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We perform an examination of discontinuities of multiple produc-

tion amplitudes, which are required for further development of the

BFKL approach. It turns out that the discontinuities of 2 → 2+n am-

plitudes obtained in the BFKL approach contradict to the BDS ansatz

for amplitudes with maximal helicity violation in N = 4 supersym-

metric Yang-Mills theory with large number of colours starting with

n = 2. Explicit expressions for the discontinuities of the 2 → 3 and

2 → 4 amplitudes in the invariant mass of pairs of produced gluons

are obtained in the planar N=4 SYM in the next-to-leading logarith-

mic approximation. These expressions can be used for checking the

conjectured duality between the light-like Wilson loops and the MHV

amplitudes.
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.

1 Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach [1, 2, 3, 4] is based on
the multi-Regge form of scattering amplitudes with gluon quantum numbers
in all cross-channels. For the amplitude A2→n+2 of the process A + B →
A′+G1+ . . .+Gn+B

′ of production of n gluons with momenta k1, k2, . . . kn
in the multi-Regge kinematics (MRK) this form can be written as

ℜA2→n+2 =

= 2sΓR1

A′A

(
n∏

i=1

1

ti

( si

|~ki−1||~ki|

)ω(ti)

γGi

RiRi+1

)
1

tn+1

( sn+1

|kn||~qn+1|
)ω(tn+1)

Γ
Rn+1

B′B ,

(1.1)
where ω(t) is called gluon trajectory (in fact, the trajectory is 1+ω(t)), ΓR

A′A

and ΓR
B′B are the particle-particle-Reggeon (PPR) vertices, or the scattering

vertices, and γGi

RiRi+1
are the Reggeon-Reggeon-gluon (RRG) vertices, or the

production vertices. Moreover

s = (pA + pB)
2, si = (ki−1 + ki)

2, i = 1, · · ·n+ 1, k0 ≡ PA′ , kn+1 ≡ PB′ ,

q1 = pA − p′A, qj+1 = qj − kj , j = 1, · · ·n, qn+1 = pB′ − pB , (1.2)

the vector sign means transverse to the pA, pB plane components. In the
MRK

s≫ si ≫ |ti| ≃ ~q 2
i , s ≃

∏n+1
i=1 si∏n
i=1

~k 2
i

. (1.3)

The Reggeon vertices and the gluon trajectory are known in the next-to-
leading order (NLO), that means the one-loop approximation for the vertices
and the two-loop approximation for the trajectory, in SYM as well as in
QCD. It is just the accuracy which is required for the derivation of the BFKL
equation in the next-to-leading logarithmic approximations (NLLA), taking
into account all radiative corrections of the type αs (αs ln s)

n
. To be precise,

note that in this approximation one has to consider not only the amplitudes
(1.1), but also amplitudes obtained from them by replacement of one of final
particles by a couple of particles with fixed (of order of transverse momenta)
invariant mass.
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The sign ℜ in the Eq. (1.1) means the real part. It is important that
this simple factorized form is valid only for the real part of the amplitudes.
Fortunately, the imaginary parts are not essential for the derivation of the
BFKL equation in the NLLA, because they are suppressed by one power
of ln si in comparison with the real ones, and with the NLLA accuracy do
not contribute in the unitarity relations. But understanding of properties
of the imaginary parts which are associated with the discontinuities in the
variables sij = (ki + kj)

2 is very important. First, it is necessary for the
justification of the BFKL approach, that means a proof of the multi-Regge
form of multiple production amplitudes. Second, account of the imaginary
parts is indispensable in further development of the BFKL approach. As it
was pointed above, they are not essential for derivation of the BFKL equation
in the NLLA, but they must be taken into account in the NNLLA.

The idea of the multi-Regge form appeared in Refs. [1, 5] from results
of fixed order calculations. Later it was proved in the leading logarithmic
approximation (LLA) [6] with use of the s-channel unitarity. The proof of
the multi-Regge form in the NLLA is based also on the s-channel unitarity
[7].

Here it is necessary to recall that as compared with ordinary particles,
Reggeons in the Regge-Gribov theory of complex angular momenta possess
an additional quantum number, called signature. At large si the signature
means parity with respect to the substitution si → −si. The signature of
the Reggeized gluon is negative, and the real part of the amplitude presented

in Eq. (1.1) coincides with the real part of the amplitude A{−}
2→2+n with the

Reggeized gluons (and, consequently, with the negative signatures) in all
ti channels. Amplitudes with the positive signature in the si-channel are
suppressed because of the cancellation of leading powers of log si, so that

with the NLLA accuracy ℜA2→2+n = ℜA{−}
2→2+n.

Compatibility of unitarity with the multi-Regge form leads to the boot-
strap relations [8] connecting discontinuities of the amplitudes with products
of their real parts and gluon trajectories:

1

−πi




n+1∑

l=j+1

discsj,l −
j−1∑

l=0

discsl,j


A{−}

2→n+2 = (ω(tj+1)− ω(tj))ℜA2→n+2 .

(1.4)
Here ℜA2→n+2 is the multi-Regge form (1.1) and the sij-channel discontinu-
ities must be calculated using this form into the unitarity conditions. Note
that for multi-particle amplitudes the discontinuities are not pure imaginary,
since a discontinuity in one of the channels can have, in turn, a discontinuity
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in another channel. But these double discontinuities are sub-sub-leading, so
that they are neglected in Eq. (1.4) and in the following.

It turns out [7] that the fulfilment of an infinite set of the relations (1.4)
guarantees the multi–Regge form of scattering amplitudes and that all boot-
strap relations are fulfilled if several conditions imposed on the Reggeon ver-
tices and the trajectory (bootstrap conditions) hold true. The most compli-
cated condition, which includes the impact factors for Reggeon-gluon tran-
sition, was proved recently, both in QCD [9]-[11] and in its supersymmetric
generalisations [12].

The proof that the fulfilment of the bootstrap relations (1.4) is ensured
by the bootstrap conditions is based on the form of the discontinuities de-
rived from the unitarity in Ref. [7]. Besides of the Reggeon vertices and the
trajectory entering in Eq. (1.1), the discontinuities contain as building blocks
the impact factors for particle-particle and Reggeon-particle transitions, the
kernel of the BFKL equation and the four-Reggeon gluon production vertex.
In fact, the bootstrap conditions are conditions on these building blocks. But
since the impact factors for particle-particle and Reggeon-particle transitions,
the kernel of the BFKL equation and the four-Reggeon gluon production ver-
tex are expressed in terms of the Reggeon vertices and the trajectory, one
can say that the bootstrap conditions are imposed on the Reggeon vertices
and the trajectory.

The expressions for discontinuities obtained in Ref. [7] are rather formal,
since the impact factors, the kernel and the four-Reggeon gluon production
vertex are not given explicitly. In this paper we obtain explicit expressions
for the discontinuities of multiple production amplitudes in N = 4 SYM
with large number of colours (in the planar approximation). Consideration
of the discontinuities in this theory is also interesting for two reasons. First,
it provides a simple demonstration of imperfection of the BDS (Bern-Dixon-
Smirnov) ansatz [13, 14] MBDS for multi-particle amplitudes with maximal
helicity violation (MHV amplitudes). Second, the discontinuities can be used
for the verification of the hypotheses used for the calculation of corrections
to this ansatz. It is believed (but not yet proved) that the true amplitudes
can be presented as the product of MBDS and the remainder function R,
where MBDS contains all infrared divergences and R depends only on the
anharmonic ratios of kinematic invariants [15]-[21]. This property is called
dual conformal invariance. Another property is the conjecture (also not yet
proved) of correspondence between the MHV amplitudes and expectation
values of Wilson loops [19, 20], [22]-[25]. All this makes important the direct
calculation of the discontinuities.

The paper is organized as follows. In the next Section we introduce the
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notation, give the general expression for the discontinuities and use it for the

calculation of the discontinuity of the amplitude A{−}
2→2. Discontinuities of the

amplitude A{−}
2→3 are found in Section 3. Section 4 is devoted to the calculation

of discontinuities of the amplitude A{−}
2→4. Discontinuities of amplitudes with

a larger number of final particles are considered in Section 5. Conclusions
are drawn in Section 6. Appendices A, B and C contain some details of
calculations.

