
8 δ2γ +O(eg6).

(3.24)

If we calculate the one-loop corrections for SQ → S′Q′γ amplitude and
substract the known corrections for the effective vertices ΓG

S′S , ΓQ
γQ and the

terms with Regge trajectories contribution, then we obtain the corrections
for effective vertex γQ

GQ.

4 Result of the amplitude SQ → S ′Q′γ
calculation

Let us present the result of the calculation procedure described at the be-
ginning of Section 2. Here we give the calculation result in the Regge limit
and group diagrams into the expressions with specific elements for the Regge
amplitude. We use notations ( 3.20)–(3.23) for structures from the previous
Section and the notation (6.8) for the common factor aΓ.

Now we present characteristic diagram contributions reproducing different
components of the Regge amplitude: photon and scalar vertex corrections,
Regge trajectories, and the corrections to the unknown vertex.

The sum of diagrams giving the correction to the photon vertex reads as

ℜ
(
A3.5 +A3.5c

)
=

= g2(−iaΓ)CF

{
−Ae

8 ln y2−(−q22⊥)
ǫ 1

ǫ

[
2(2−5ǫ)

(
Aq1

8 +Aq2
8

)
−(1−4ǫ)ABorn

]}
.

(4.1)
It is easy to see that these diagrams (3.5 group) contain the large logarithm
ln y2. Diagrams describing the mass operator of the quark in the t2-channel
contain ln y2 as well:
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ℜ
(
A2.2 +A2.2c

)
= g2(−iaΓ)CF

(
ABorn 1− ǫ

ǫ
(−q22⊥)

ǫ −A8
e ln y2

)
. (4.2)

Diagrams of the vacuum polarization of the gluon in the t1-channel result
in the expression (in ǫ → 0 decomposition)

A2.1X = Ncg
2(−iaΓ)A

Born (−q21⊥)
ǫ

ǫ
×

×
(
−
(5
3
− 31

9
ǫ
)
+

ns

2

(1
3
− 8

9
ǫ
)
+

nf

Nc

(2
3
− 10

9
ǫ
))

.

(4.3)

The following group of diagrams gives the correction to the scalar vertex:

A3.3 +A3.3c +A3.4 +A3.4c = Ncg
2(−iaΓ)A

Born (−q21⊥)
ǫ

ǫ2
×

×
(
−(2− 4ǫ+ 8ǫ2) +

1

4
(5− 6ǫ+ 12ǫ2)

)
.

(4.4)

Diagrams describing Reggeization of quarks and gluons (i.e. yielding the
Regge trajectories) and delivering the correction to the vertex of the quark
production in the central region give the following real part for the octet
(tree) color structure:

ℜ
(
A5 +A4.1 +A4.2 +A4.3 +A4.3c +A4.4 +A3.1 +A3.1c +A3.2 +A3.2c

)∣∣∣∣
8

=

= −ig2aΓ

{
Ae

8

[
(Nc − CF )

(
1 +

k2⊥
q21⊥ − q22⊥

− q21⊥k
2
⊥(

q21⊥ − q22⊥
)2 ln

[
q21⊥
q22⊥

])
+

+ CF

(
3q21⊥

q21⊥ − q22⊥
ln

[
q21⊥
q22⊥

]
+ 2 ln y2

)]
+ABorn

[
CF

(
−2− ǫ

ǫ2
(−q22⊥)

ǫ−

− 2

ǫ
(−q22⊥)

ǫ ln y2 +
2π2

3
− 4 +

3q21⊥
q21⊥ − q22⊥

ln

[
q21⊥
q22⊥

]
+ 2Li2

[
1− q21⊥

q22⊥

])
−

−Nc

(
1

ǫ2
(−k2⊥)

ǫ +
2

ǫ
(−q21⊥)

ǫ ln y1 +
1 + 2ǫ

4ǫ2
(−q21⊥)

ǫ − 2π2

3
− 2+

+ ln

[
q21⊥
q22⊥

]
ln

[
k2⊥
q22⊥

]
+ 2Li2

[
1− q21⊥

q22⊥

])]
+Aq1

8

[
4CF

1− 2ǫ

ǫ
(−q22⊥)

ǫ

]
+

+Aq2
8

[
2CF

2− 5ǫ

ǫ
(−q22⊥)

ǫ

]}
.