2 Definitions, notation and the A{−}
2→2

discontinuity

Let us first present explicit forms of the gluon trajectory and the Reggeon
vertices in N = 4 SYM with the accuracy up to terms vanishing in the limit
ǫ → 0. In the NLO the vertices, as well as the impact factors, are scheme-
dependent. We will use the scheme introduced in Ref. [26] and then developed
in Refs. [7], which we call standard one. But since usual dimensional regu-
larization is incompatible with supersymmetry, we will use the dimensional
reduction instead of the dimensional regularisation. The NLO trajectory is
given by [27]-[35]

ω(t) = −2ḡ2
(
1

ǫ
+ ln(−t)

)
+ 2ḡ4

[
ζ(2)

(
1

ǫ
+ 2 ln(−t)

)
− ζ(3)

]
, (2.1)

where ζ(n) is the Riemann zeta-function,

ḡ2 =
g2NcΓ(1− ǫ)

(4π)2+ǫ
, ǫ =

D − 4

2
, (2.2)

Γ(x) being the Euler gamma-function and D is the space-time dimension.
For the gluon polarization vectors in the Reggeon vertices and impact

factors we will use the L and R light-cone gauges (eLn2) = 0 and (eRn1) = 0
respectively, with the light-cone vectors n2 and n1 such that

(n1n2) = 1, (pApB) ≃ (pAn2)(pBn1) . (2.3)

Then,

eL = eL⊥ − (eL⊥k⊥)

kn2
n2 , eR = eR⊥ − (eR⊥k⊥)

kn1
n1 . (2.4)

Note that the transverse parts of the polarization vectors in the left and
right gauges are different. It is easy to see that the polarization vectors are
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connected by the gauge transformation:

eL = eR − 2
(eR⊥k⊥)

k2⊥
k , eR = eL − 2

(eL⊥k⊥)

k2⊥
k . (2.5)

For transverse components this means

eL⊥µ = Ωµνe
R ν
⊥ , eR⊥µ = Ωµνe

L ν
⊥ , (2.6)

where

Ωµν = Ωνµ = g⊥µν − 2
k⊥µk⊥ν

k2⊥
, ΩµνΩ

νρ = gρµ . (2.7)

Using the results of Refs. [28, 36], [37] and [38] for the one-loop gluon, quark
and scalar corrections correspondingly, for the gluon-gluon-Reggeon vertex
we have

ΓR
G′G = gTR

G′G(~e
∗′~e )

[
1 + ḡ 2(~q 2)ǫ

(
− 2

ǫ2
+ 5ζ(2)

)]
. (2.8)

Here q is the Reggeon momentum, ~e and ~e ∗′ are the polarisation vectors of
the initial and final gluonsG and G′ respectively (they have to be taken in the
same gauge), TR

G′G is the colour group generator in the adjoint representation.
For simplicity, here and in the following we use for colour indices the same
letters as for particles and Reggeons.

The Reggeon-Reggeon-gluon vertex was obtained in the Born approxima-
tion in Ref. [5] and looks as

γ
G(B)
R1R2

= gTG
R1R2

e∗µ(k)C
µ(q2, q1) , (2.9)

where

Cµ(q2, q1) = −q1µ − q2µ + p1µ

(
q21
kp1

+ 2
kp2
p1p2

)
− p2µ

(
q22
kp2

+ 2
kp1
p1p2

)

= −q1⊥µ − q2⊥µ − p1µ
2(kp1)

(
k2⊥ − 2q21⊥

)
+

p2µ
2(kp2)

(
k2⊥ − 2q22⊥

)
. (2.10)

The vertex is gauge invariant, being Cµ(q2, q1)kµ = 0. In the light cone
gauges (2.4) we get

e∗µ(k)Cµ(q2, q1) = eL∗
⊥ CL

⊥(q2, q1) = eR∗
⊥ CR

⊥(q2, q1) , (2.11)
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where

CL
⊥(q2, q1) = C⊥(q2, q1)−

n2C(q2, q1)

kn2
k⊥ = −2

(
q1⊥ − k⊥

q21⊥
k2⊥

)
,

CR
⊥(q2, q1) = C⊥(q2, q1)−

n1C(q2, q1)

kn1
k⊥ = −2

(
q2⊥ + k⊥

q22⊥
k2⊥

)
. (2.12)

It makes sense to note that using the light-cone gauges does not mean
loss of generality. One can restore any vertex in a gauge invariant form from
its form in one of the gauges (2.4). Let us demonstrate it here for the vertex
(2.9), denoting C(q2, q1) there as C for brevity. Note that C can be changed
by adding terms proportional to k without changing the vertex (2.9), as well
as CL

⊥ and CR
⊥ defined in formulas (2.12), and without loss of the gauge

invariance. Let us choose these terms in such a way that C goes to CL

subject to the condition (CLn2) = 0. Then, we have

CL = CL
⊥ +

n1C
L

n1n2
n2 . (2.13)

On the other hand, from kCL = 0 we have

CL
⊥k⊥ +

(n1C
L)(n2k)

n1n2
= 0 , (2.14)

so that

CL = CL
⊥ − CL

⊥k⊥
kn2

n2 . (2.15)

As it has been said, using in Eq. (2.9) CL instead of C does not change the
vertex leaving it gauge invariant. Thus, we obtain the gauge-invariant form
of the vertex from its form in the light-cone gauge. Using the relations (2.12)
one can see that CL is equal to C − k, where C is the original form given by
Eq. (2.10).

One-loop gluon corrections to the vertex were calculated in Refs. [36],
[39]-[41]. In the last paper they were obtained at arbitrary D = 4 + 2ǫ
dimension. With the same accuracy, the quark and scalar corrections were
obtained in Refs. [42] and [35] respectively. In the N = 4 SYM, with the

accuracy resulting when the terms singular at small ~k are given at arbitrary D,
but the other terms in the limit ǫ→ 0, we have in the dimensional reduction

γGR1R2
(q1, q2) = γ

G(B)
R1R2

(q1, q2)

(
1− ḡ2

[
(~k 2)ǫ

ǫ2
− π2

2
+

1

2
ln2
(~q 2

1

~q 2
2

)])
. (2.16)
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A general representation for the discontinuities was derived in Ref. [7] (it

is presented also in Ref. [43]). The discontinuity of A{−}
2→n+2 in the si,j-channel

is represented as

−4i(2π)D−2δ

(
qi⊥ − q(j+1)⊥ −

l=j∑

l=i

kl⊥

)
discsi,jA2→n+2 =

=
ΓR1

A′A

t1

( s1

|~q1||~k1|

)ω(t1)
(

i∏

l=2

γ
Gl−1

Rl−1Rl

tl

( sl

|~kl−1||~kl|

)ω(tl)
)
×

×〈GiRi|
(

j−1∏

l=i+1

( sl

|~kl−1||~kl|

)K̂
Ĝl

)( sj

|~kj−1||~kj |

)K̂
|GjRj+1〉×

×




n∏

l=j+1

( sl

|~kl−1||~kl|

)ω(tl) γ
Gl

RlRl+1

tl



( sn+1

|~kn||~qn+1|

)ω(tn+1)Γ
Rn+1

B′B

t(n+1)
. (2.17)

Here the bra- and ket-states states 〈GiRi| and |GjRj+1〉 denote the impact

factors for the Reggeon-gluon transitions, K̂ and Ĝl are the operators of the
BFKL kernel and the gluon production, which acts in the space of states
|G1G2〉 of two t-channel Reggeons with the orthonormality property

〈G′
1G′

2|G1G2〉 = ~r 2
1 ~r

2
2 δ(~r1 − ~r ′

1 )δ(~r2 − ~r ′
2 )δc1c′1δc2c′2 , (2.18)

where ~ri and ~r ′
i are the Reggeon transverse momenta and ci and c′i are their

colour indices. The operators are specified by their matrix elements and the
states are defined by their projections on the two-Reggeon states.

If i = 0 we must omit all factors to the left of 〈G0R0| and replace 〈G0R0|
by the impact factors of A→ A′ transition 〈A′A| and k0 − q0 by pA′ − pA; in
the case j = n+ 1 we must omit all factors to the right of |Gn+1Rn+2〉 and
perform the substitutions |GJn+1Rn+2〉 → |B′B〉, kn+1 + qn+2 → pB′ − pB.

For the discontinuity discsA2→2 = A2→2(s+ i0)−A2→2(s− i0) we have

−4i(2π)D−2δ(~q − ~qB) discsA2→2 = 2s〈A′A|eK̂ ln
(

s

~q 2

)

|B′B〉 , (2.19)

where ~q = pA − pA′ , ~qB = pB′ − pB .
We have to pay attention here on the fundamental difference between the

sense of the representation (2.19) used here and that of the formally quite
similar representation of the discontinuities of amplitudes with the Pomeron
exchange. The BFKL Pomeron means the positive signature and the colour
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singlet in the t-channel, while the amplitudes considered in this paper are
the amplitudes with the negative signature and the adjoint representation
of the colour group in the t-channel. The gluon Reggeization makes the
discontinuities (2.19) much simpler than the discontinuities of amplitudes
with the Pomeron exchange. Indeed, the bootstrap conditions of the gluon
Reggeization [7] tells us that

〈A′A| = ΓR
A′Ag〈Rω(~q)| , |B′B〉 = g|Rω(~qB)〉ΓR

B′B , (2.20)

K̂|Rω(~q)〉 = ω(t)|Rω(~q)〉 , (2.21)

g2~q 2

2(2π)D−1
〈R′

ω(~q
′)|Rω(~q)〉 = δR′Rδ(~q − ~q ′)ω(t) , (2.22)

where ΓR
A′A and ΓR

B′B are the scattering Reggeon vertices entering in the

form (1.1), |Rω(~q)〉 is the process independent eigenstate of the kernel K̂ with
eigenvalue ω(t) and normalization (2.22). It is transformed according to the
adjoint representation of the colour group. In the right side of Eq. (2.22)
R′ and R are the colour indices of the eigenstates; in Eq. (2.20) summation
over the colour indices R is assumed. Note that the bra and ket vectors are
related by the left-right substitution, where A↔ B, A′ ↔ B′, n1 ↔ n2, that
means, in particular, replacement of the left and right gauges.

Fulfilment of the bootstrap conditions (2.20)-(2.22) was proved in the
NLO both in QCD [44, 45] and SYM [38]. Using these conditions we have
from the representation (2.19)

discsA2→2 = −iπ
(
2s

t

)
ω(t)ΓR

A′A

(
s

~q 2

)ω(t)

ΓR
B′B . (2.23)

It is easy to see that the result (2.23) with account of the form (1.1) at n = 0
is in agreement with the bootstrap relation (1.4).

Finally, let us present the eigenstate |Rω(~q)〉. From Refs. [44] (see also
Ref. [9]) and [12] we obtain with the accuracy up to terms vanishing in the
limit ǫ→ 0

〈G1G2|Rω(~q)〉 = δ(~q−~r1−~r2)TR
G1G2

(
1 + ḡ2

[
−ζ(2)− 1

2
ln

(
~r 2
1

~q 2

)
ln

(
~r 2
2

~q 2

)])
,

(2.24)
where ~r1 and ~r2 are the momenta of the Reggeons G1 and G2 respectively.

It is necessary to note here that the accuracy of Eq. (2.24) does not
provide preservation of nonvanishing in the limit ǫ→ 0 terms of the ḡ2 order

10



in the product

〈R′
ω(~q

′)|Rω(~q)〉 =
∑

G1G2

∫
〈R′

ω(~q
′)|G1G2〉

d~r1d~r2
~r 2
1 ~r

2
2

δ(~q − ~r1 − ~r2)〈G1G2|Rω(~q)〉

(the summation here is performed over colour states of the Reggeons G1 and
G2) because of the infrared divergency of the integration measure. To provide
the preservation one has to keep in 〈G1G2|Rω(~q)〉 terms of the order O(ḡ2ǫ).

3 Discontinuites of the 2 → 3 amplitude

3.1 Discontinuites in the s1 and s2 channels

For the s1-channel discontinuity we obtain from the general form (2.17)

−4i(2π)D−2δ(~q1 − ~k − ~q2) discs1A2→3 =

= 2s〈A′A|eK̂ ln
(

s1
|~q1||k1|

)

|GR2〉
1

t2

( s2
|k1||~q2|

)ω(t2)

ΓR2

B′B , (3.1)

where q1 = pA − pA′ , k and q2 are the momenta of the gluon G and the
Reggeon R2, |GR2〉 is the impact factor for the Reggeon-gluon transition.
The bootstrap conditions (2.20) and (2.21) give us

−4i(2π)D−2δ(~q1 − ~k − ~q2) discs1A2→3 =

= 2sΓR
A′A

( s1
|k1||~q1|

)ω(t1) 1

t2

( s2
|k1||~q2|

)ω(t2)

ΓR2

B′B g〈Rω(~q1)|GR2〉 . (3.2)

The impact factors for Reggeon-gluon transitions were calculated in Refs. [10,
12] in the special scheme (the so called bootstrap scheme) which simplifies
the proof of the most complicated bootstrap condition

〈GR1| − g~q 2
1 〈Rω(~q1)|Ĝ = gγGR1R

〈Rω(~q1 − ~k)| , (3.3)

where Ĝ is the gluon production operator, k is the gluon momentum. The
Reggeon R in the condition (3.3) has the momentum q1 − k and the same

colour indices as the eigenstate 〈Rω(~q1 − ~k)|; summation over them is as-
sumed. The eigenfunction 〈Rω(~q1)|G1G2〉 in the bootstrap scheme also was
obtained in Ref. [12]. We could calculate the matrix element 〈Rω(~q1)|GR1〉
in Eq. (3.2) just in this scheme. It turns, however, that it is much more
convenient, especially in the further calculations, to use the scheme which

11



we call conformal. It is associated with the modified kernel K̂m, introduced
in Ref. [46], which is obtained from the usual BFKL kernel in the adjoint
representation, by subtraction of the gluon trajectory depending on the to-
tal t-channel momentum. One of advantages of this kernel is its infrared
safety, which permits to consider this kernel at physical transverse dimension
D− 2 = 2. But the most important advantage is its behaviour under Möbius
transformations in the two-dimensional transverse momentum space. It is
not difficult to see that in the leading order Km is Möbius invariant. But
in the NLO in the standard scheme, in which the kernel was initially calcu-
lated [47, 48], it is not Möbius invariant. The existence of the scheme where
the modified kernel is Möbius invariant (Möbius scheme) was conjectured in
Ref. [49] and then proved in Ref. [50], where the transformation from the
standard Km to the conformal (Möbius invariant) kernel Kc was found. It
reads

K̂c = K̂m − 1

4

[
K̂B

[
ln
(
~̂q 2
1 ~̂q

2
2

)
, K̂B

]]
, (3.4)

where K̂B is the LO kernel. Note that since K̂ and K̂m differ only for the
trajectory depending on the total t-channel momentum, which is a C-number,
in all commutators K̂ can be replaced by K̂m and vice versa. We will use the
following representations for the kernel:

〈G′
1G′

2|K̂|G1G2〉 = δ(~r1 + ~r2 − ~r ′
1 − ~r ′

2 ) ~q
2
∑

R

(PR)
G′
1G

′
2

G1G2
KR(~r1, ~r2; ~l) . (3.5)

Here ~ri and ~r ′
i are the Reggeon momenta, ~q = ~r1 + ~r2, ~l = ~r1 − ~r ′

1 , PR is
the projection operator on the representation R of the colour group, and

KR(~r1, ~r2; ~l) = KR
r (~r1, ~r2; ~l)+

~r 2
1 ~r

2
2

~q 2

(
ω(−~r 2

1 )δ(~r1 − ~r ′
1 ) + ω(−~r 2

2 )δ(~r2 − ~r ′
2 )
)
,

(3.6)
where KR

r is called the real part of the kernel.