(4.5)
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Corrections to Regge vertices

Contribution to the mass operator in the t1-channel comes from diagrams
A2.1 ш A2.1c

A2.1 +A2.1c = 2δs.e.S ABorn = 2δs.e.11Q ABorn . (4.6)

Non-logarithmic part of diagrams A2.2 and A2.2c (the large logarithm ln y2
presents in the diagram A2.2) contributes to the mass operator in the t2-
channel resulting in

ℜ(A2.2 +A2.2c)
∣∣∣
(ln y2)0

= 2δs.e.21Q ABorn = 2δs.e.1γ ABorn . (4.7)

The sum of the diagrams 3.3X and 3.4X contributes to the correction δvS :

A3.3 +A3.3c +A3.4 +A3.4c = ABornδvS . (4.8)

The sum of the box-type diagrams in the t1-channel with large logarithms
has only the tree color structure (octet in t1-channel) and yields the gluon
trajectory

(A4.1 +A4.2 +A4.1c +A4.2c)
∣∣∣
ln y1

= ABornωg(q1) ln y1. (4.9)

In the cross-box color structure the large logarithm ln y1 cancels completely
(according to the gluon Reggeization).

For t2-channel expression before the large logarithm ln y2 is reduced to
the quark trajectory by more complex way than in t1-channel:

(A4.3 +A4.3c +A4.4 +A3.1 +A3.2 +A3.5 +A2.2)
∣∣∣
ln y2

= ABornωq(q2) ln y2.

(4.10)
Squares of large logarithms ln y2 cancel in the following sums:

(A4.3 +A4.3c)
∣∣∣
(ln y2)2

= 0 , (A4.4 +A3.1)
∣∣∣
(ln y2)2

= 0 . (4.11)

The following real part of the octet (tree) color structure gives almost full

contribution to the correction to the Regge vertex γQ
R1Q2

.

Re(A4.3 +A4.3c +A4.4 +A3.1 +A3.1c +A3.2 +A3.2c +A5 +A4.1 +A4.2)
∣∣∣
8
=

= ABorn

(
ωg(q1)

[
ln y1 +

1

2
ln

k2⊥
q21⊥

]
+ ωq(q2)

[
ln y2 +

1

2
ln

q22⊥
k2⊥

]
+
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+δv,c1Q + δA1γ + δc1γ + δcS + δAS

)
+Ae

8δ2Q +Aq1
8 δc2γ −Aq2

8 δ3γ . (4.12)

Together with the mass operator contribution (4.6) and (4.7) one obtain the
full result for the vertex in question. In the sum (4.12) there are some con-
tributions to the Regge vertices in the fragmentation region, i.e. ΓR1

S′S — see

(3.7) and ΓQ2

γ′Q — see (3.11), and the contributions to the Regge trajectories.
The vertex correction to the photon production vertex comes from the

following diagram group and reads:

ℜ(A3.5 +A3.5c)
∣∣∣
(ln y2)0

= ABornδv1γ +Aq1
8 δv2γ +Aq2

8 δ3γ . (4.13)

It is obvious from expressions (4.12) and (4.13) that the structure of Aq2
8

cancels in the final expression for the Regge amplitude.