In general, the kernel KR
r (~r1, ~r2;

~l) depends on R. But at large Nc only
the antisymmetric and symmetric adjoint representations do survive in the
decomposition (3.5), with

(PAa)
G′
1G

′
2

G1G2
=

1

Nc

fiG1G2
fiG′

1
G′
2
, (PAs)

G′
1G

′
2

G1G2
=

1

Nc

diG1G2
diG′

1
G′
2
, (3.7)

and the same kernel KR
r (~r1, ~r2; ~l). Therefore in the following we will omit

the index of representation R.
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In the LO the real part of the kernel is given by

KB
r (~r1, ~r2; ~l) =

g2 Nc

2(2π)D−1

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

~q 2~l 2
− 1

)
, (3.8)

whereas the gluon trajectory has the representation

ωB(t) =
g2 Nc t

2(2π)D−1

∫
dl

~l 2(~q −~l)2
, t = −~q 2 . (3.9)

The difference with usual denotation is in the factor ~q 2 in the represen-
tation (3.5). Its extraction is necessary to make the modified kernel

Km(~r1, ~r2; ~l) = K(~r1, ~r2; ~l)−
~r 2
1 ~r

2
2

~q 2
δ(~r1 − ~r ′

1 )δ(~r2 − ~r ′
2 ) ω(t) (3.10)

explicitly invariant at D = 4 with respect to the Möbius transformations

zi →
azi + b

czi + di
, (3.11)

where a, b, c and d are complex numbers, zi = xi + iyi, xi and yi are the
Cartesian components of the “dual" transverse momenta ~pi such that

~r1 = ~p1 − ~p2, ~r2 = ~p4 − ~p1, ~r
′
1 = ~p3 − ~p2, ~r

′
2 = ~p4 − ~p3 . (3.12)

The need for the factor ~q 2 is clear from another point of view: the kernel could
be explicitly Möbius invariant only when the corresponding normalisation
condition is Möbius invariant. The condition (2.18) is not invariant; to make
it invariant one needs to multiply both sides on 1/~q 2 and include 1/~q 2 in
the left-hand side in definition of the two-Reggeon states. This can be seen
from the invariance of the corresponding measure,

d~r ′
1d~r

′
2

~q 2

~r ′ 2
1 ~r ′ 2

2

δ(~r1 + ~r2 − ~r ′
1 − ~r ′

2 ) =
d2z

|z|2 , (3.13)

where ~q = ~r1 + ~r2 and z = r
′+
2 r+1 /(r

′+
1 r+2 ) is invariant. Here and in the

following we use the chiral components r+ = x + iy and r− = x − iy for
the two-dimensional vectors ~r = (x, y). Vice versa, the two conjugate com-
plex numbers z and z∗ are confronted with the vector ~z through the com-
ponents (z + z∗)/2 and (z − z∗)/(2i). At the same time, d~r = dxdy =
dr+dr−/2 , δ(~r) = 2δ(r+)δ(r−) and we define δ2(z) in such a way that
δ2(z) = δ(z+)δ(z−)/2 = δ(~z).
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The transformation (3.4) gives [50] Kc(~r1, ~r2; ~l) = Kc(z), where

z = r+1 r
′+
2 /(r+2 r

′+
1 ) and

Kc(z) = KB
c (z)

(
1− g2Nc

8π2
ζ(2)

)
+δ(2)(1−z)

(
g2Nc

8π2

)2

3ζ(3)+
1

8π

(
g2Nc

8π2

)2

×
[(

1

2
− 1 + |z|2

|1− z|2
)
ln2 |z|2 − 1− |z|2

2|1− z|2 ln |z|2 ln
|1− z|4
|z|2

+

(
1

1− z
− 1

1− z∗

)
(z − z∗)

∫ 1

0

dx

|x− z|2 ln
|z|2
x2

]
. (3.14)

Here

KB
c (z) =

g2Nc

32π3

(
z + z∗

|1− z|2 − δ(2)(1− z)

∫
d~l

|l|2
l + l∗

|1− l|2

)
, (3.15)

with the properties

Kc(z) = Kc(z
∗) = Kc(1/z), Kc(0) = 0 . (3.16)

The transformation (3.4) has to be be accompanied by the corresponding
transformation of the impact factors and the eigenstate 〈Rω |. The eigenstate
〈Rω|c which corresponds to the kernel K̂c (3.4) is

〈Rω(~q)|c = 〈Rω(~q)| −
1

4
〈Rω(~q)|B

[
ln
(
~̂r 2
1 ~̂r

2
2

)
, K̂B

r

]
, (3.17)

where K̂B
r is the real part of the LO kernel (3.8), ~̂r1 and ~̂r2 are the Reggeon

momentum operators. Using (see Appendix A for details)

〈Rω(~q)|B
[
ln
(
~̂r 2
1 ~̂r

2
2

)
, K̂B

r

]
|G1G2〉 = −2ḡ2δ(~q−~r1−~r2)TR

G1G2
ln

(
~r 2
1

~q 2

)
ln

(
~r 2
2

~q 2

)
,

(3.18)
we obtain from Eq. (2.24)

〈Rω(~q)|G1G2〉c = δ(~q − ~r1 − ~r2)T
R
G1G2

(
1− ḡ2ζ(2)

)
. (3.19)

Now turn to the impact factor |GR2〉. The impact factor corresponding to
the kernel K̂c (3.4) is obtained from |GR2〉 in the standard scheme by the
transformation

|GR2〉 → |GR2〉+
1

4

[
ln
(
~̂r 2
1 ~̂r

2
2

)
, K̂B

]
|GR2〉B . (3.20)
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It was found, however, in Ref. [51] that impact factors for Reggeon-gluon
transitions acquire the most simple form in the scheme in which not only
the kernel, but also the energy evolution parameter are conformal invari-
ant. Transition to this scheme, which is called conformal scheme, means the
additional transformation for the impact factor|GR2〉,

|GR2〉 → |GR2〉 −
1

2
ln

(
~q 2
1

~q 2
2

)
K̂B

m|GR2〉B . (3.21)

Together with the transformation (3.20) it gives

|GR2〉 → |GR2〉c = |GR2〉−
1

4

[
ln
(
~̂r 2
1 ~̂r

2
2

)
, K̂B

r

]
|GR2〉B−

1

2
ln

(
~q 2
1

~q 2
2

)
K̂B

m|GR2〉B.
(3.22)

Note that the transformation (3.21) does not affect the matrix element
〈Rω(~q1)|GR2〉 because 〈Rω | is the eigenstate of Km with the eigenvalue equal
to 0.

For amplitudes with the negative signature, the impact factors are anti-
symmetric with respect to the G1 ↔ G2 exchange. In fact, putting

〈GR1| = 〈GR1|s − 〈GR1|u , (3.23)

we have
〈GR1|G1G2〉u = 〈GR1|G2G1〉s . (3.24)

As it follows from Ref. [51], in the conformal scheme, the impact factors
〈GR1|G1G2〉s of gluons with the polarisation vectors

~e L
λ =

1√
2
(~ex + iλ~ey) , ~e L ∗

λ =
1√
2
(~ex − iλ~ey) (3.25)

for helicities λ = ±1 have the form

〈GR1|G1G2〉s = 〈GR1|G1G2〉Bs

[
1+ḡ2

(
Iλ(z)−

1

2
ln2
(
~q 2
1

~q 2
2

)
− (~k 2)ǫ

ǫ2
+ 2ζ(2)

)]
.

(3.26)
Here z = −q+1 r+2 /(k+r+1 ),

〈GR1|G1G2〉Bs = −g2δ(~q1−~r1−~r2−~k)
(
TR1TG

)
G1G2

~e L ∗
λ

~C L(~r1, ~q1) , (3.27)

~C L(~r1, ~q1) = −2

(
~q1 − (~q1 − ~r1)

~q 2
1

(~q1 − ~r1)2

)
, (3.28)

15



and I+1(z) = I(z), I−1(z) = I∗(z) = I(z∗), where

I(z) =
1− z

8

(
ln

( |1− z|2
|z|2

)
ln

( |1− z|4
|z|6

)

− 6Li2(z) + 6Li2(z
∗)− 3 ln |z|2 ln 1− z

1− z∗

)

−1

2
ln |1− z|2 ln |1− z|2

|z|2 − 3

8
ln2 |z|2 , (3.29)

Li2(z) = −
∫ 1

0

dx

x
ln(1 − xz) . (3.30)

Note that I(0) = 0, I(1/z) = I(z)/z. In the two dimensional transverse
momentum space, with the polarization vectors (3.25) we have

~e L ∗
+

~C L(~r1, ~q1) =
√
2

q−1 r
+
1

(q1 − r1)+
, ~e L ∗

−
~C L(~r1, ~q1) =

q+1 r
−
1

(q1 − r1)−
. (3.31)

The set of diagrams for the process A + B → A′ + G + B′ is evidently
invariant with respect to rotating around the gluon line and the exchange
A ↔ B. It means that the impact factor 〈G1G2|GR2〉 can be obtained from
〈GR1|G1G2〉 by the replacement

n1 ↔ n2, ~q1 → −~q2, ~r1,2 → −~r1,2 ,
(
TR1TG

)
G1G2

→
(
TR2TG

)
G1G2

.

(3.32)
The replacement n1 ↔ n2 means also ~e L

λ ↔ ~e R
λ . With account of Eqs. (2.6)

and (2.7) we have

~e R
λ = −

(
k+

k−

)λ

~e L
−λ = −

(
k+

k−

)λ

(~ex − iλ~ey) . (3.33)

Using the substitutions (3.32) and formulas (3.33) we obtain

〈G1G2|GR2〉s = 〈G1G2|GR2〉Bs
[
1+ḡ2

(
I∗λ(z)−

1

2
ln2
(
~q 2
2

~q 2
1

)
− (~k 2)ǫ

ǫ2
+ 2ζ(2)

)]
,

(3.34)
where z = q+2 r

+
2 /(k

+r+1 ) ,

〈G1G2|GR2〉Bs = g2δ(~r1 + ~r2 − ~k − ~q2)
(
TR2TG

)
G1G2

~e R ∗
λ

~C R(~q2, ~r1) (3.35)
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and

~C R(~q2, ~r1) = −2

(
~q2 + (~r1 − ~q2)

~q 2
2

(~r1 − ~q2)2

)
. (3.36)

Using now Eqs. (3.19) and (3.34)-(3.36) we arrive to

〈Rω(~q1)|GR2〉s =
g2Nc

2~q 2
1

δ(~q1−~k−~q2)TG
R1R2

~e R ∗
λ

∫
d~r1d~r2

~q 2
1

~r 2
1 ~r

2
2

δ(~r1+~r2−~k−~q2)

× ~C R(~q2, ~r1)

[
1 + ḡ2

(
I−λ(z)−

1

2
ln2
(
~q 2
2

~q 2
1

)
− (~k 2)ǫ

ǫ2
+ ζ(2)

)]
, (3.37)

where λ = ±1 is the gluon helicity, I+1(z) = I(z), I−1(z)) = I(z∗), I(z) is
defined in Eq. (3.29), and z = q+2 r

+
2 /(k

+r+1 ). The integral with I−λ(z) in
Eq. (3.37) is not singular and can be calculated in two-dimensional transverse
momentum space. Using the measure (3.13) and formulas

~e R ∗
+

~C R(~q2, ~r1) =
√
2
k−

k+
q+2 r

−
1

(r1 − q2)−
=

√
2

q+2 q
−
1

k+(1− z∗)
,

~e R ∗
−

~C R(~q2, ~r1) =
√
2
k+

k−
q−2 r

+
1

(r1 − q2)+
=

√
2

q−2 q
+
1

k−(1− z)
, (3.38)

we obtain that the contribution of the term with I−λ(z) in Eq. (3.37) is equal
zero. Indeed, for the positive helicity it is proportional to

∫
d2z

|z|2(1− z∗)
I(z∗) = 0 . (3.39)

The result (3.39) follows from the fact that in the expansion of the inte-
grand in powers of (z∗)n at |z| < 1 and in powers of (1/z∗)n at |z| > 1
there are only terms with n > 0 (remind that, as pointed out previously,
I(z) = 0, I(z) = zI(1/z)). For the negative helicity the result is obtained
by complex conjugation. It means that the term with I−λ(z) in Eq. (3.37)
can be omitted. The remaining integral (details of the calculation are given
in Appendix B) is

∫
d~r1d~r2

~q 2
1

~r 2
1 ~r

2
2

δ(~r1 + ~r2 − ~k − ~q2)

(
~q2 + (~r1 − ~q2)

~q 2
2

(~r1 − ~q2)2

)

= π1+ǫΓ(1− ǫ)

(
~q2 + ~k

~q 2
2

~k 2

)(
1

ǫ
+ ln

(
~q 2
1
~k 2

~q 2
2

))
. (3.40)
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For discs1A{−}
2→3/ℜA2→3 from Eqs. (3.2) and (1.1) we get

−4i(2π)D−2δ(~q1 − ~k − ~q2)
discs1A{−}

2→3

ℜA2→3
=
g t1〈Rω(~q1)|GR2〉

γGR1R2

=

= 2
g t1〈Rω(~q1)|GR2〉s

γGR1R2

. (3.41)

Here the last equality comes from antisymmetry of 〈Rω|G1G2〉 with respect to
G1 ↔ G2 exchange. Then, using Eqs. (2.16), (2.9), (3.37) and the equalities

~e R ∗
+

~C R(~q2, ~q1) = ~e L ∗
+

~C L(~q2, ~q1) =
√
2
q+2 q

−
1

k+
,

~e R ∗
−

~C R(~q2, ~q1) = ~e L ∗
−

~C L(~q2, ~q1) =
√
2
q−2 q

+
1

k−
, (3.42)

which means

γ
G(B)
R1R2

∣∣∣
λ=+1

= −gTG
R1R2

√
2
q+2 q

−
1

k+
, γ

G(B)
R1R2

∣∣∣
λ=−1

= −gTG
R1R2

√
2
q−2 q

+
1

k−
,

(3.43)
we obtain

discs1A{−}
2→3

ℜA2→3
= πiḡ2

(
1

ǫ
+ ln

(
~q 2
1
~k 2

~q 2
2

))
(
1− 2ḡ2ζ(2)

)
. (3.44)

Here, it is necessary to make the note analogous to that given at the end
of Section 2. The accuracy of Eq. (3.19) for 〈Rω(~q)|G1G2〉c and Eq. (3.34)
for 〈G1G2|GR2〉s does not provide preservation of nonvanishing in the limit
ǫ → 0 corrections of the ḡ2 order in the integral (3.37) (and therefore in

the discontinuity discs1A{−}
2→3) because of the infrared divergency of the in-

tegration measure in Eq. (3.37). To provide the preservation one has to find
〈Rω(~q)|G1G2〉c and 〈G1G2|GR2〉s with higher accuracy. This issue requires
special consideration. It applies also to other discontinuities discussed below.

Evidently, the s2-channel discontinuity can be obtained by the replace-
ment (3.32) and is given by the relations

−4i(2π)D−2δ(~q1 − ~k − ~q2)
discs2A{−}

2→3

ℜA2→3
=
g t2〈GR1|Rω(~q2)〉

γGR1R2

, (3.45)
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g t2〈GR1|Rω(~q2)〉
γGR1R2

= δ(~q1 − ~k − ~q2)g
2π1+ǫΓ(1− ǫ)

(
1− 2ḡ2ζ(2)

)

×
(
1

ǫ
+ ln

(
~q 2
1
~k 2

~q 2
2

))
, (3.46)

discs2A{−}
2→3

ℜA2→3
= πiḡ2

(
1

ǫ
+ ln

(
~q 2
2
~k 2

~q 2
1

))
(
1− 2ḡ2ζ(2)

)
. (3.47)

3.2 Discontinuity in the s channel

According to the representation (2.17), for the s-channel discontinuity we
have

−4i(2π)D−2δ(~q1−~k−~q2) discsA{−}
2→3 = 2s〈A′A|eK̂ ln

(

s1
|~q1||k|

)

ĜeK̂ ln
(

s1
|k||~q2|

)

|B′B〉,
(3.48)

where Ĝ is the gluon production operator. Using the bootstrap conditions
(2.20) and (2.21), we obtain

−4i(2π)D−2δ(~q1−~k−~q2) )
discsA{−}

2→3

ℜA2→3
=
g2~q 2

1 ~q
2
2 〈Rω(~q1)|Ĝ|Rω(~q2)〉

γGR1R2

. (3.49)

Then, due to the bootstrap condition (3.3), we have

g~q 2
1 〈Rω(~q1)|Ĝ|Rω(~q2)〉 = 〈GR1|Rω(~q2)〉−gγGR1R

〈Rω(~q1−~k)|Rω(~q2)〉 . (3.50)

Both matrix elements here are known: the first comes from the calculation
of the s2-channel discontinuity, see Eq. (3.46), and the second from the boot-
strap condition (2.22). Thus, we obtain

discsA{−}
2→3

ℜA2→3
= −πiḡ2

(
1

ǫ
+ ln

(
~q 2
2
~k 2

~q 2
1

))
(
1− 2ḡ2ζ(2)