The cross-box color structure and the imaginary part

of the amplitude

The cross-box color structure presents only in the diagrams: 5X , 4.1X , 4.2X .
We introduce the notation for the basic structure, which is contained in the
cross-box color structure:

Ac−b = −2y1g
2eT a

S′cT
b
cS

ū(k3)t
btaq/1⊥q/2⊥e/⊥u(k5)

q21⊥q
2
2⊥

. (4.14)

The cross-box color structure is derived from the amplitude resulting in:

A
∣∣∣
crossbox

= g2 (−iaΓ)Ac−b(−iπ)
4

ǫ
(−q21⊥)

ǫ. (4.15)

The imaginary part of the amplitude contains tree and cross-box color
structures:

ℑA = π
(−iaΓ)g

2

ǫ

[
NcA

Born
(
(−q21⊥)

ǫ + (−k2⊥)
ǫ
)
−Ac−b4(−q21⊥)

ǫ

]
. (4.16)

It is easy to see that the imaginary part does not contain large logarithms
(ln y1 and ln y2) at all as it must be according to the Reggeization hypothesis.

17



The final result for the amplitude and the vertex γQ
R1Q2

Now we present the resulting expression for one-loop corrections to SQ →
S′Q′γ amplitude in the MRK with O(ǫ) accuracy:

iA = aΓg
2ABorn

{
CF (−q22⊥)

ǫ

(
− 2

ǫ2
+

3

ǫ
− 9− 2

ǫ
ln y2 +

2π2

3
+

+
3q21⊥

q21⊥ − q22⊥
ln

[
q21⊥
q22⊥

]
+ 2Li2

[
1− q21⊥

q22⊥

])
+Nc(−q21⊥)

ǫ×

×
(
− 2

ǫ2
+

1

ǫ

(
1

3
+

4

9
ǫ+ ns

(1
6
− 4

9
ǫ
)
+

nf

Nc

(2
3
− 10

9
ǫ
)
+ ln

[
q21⊥
k2⊥

]
− 2 ln y1

)
−

− 1

2
ln2
[
q21⊥
k2⊥

]
+

2π2

3
− ln

[
q21⊥
q22⊥

]
ln

[
k2⊥
q22⊥

]
− 2Li2

[
1− q21⊥

q22⊥

])}
+ 2CFaΓg

2Aq1
8 +

+ aΓg
2Ae

8

{
(Nc − CF )

(
1 +

k2⊥
q21⊥ − q22⊥

− q21⊥k
2
⊥(

q21⊥ − q22⊥
)2 ln

[
q21⊥
q22⊥

])
+

+ CF

3 q21⊥
q21⊥ − q22⊥

ln

[
q21⊥
q22⊥

]}
+

+ iπ
aΓg

2

ǫ

{
NcA

Born
(
(−q21⊥)

ǫ + (−k2⊥)
ǫ
)
−Ac−b4(−q21⊥)

ǫ

}
.

(4.17)

It is easy to see that the coefficients before structures Aq1
8 , Ae

8 are finite in
the limit D → 4.

Comparing the result (4.17) of the amplitude calculation with the ex-
pression (3.24) for the real part coming from the Reggeization hypothesis we
can present the effective Regge vertex of the quark production in the central
rapidity region in the NLO:

γQ
R1Q2

= −g
1

k+3
ū(k3)t

R1
(
q/1⊥ + q/1⊥δ1Q + q/2⊥δ2Q

)
,

where
δ1Q = δs.e.11Q + δs.e.21Q + δv,c1Q.
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Contribution from mass operator has the form:

δs.e.11Q + δs.e.21Q =
Ncg

2(−iaΓ)

2

{
(−q21⊥)

ǫ

[
ns

2

(
1

3ǫ
− 8

9

)
−
(

5

3ǫ
− 31

9

)
+

+
nf

Nc

(
4

3ǫ
− 20

9

)]
+ (−q22⊥)

ǫCF

Nc

(
1

ǫ
− 1

)}
. (4.18)

The vertex correction acquires the form with O(ǫ) accuracy:

δv,c1Q = g2(−iaΓ)

{
CF

(
− (−k2⊥)