)
− πiω(t2)

= πiḡ2
[
1

ǫ
+ ln

(
~q 2
1 ~q

2
2

~k 2

)
+ 2ḡ2

(
ζ(3)− ζ(2) ln

(
~q 2
1 ~q

2
2

~k 2

))]
. (3.51)

In fact, it was not needed at all to calculate neither the s2-channel, nor the
s-channel discontinuities, because they can be expressed in terms of s-channel
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discontinuities from the bootstrap relations (1.4). Indeed, for the amplitude

A{−}
2→3 there are three relations:

discs1A{−}
2→3

ℜA2→3
+
discsA{−}

2→3

ℜA2→3
= −iπω(t1) ,

discs2A{−}
2→3

ℜA2→3
+
discsA{−}

2→3

ℜA2→3
= −iπω(t2),

discs1A{−}
2→3

ℜA2→3
− discs2A{−}

2→3

ℜA2→3
= −iπ (ω(t1)− ω(t2)) . (3.52)

However, they are not independent: the third of them is the difference of the
first two. Therefore, there are two relationships between the discontinuities,
so that only one of them is independent. It is easy to see that the discon-
tinuities calculated above satisfy the relations (3.52). The fulfilment of the
third of them, with account of

ω(t1)− ω(t2) = 2ḡ2 ln

(
~q 2
2

~q 2
1

)(
1− 2ḡ2ζ(2)

)
, (3.53)

follows from Eqs. (3.44) and (3.47) and fulfilment of the second follows from
Eqs. (3.47) and (3.51).

4 Discontinuities of the 2 → 4 amplitude

4.1 Discontinuities in the s1 and s3 channels

From the representation (2.17), for the s1-channel discontinuity we have

−4i(2π)D−2δ(~q1 − ~k1 − ~q2) discs1A{−}
2→4 =

= 2s〈A′A|eK̂ ln
(

s1
|~q1||k|

)

|G1R2〉

× 1

t2

( s2

|~k1||~k2|

)ω(t2)

γG2

R2R3

1

t3

( s3
|k2||~q3|

)ω(t3)

ΓR3

B′B , (4.1)

therefore, using the bootstrap relations (2.20) and (2.21) and the representa-
tion (1.1) of the MRK amplitude, we obtain

−4i(2π)D−2δ(~q1 − ~k1 − ~q2)
discs1A{−}

2→4

ℜA2→4
=
g2 t1 〈Rω(~q1)|G1R2〉

γG1

R1R2

. (4.2)
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The ratio in the right-hand side of Eq. (4.2) is the same as in Eq. (3.41) with
the replacement G→ G1, so that using Eq. (3.44) we arrive to

discs1A{−}
2→4

ℜA2→4
= πiḡ2

(
1

ǫ
+ ln

(
~q 2
1
~k 2
1

~q 2
2

))
(
1− 2ḡ2ζ(2)

)
. (4.3)

Obviously, such ratio for the s3-channel discontinuity can be obtained by the
replacement ~k1 → ~k2, ~q1 → −~q3, ~q2 → −~q2; it reads

discs3A{−}
2→4

ℜA2→4
= πiḡ2

(
1

ǫ
+ ln

(
~q 2
3
~k 2
2

~q 2
2

))
(
1− 2ḡ2ζ(2)

)
. (4.4)

4.2 Discontinuity in the s2 channel

For the s2-channel discontinuity, using the modified kernel K̂m, K̂ = K̂m +
ω(t2), we have from the representation (2.17)

−4i(2π)D−2δ(~q − ~qB) discs2A{−}
2→4 =

= 2sΓR1

A′A

1

t1

( s1

|~q1||~k1|

)ω(t1) 1

t3

( s3
|k2||~q3|

)ω(t3)

ΓR3

B′B

×
( s2

|~k1||~k2|

)ω(t2)

〈G1R1|eK̂m ln
(

s2

|~k1||~k2|

)

|G2R3)〉 . (4.5)

Here we meet two new important aspects. First, the energy dependence of
the s2 channel discontinuity (4.5) evidently differs from that predicted by
the BDS ansatz [14], where this dependence is the same as for the real part
of A2→4. Instead, according to Eq. (4.5), there is an additional dependence
coming from the matrix element with K̂m. For agreement with the BDS
ansatz the impact factors for Reggeon-gluon transitions have to be propor-
tional to the eigenvector of K̂m with zero eigenvalue, what is obviously not so.
Note that the discrepancy is manifested already in the leading logarithmic
approximation.

Actually, it is well known that the BDS ansatz for n-gluon amplitudes is
incomplete at n ≥ 6. The first indications of the incompleteness were ob-
tained in Ref. [52] in the strong coupling regime using the Maldacena hypoth-
esis [53] about the ADS/CFT duality, and in Ref. [24] using the hypothesis
of the scattering amplitude/Wilson loop correspondence. Then the incom-
pleteness was shown by direct two-loop calculations in Ref. [54]. Moreover,
disagreement of the BDS ansatz with the BFKL approach is also known [55].
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Dignity of the demonstration of the discrepancy presented here is its simplic-
ity.

The second new aspect is seen from the expressions for the impact factors
in Eq. (4.5)

〈G1R1|G1G2〉 = 〈G1R1|G1G2〉s − 〈G2R1|G2G1〉s ,

〈G1G2|G2R3〉 = 〈G1G2|G2R3〉s − 〈G2G1|G2R3〉s , (4.6)

where 〈G1R1|G1G2〉s is given by Eqs. (3.26)–(3.29) and 〈G1G2|G2R3〉 by

Eqs.(3.34)–(3.36) with the replacement ~k → ~k2, ~q2 → ~q3. The new aspect
is the appearance in the discontinuity of the colour structure DG1

R1R2
DG2

R2R3
,

where Da
bc = dabc, in addition to the structure TG1

R1R2
TG2

R2R3
in the real part

of the amplitude A2→n+2 presented in Eq. (1.1). Indeed, using

(T aT b)ijfcij = i
Nc

2
T c
ab, (T aT b)ijdcij =

Nc

2
Dc

ab , (4.7)

we have at large Nc

(TR1TG1)ij(T
R3TG2)ij =

Nc

4

(
TG1TG2 +DG1DG2

)
R1R3

,

(TR1TG1)ij(T
R3TG2)ji =

Nc

4

(
−TG1TG2 +DG1DG2

)
R1R3

. (4.8)

Writing explicitly all colour factors, we obtain using Eqs. (3.23) and
(3.24)

〈G1R1|eK̂m ln
(

s2

|~k1||~k2|

)

|G2R3〉 =

=
Nc

2

(
TG1TG2 +DG1DG2

)
R1R3

〈 ˜G1R1|s eK̂m ln
(

s2

|~k1||~k2|

)

| ˜G2R3〉s

+
Nc

2

(
−TG1TG2 +DG1DG2

)
R1R3

〈 ˜G1R1|s eK̂m ln
(

s2

|~k1||~k2|

)

| ˜G2R3〉u , (4.9)

where the tilde sign in the impact factors means rejection of colour factors.
It is very convenient to use the conformal representation for calculation of

the matrix elements in the right side of Eq. (4.9), but transition to the two-
dimensional transverse momentum space in this representation must be done
with caution because of the infrared divergency in the first term in the right
side of Eq. (4.9). In the leading logarithmic approximation, this problem was
considered in details in Ref. [46]. In principle, nothing has changed at the
transition to the next-to-leading approximation.
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The divergency emerges because of the singularity of the integration mea-
sure (3.13) at zero momenta of intermediate Reggeized gluons. As it follows
from Eqs. (3.26), (3.27), (3.34) and (3.35), the s-pieces of the impact factors
〈G1R1|G1G2〉s and 〈G1G2|G2R3〉s vanish at ~r1 = 0, but not at ~r2 = 0. It
means that the first matrix element in the right side of Eq. (4.9) is divergent.
Fortunately, the divergence exists only in the zero term of the expansion in
powers of the BFKL kernel due to its property (3.16). Therefore, writing

〈 ˜G1R1|s eK̂m ln
(

s2

|~k1||~k2|

)

| ˜G2R3〉s = 〈 ˜G1R1|s
(
e
K̂m ln

(

s2

|~k1||~k2|

)