ǫ

ǫ2
+

(−q22⊥)
ǫ

ǫ
+

π2

6
− 4 +

+
3q21⊥

q21⊥ − q22⊥
ln

[
q21⊥
q22⊥

])
+Nc

(
(−q21⊥)

ǫ

2ǫ
+

π2

6
+ 3− 1

2
ln2
[
q21⊥
q22⊥

])
+

+
(
CF −Nc

)
(
1

2
ln2
[
q22⊥
k2⊥

]
+ 2Li2

[
1− q21⊥

q22⊥

])}
. (4.19)

The correction to the term violating helicity has the form that is finite in the
limit ǫ → 0:

δ2Q = g2(−iaΓ)

{
(Nc − CF )

(
1 +

k2⊥
q21⊥ − q22⊥

− q21⊥k
2
⊥(

q21⊥ − q22⊥
)2 ln

[
q21⊥
q22⊥

])
+

+CF

3 q21⊥
q21⊥ − q22⊥

ln

[
q21⊥
q22⊥

]}
+O(ǫ). (4.20)

For N = 4 SYM case (all particles of the theory are in the adjoint color
representation) one can obtain very simple result for the vertex:

γ
Q(SYM)
R1Q2

=− g

k+3
ū(k3)T

R1

QQ2

{
q/1⊥ + g2Nc(−iaΓ)

(
q/1⊥

[
3

2ǫ

(
(−q21⊥)

ǫ +(−q22⊥)
ǫ

)
−

− (−k2⊥)
ǫ

ǫ2
− 7

2
+

π2

3
− 1

2
ln2

q21⊥
q22⊥

]
+
(
q/1⊥ + q/2⊥

) 3q21⊥
q21⊥ − q22⊥

ln
q21⊥
q22⊥

)}
.

(4.21)

Here we have used the following substitutions: CF → Nc,
nf

Nc
→ 4, ns → 6−2ǫ

(in the dimensional reduction scheme).
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5 Conclusion

Our paper is devoted to the effective vertex γQ
R1Q2

calculation in the next-
to-leading order. The vertex of the massless quark Q production in Reggeon
(quark Q2 and gluon R1) collision in t-channels was the last unknown NLO
vertex in the central rapidity region to formulate the quark Reggeization
hypothesis within the next-to-leading logarithmic approximation. Now all
components are ready to perform the hypothesis proof by the bootstrap ap-
proach [7] having been used in the gluon Reggeization proof both in QCD
[10, 11, 12] and SYM [13]. The simplicity of the SYM vertex (4.21) gives us
an additional tool for the SYM property investigations by use of multi-Regge
amplitude form as it was the case for the gluon Reggeization and BDS anzats
[24] in SYM.

In principle, there are some different methods of the effective vertex calcu-
lation with t-channel unitarity method being the most popular among them.
However in our work we use the straightforward method of one-loop ampli-
tude calculation having equipped with the computer algebra automatization
methods based on the Mathematica system and “LiteRed” package (by R. N.
Lee) [15] for it. This package is used to reduce integrals emerging in the
one-loop amplitude to the basis of master integrals. Master integrals in our
problem are of known (massless) pentagon and box types [14]. Our method
allows us to perform the cross-check by obtaining another elements of the
Regge amplitude (quark and gluon trajectories and known effective vertices)
as a by-effect.
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6 Appendix

6.1 Integrals calculation. Notation

We reduce all expressions for diagrams in Fig. 2 to scalar products and basic
helicity structures. There are two vectors that are not included in the denom-
inators of the pentagon diagram type in the amplitude. It means that there
will be tensor integrals with up to two indices. There is only one topology of
the integral in our problem:

J12345(n1, n2, n3, n4, n5) = J12345(~n) =

∫
dDl

(2π)D
1

Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

5

,

(6.1)

D1 = l2 , D2 = (l + k1)
2 , D3 = (l + k1 + k2)

2 , D4 = (l + k1 + k2 + k3)
2 ,

D5 = (l + k1 + k2 + k3 + k4)
2.