− 1

)
| ˜G2R3〉s

+〈 ˜G1R1|s| ˜G2R3〉s , (4.10)

we can use for the first term in the right side the conformal representation
directly in the two-dimensional space. Using Eqs. (3.26), (3.27), (3.31) and
(2.16), (3.43) we have for the positive helicity of the gluon G1 (λ1 = 1)

〈 ˜G1R1| ˜G1G2〉s
γ̃R1R2

= gδ(~q1 − ~k1 − ~r1 − ~r2)
1

1− z1
[1 + ḡ2(I(z1)− ζ(2))] , (4.11)

where z1 = −q+1 r+2 /(k+1 r+1 ) and the tilde signs means omission of the colour
factors. Analogously, for the positive helicity of the gluon G2 (λ2 = 1), we
obtain using Eqs. (3.34), (3.35), (3.38) and (2.16), (3.43)

〈 ˜G1G2| ˜G2R3〉s
γ̃R2R3

= −gδ(~q2 −~k2 −~r1 −~r2)
1

1− z∗2
[1+ ḡ2(I(z∗2)− ζ(2))] , (4.12)

where z2 = q+3 r
+
2 /(k

+
2 r

+
1 ). The corresponding results for negative helicities

are obtained by complex conjugation of Eqs. (4.11) and (4.12).
In the conformal representation, the energy evolution parameter in

Eq. (4.10) is s2~q
2
2 /(|~q1||~q3||~k1||~k2|) (instead of s2/(|~k1||~k2|), and in the two-

dimensional transverse momentum space the kernel takes the form (3.14). It
has the representation

〈 ˜G1G2|K̂c| ˜G′
1G′

2〉 =
+∞∑

n=−∞

∫ +∞

−∞

dν ω(ν, n) 〈 ˜G1G2|ν, n〉〈ν, n| ˜G′
1G′

2〉 , (4.13)

with the eigenfunctions [50]

〈 ˜G1G2|ν, n〉 = δ(~r1 + ~r2 − ~q2)
1√
2π2

(
r+1
r+2

)n
2
+iν (

r−1
r−2

)−n
2
+iν

, (4.14)
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which form an orthonormal set with the integration measure (3.13), the eigen-
values being [49]

ω(ν, n) =
g2Nc

8π2

(
1

2

|n|
ν2 + n2

4

− ψ(1 + iν − |n|
2
) + ψ(1− iν +

|n|
2

+ 2ψ(1)

)

×
(
1− g2Nc

8π2
ζ(2)

)
+

(
g2Nc

8π2

)2
(
1

4

(
ψ′′(1 + iν +

|n|
2
) + ψ′′(1− iν +

|n|
2
)+

+
2iν
(
ψ′(1 − iν + |n|

2 )− ψ′(1 + iν + |n|
2 )
)

ν2 + n2

4

)
+ 3ζ(3) +

1

4

|n|
(
ν2 − n2

4

)

(
ν2 + n2

4

)3

)
.

(4.15)
Here ψ(x) = (ln Γ(x))′. Note that ω(ν, n) has the important property

ω(0, 0) = 0 , (4.16)

in accordance with the bootstrap conditions. Using the representation (4.13)
and Eqs. (4.11), (4.12), we obtain for positive helicities of both gluons

t2〈 ˜G1R1|s
(
e
K̂m ln

(

s2

|~k1||~k2|

)

− 1

)
| ˜G2R3〉s

γ̃R1R2
γ̃R2R3

= δ(~q1−~k1−~k2−~q3)g2(1−2ḡ2ζ(2))

×1

2

+∞∑

n=−∞

∫ +∞

−∞

dν

(
e
ω(ν,n) ln

(

s2~q 2
2

|~q1||~q3||~k1||~k2|

)

− 1

)
w

n
2
+iν(w∗)−

n
2
+iν

×
∫

d2z1
π|z1|2

1

1− z1

(
1 + ḡ2I(z1)

)
z

n
2
+iν

1 (z∗1)
−n

2
+iν

×
∫

d2z2
π|z2|2

1

1− z∗2

(
1 + ḡ2I∗(z2)

)
(z∗2)

n
2
−iνz

−n
2
−iν

2 (4.17)

where w = k+2 q
+
1 /(k

+
1 q

+
3 ).

The second term in Eq. (4.10) must be calculated at D = 4 + 2ǫ. Using
Eqs. (3.26)-(3.28) and (3.25) for 〈 ˜G1R1|s, Eqs. (3.34)-(3.36) and (3.33) for
| ˜G2R3〉s, and the results obtained in Appendix C, we have for positive gluon
helicities

t2〈 ˜G1R1|s| ˜G2R3〉s
γ̃R1R2

γ̃R2R3

= δ(~q1−~k1−~k2−~q3)g2
(
1

ǫ
+ln

(
~k 2
1
~k 2
2

~k 2

))
(1−2ḡ2ζ(2)) .

(4.18)
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Calculation of the second term in the right side of Eq. (4.9) is simplified
because the infrared divergency is absent in this term, since 〈G1G2|G2R3〉u
at ~r2 = 0 according to Eq. (3.24). Therefore, we have for positive helicities
of both gluons

t2〈 ˜G1R1|s
(
e
K̂m ln

(

s2

|~k1||~k2|

)

− 1

)
| ˜G2R3〉s

γ̃R1R2
γ̃R2R3

= δ(~q1−~k1−~k2−~q3)g2(1−2ḡ2ζ(2))

×1

2

+∞∑

n=−∞

∫ +∞

−∞

dν

(
e
ω(ν,n) ln

(

s2~q 2
2

|~q1||~q3||~k1||~k2|

)

− 1

)
w

n
2
+iν(w∗)−

n
2
+iν

×
∫

d2z1
π|z1|2

1

1− z1

(
1 + ḡ2I(z1)

)
z

n
2
+iν

1 (z∗1)
−n

2
+iν

×
∫

d2z2
π|z2|2

1

1− z∗2

(
1 + ḡ2I∗(z2)

)
(z∗2)

n
2
−iνz

−n
2
−iν

2 (4.19)

where w = k+2 q
+
1 /(k

+
1 q

+
3 ).

4.3 Discontinuities in the s02, s13 and s channels

The discontinuities in the s02, s13 and s channels can be expressed through the
ones calculated above with the help of the bootstrap relations (1.4). There
are four such relations, but only three of them are independent. In general,
for A2→2+n, there are n + 2 bootstrap relations (1.4), for j = 0, 1, ...n + 1,

but their sum is identically zero. Denoting discsijA{−}
2→4/ℜA2→4 = R

{−}
ij , we

have for j = 0, 1, 2 in the relations (1.4)

R
{−}
01 +R

{−}
02 +R

{−}
03 = −iπω(t1) , R

{−}
12 +R

{−}
13 −R{−}

01 = −iπ (ω(t2)− ω(t1)) ,

R
{−}
23 −R

{−}
12 −R

{−}
02 = −iπ (ω(t3)− ω(t2)) . (4.20)

This result gives

discs02A{−}
2→4 = discs3A{−}

2→4 − discs2A{−}
2→4 − iπ (ω(t2)− ω(t3))ℜA2→4 ,

discs13A{−}
2→4 = discs1A{−}

2→4 − discs2A{−}
2→4 − iπ (ω(t2)− ω(t1))ℜA2→4 ,

discsA{−}
2→4 = discs2A{−}

2→4 − discs1A{−}
2→4 − discs3A{−}

2→4

−iπ (ω(t3) + ω(t1)− ω(t2))ℜA2→4 . (4.21)
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The same relations can be obtained from the representation of the disconti-
nuities in terms of matrix elements of the evolution operators and the gluon
production operators between the impact factor states and use of the boot-
strap conditions (2.20) – (2.22) and (3.3).