There are only ten master integrals in this topology that have the form
J12345(~ni) , i = 1, . . . , 10, where ~ni are of the form:

~n1 = (1, 1, 1, 1, 1) , ~n2 = (1, 1, 1, 1, 0) , ~n3 = (1, 1, 1, 0, 1) , ~n4 = (1, 1, 0, 1, 1) ,

~n5 = (1, 0, 1, 1, 1) , ~n6 = (1, 0, 1, 0, 0) , ~n7 = (1, 0, 0, 1, 0) ,

~n8 = (0, 1, 0, 1, 0) , ~n9 = (0, 1, 0, 0, 1) , ~n10 = (0, 0, 1, 0, 1) ,

and one has four integral types with the same topology with them having
different permutations of the external momenta:

D1 D2 D3 D4 D5

J12345 l
2 (l + k1)

2 (l + k1 + k2)
2 (l + k1 + k2 + k3)

2 (l + k1 + k2 + k3 + k4)
2

J21345 l
2 (l + k2)

2 (l + k1 + k2)
2 (l + k1 + k2 + k3)

2 (l + k1 + k2 + k3 + k4)
2

J12435 l
2 (l + k1)

2 (l + k1 + k2)
2 (l + k1 + k2 + k4)

2 (l + k1 + k2 + k3 + k4)
2

J41235 l
2 (l + k4)

2 (l + k1 + k4)
2 (l + k1 + k2 + k4)

2 (l + k1 + k2 + k3 + k4)
2

There are only three types of different master integrals. The first one is a
pentagon with massless external lines (for example, J12345(~n1)). The second
one is a box with one external line with mass (for example, J12345(~n2)). And
the third type is a bubble (for example, J12345(~n6)).

The following table shows the integrals used in the diagrams in Fig. 2:

Integrals Diagrams
J12345 d5, d4.1, d4.2, d4.4, d3.X, d2.X
J21345 d5c, d4.1c, d4.2c
J12435 d4.3
J41235 d4.3c
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6.2 Tensor momentum integrals

We introduce the following notation I[.] for various integrands containing the
argument of the square bracket. For instance,

I
[
lµ
]
≡
∫

dDl

(2π)D
lµ

Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

5

(6.2)

Integral with an external index µ is expressed as a linear combination of the
incoming momenta:

I
[
lµ
]
=
∑

i

kµi I[ai], (6.3)

where ai are scalar polynomial functions of lµ. It is easy to express the
integral with an external index as a linear combination of integrals without
external indices. Since we have four independent vectors ki (that are in the
four-dimensional subspace), so the matrix mij is invertible. It is easy to find
that eventually

I
[
lµ
]
=
∑

ij

kµi m
−1
ij I

[
(kj , l)

]
, (ki, kj) = mij , (6.4)

where I
[
(kj , l)

]
is expressed in terms of integrals with reduced powers of

denominators.
Tensor integral with two indices is expressed through the metric tensor

subspace D − 4, and entering into integral momenta

I
[
lµlν

]
= gµνD−4I[A] +

∑

i,j,r,n

m−1
ij m−1

rn kµi k
ν
r I
[
(kj , l)(kn, l)

]
, (6.5)

gµνD−4kiµ = 0 , gµνD−4gµν = D − 4.

The coefficient before the metric tensor can be easily calculated:

I
[
A
]
=

1

D − 4

(
I
[
l2
]
−
∑

ij

m−1
ij I

[
(l, ki)(l, kj)

])
, (6.6)

I[lµlν ] =
gµν −m−1

ij kµi k
ν
j

D − 4

(
I[l2]−m−1

rn I[(l, kr)(l, kn)]

)
+

+m−1
ij m−1

rn kµi k
ν
r I[(kj , l)(kn, l)] (6.7)

The integrals with three external Lorentz indices will not arise in our
problem. A loop momentum convoluted with the momentum included in
the denominator is easily expressed in terms of a linear combination of the
denominators. Integrals with two indices appear only in the expression of
I[(e, l)l/].
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6.3 Master Integrals

We work in the dimensional regularization with D = 4+2ǫ. Hereafter we use
the notation for the common multiplier emerging in integral calculations.

aΓ = i
Γ
(
3− D

2

)
Γ2
(
D
2 − 1

)

(4π)
D
2 Γ
(
D − 3

) . (6.8)

In the master integral expressions [14] we assume all the invariants to be
negative. To continue analytically these expressions to the physical region of
our process (See Fig 1) it is necessary to make a prescription (ki + kj)

2 =
sij → sij + i0 for the invariants involved.

There are three principal master integrals in our calculation [14]:

J12345(1, 0, 1, 0, 0) =

∫
dDl

(2π)D
1

l2(l + k1 + k2)2
= −aΓ

(−t1)
ǫ

ǫ(1 + 2ǫ)
, t1 < 0;

J12345(1, 1, 1, 1, 0) =

∫
dDl

(2π)D
1

l2(l + k1)2(l + k1 + k2)2(l + k1 + k2 + k3)2
=

= 2aΓ
(−t2)

−ǫ

(−t1)1−ǫ(−s1)1−ǫ

[
1

ǫ2
+ Li2

(
1− t1

t2

)
+ Li2

(
1− s1

t2

)
− π2

6

]
+O(ǫ),

s1 < 0, t1 < 0, t2 < 0;

J12345(1, 1, 1, 1, 1) =

=

∫
dDl

(2π)D
1

l2(l + k1)2(l + k1 + k2)2(l + k1 + k2 + k3)2(l + k1 + k2 + k3 + k4)2
=

= −aΓ

{
(−s)−ǫ(−t1)

−ǫ

(−s1)1−ǫ(−s2)1−ǫ(−t2)1−ǫ

(
1

ǫ2
+ 2Li2

(
1− s1

s

)
+ 2Li2

(
1− t2

t1

)
− π2

6

)
+

+
(−t1)

−ǫ(−s1)
−ǫ

(−s2)1−ǫ(−t2)1−ǫ(−s)1−ǫ

(
1

ǫ2
+ 2Li2

(
1− s2

t1

)
+ 2Li2

(
1− s

s1

)
− π2

6

)
+

+
(−s1)

−ǫ(−s2)
−ǫ

(−t2)1−ǫ(−s)1−ǫ(−t1)1−ǫ

(
1

ǫ2
+ 2Li2

(
1− t2

s1

)
+ 2Li2

(
1− t1

s2

)
− π2

6

)
+

+
(−s2)

−ǫ(−t2)
−ǫ

(−s)1−ǫ(−t1)1−ǫ(−s1)1−ǫ

(
1

ǫ2
+ 2Li2

(
1− s

s2

)
+ 2Li2

(
1− s1

t2

)
− π2

6

)
+

+
(−t2)

−ǫ(−s)−ǫ

(−t1)1−ǫ(−s1)1−ǫ(−s2)1−ǫ

(
1

ǫ2
+ 2Li2

(
1− t1

t2

)
+ 2Li2

(
1− s2

s

)
− π2

6

)}
+O(ǫ),

s < 0, s1 < 0, s2 < 0, t1 < 0, t2 < 0;
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Here we use notations (2.1) for kinematic invariants.
In the analytical continuation to the physical domain in polylogarithmic

functions one needs to choose the correct branch using the following proper-
ties:

Li2(x ± i0) =
π2

3
− 1

2
ln2 x− Li2(x

−1)± iπ lnx , x > 1

Providing σ1, σ2 to be the signs of s1, s2, for the case σ1σ2 = −1 one has

Li2

(
1− s1 + i0

s2 + i0

)
=

π2

3
− 1

2
ln2
(
1− s1

s2

)
− Li2

( 1

1− s1
s2

)
+ iσ1π ln

(
1− s1

s2

)
.
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