Thus, all the discontinuities are expressed through the discontinuities in
s1, s3 and s2 channels, and the last one evidently disagree with the BDS

ansatz. It is necessary to note that in the total imaginary part of A{−}
2→4 in

the channel where all sij are positive, which is defined by the sum of all the
discontinuities, the contribution of the s2-channel discontinuity cancel, so we
get

n∑

i=0

n+1∑

j=i+1

discsijA{−}
2→4 = discs1A{−}

2→4+discs3A
{−}
2→4− iπω(t2)ℜA2→4 . (4.22)

5 Discontinuities of amplitudes with larger

number of particles

In general, there are (n + 1)(n + 2)/2 sij -channel discontinuities for the
amplitude A2→2+n, that means ten discontinuities for A2→5. The bootstrap
relations (1.4) give n + 1 connections between them. For A2→5 one can
choose as independent discontinuities in the channels s1, s2, s3, s4, s13 and,

for example, s04. The ratios discsijA{−}
2→5/ℜA2→5 for the first four channels

can be obtained from the results for A{−}
2→4 by evident substitutions. But the

discs13A{−}
2→5 contains the new matrix element

〈G1R1|eK̂m ln
(

s2

|~k1||~k2|

)

Ĝ(k2)eK̂m ln
(

s3

|~k2||~k3|

)

|G3R4〉 .

where Ĝ(~k2) is the gluon production operator and k2 is the gluon momentum.
To calculate it one needs to know its matrix elements 〈G′

1G′
2|Ĝ(k2)|G1G2〉.

They are known in the LO, but in the NLO only matrix elements
〈Rω(~q2)|Ĝ(k2)|G1G2〉 are known in the “bootstrap scheme" (see, for in-
stance, Refs. [9], [11] and [38]), which was introduced to simplify the proof
of validity of the bootstrap conditions. Of course, the matrix elements
〈G′

1G′
2|Ĝ(k2)|G1G2〉 are necessary for calculation of discontinuities of ampli-

tudes with larger number of particles. We intend to discuss this matrix
element in subsequent paper.

A few words about the total imaginary part of A{−}
2→5 in the channel where

all sij are positive. With account of the bootstrap conditions it can be
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greatly simplified, so that its ratio to the real part is expressed through
gluon trajectories and the ratios of the type shown in Eqs. (4.3), (4.4).

6 Conclusion

In this paper, using the BFKL approach, we have performed an analysis of
the discontinuities of multiple production amplitudes in invariant masses of
pairs of produced gluons in the multi-Regge kinematics. We have discov-
ered, in particularly, that the discontinuities of the four gluon production
amplitudes contradict the BDS ansatz for MHV amplitudes in planar N = 4
supersymmetric Yang-Mills theory. This contradiction is almost obvious and
is already apparent in the leading logarithmic approximation. It appears also
in amplitudes with more than four produced gluons.

We have obtained explicit expressions of all discontinuities for production
of three and four gluons, as well as of some of discontinuities for production of
a greater number of gluons in the next-to-leading logarithmic approximation.
It turns out that certain discontinuities have a rather complicated form. In
particular, their colour structure differs from the colour structure of the real
part of the corresponding amplitude. In the sum of all discontinuities the
complicated pieces cancel due to the bootstrap conditions, so that the sum
acquires a relatively simple form and the same colour structure as the real
part. This result can be important for further development of the BFKL
approach.
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Appendix A

First, consider Eq. (3.18). Using Eq. (2.24) and Eqs. (3.5), (3.6) and (3.8)
we have

〈Rω|B
[
ln
(
~̂r 2
1 ~̂r

2
2

)
, K̂B

r

]
|G1G2〉=

ḡ2δ(~r1 + ~r2 − ~q)

Γ(1− ǫ)π1+ǫ
TR
G1G2

∫
d~r ′

1d~r
′
2 δ(~r

′
1 + ~r ′

2 − ~q)

~r ′ 2
1 ~r ′ 2

2

×
(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

(~r1 − ~r ′
1 )

2
− ~q 2

)
ln

(
~r ′ 2
1 ~r ′ 2

2

~r 2
1 ~r

2
2

)
. (A.1)

Due to the symmetry under the ~r1 ↔ ~r2, ~r ′
1 ↔ ~r ′

2 exchange, it is sufficient

to calculate in Eq. (A.1) the integral with ln
(
~r ′ 2
1

~r 2
1

)
an to add in the answer

the term with ~r1 ↔ ~r2. The integral is not infrared divergent and can be
evaluated at ǫ = 0. It can be done using the decomposition

1

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

(~r1 − ~r ′
1 )

2
− ~q 2

)
=

=

(
1

r
′+
1

+
1

r+1 − r
′+
1

)(
1

r−1 − r
′−
1

− 1

q− − r
′−
1

)

+

(
1

r
′−
1

+
1

r−1 − r
′−
1

)(
1

r+1 − r
′+
1

− 1

q+ − r
′+
1

)
, (A.2)

and the integral

∫
d~l

π

(
1

(a+ − 1+)

1

(b− − 1−)
+

1

(a− − 1−)

1

(b+ − 1+)

)
ln

(
~l 2

µ2

)
θ(Λ2 −~l 2)

= ln

(
Λ2

(~a−~b)2

)
ln

(
Λ2(~a−~b)2

µ4

)
+ ln

(
(~a−~b)2
~b 2

)
ln

(
(~a−~b)2
~a 2

)
. (A.3)

The upper integration limit Λ is introduced because the separate terms of
the decomposition (A.2) give divergent integrals. In the sum the divergencies
cancel and that leads to the result

∫
d~r ′

1d~r
′
2 δ(~r

′
1 + ~r ′

2 − ~q)

~r ′ 2
1 ~r ′ 2

2

(
~r 2
1 ~r

′ 2
2 + ~r 2

2 ~r
′ 2
1

(~r1 − ~r ′
1 )

2
− ~q 2

)
ln

(
~r ′ 2
1 ~r ′ 2

2

~r 2
1 ~r

2
2

)
=

= −2π ln

(
~r 2
1

~q 2

)
ln

(
~r 2
2

~q 2

)
. (A.4)

Using this result in Eq. (A.1) we come to Eq. (3.18).
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Appendix B

Let us consider the integral in Eq. (3.40). The piece of this integral with the

term ~q2 is known from the calculation of ωB(t1) and gives (with ~k = ~q1 − ~q2)

~q2

∫
d~r1d~r2

~q 2
1

~r 2
1 ~r

2
2

δ(~r1 + ~r2 − ~q1) = 2π1+ǫΓ(1 − ǫ)~q2

(
1

ǫ
+ ln ~q 2

1

)
. (B.1)

The integral with the second term can be represented as
∫
d~r1d~r2

~q 2
1

~r 2
1 ~r

2
2

δ(~r1 + ~r2 − ~q1)(~r1 − ~q2)
~q 2
2

(~r1 − ~q2)2
=

=
~q 2
1 ~q

2
2

2

∂

∂~q2

∫
d~r1

~r 2
1 (~r1 − ~q1)2

ln(~r1 − ~q2)
2 . (B.2)

The last integral can be written as sum of two integrals:
∫

d~r1
~r 2
1 (~r1 − ~q1)2

ln(~r1 − ~q2)
2 =

=
1

2

∫
d~l

(~q2 −~l)2(~k +~l)2

(
ln

(
~l 2

~q 2
2

~l 2

~k 2

)
+ ln

(
~q 2
2
~k 2
))

. (B.3)

Here the second integral is known, whereas in the first one the contributions
of the singularities at (~q2 −~l) = 0 and (~k+~l) = 0 cancel and the integral can
be calculated at ǫ = 0 using the decomposition

1

(~q2 −~l)2(~k +~l)2
=

1

~q 2
1

(
1

q+2 − l+
+

1

k+ + l+

)(
1

q−2 − l−
+

1

k− + l−

)

(B.4)
and the integral (A.3). As a result, we have

∫
d~r1

~r 2
1 (~r1 − ~q1)2

ln(~r1 − ~q2)
2 =

= π1+ǫΓ(1− ǫ)
1

~q 2
1

(
ln
(
~q 2
2
~k 2
)(1

ǫ
+ ln ~q 2

1

)
+

1

2
ln2

(
~k 2

~q 2
2

))
.

Substituting this result in Eq. (B.2) and using Eq. (B.1), we obtain
∫
d~r1d~r2

~q 2
1

~r 2
1 ~r

2
2

δ(~r1 + ~r2 − ~q1)

(
~q2 + (~r1 − ~q2)

~q 2
2

(~r1 − ~q2)2

)
=

= π1+ǫΓ(1− ǫ)

(
~q2 + ~k

~q 2
2

~k 2

)(
1

ǫ
+ ln

(
~q 2
1
~k 2

~q 2
2

))
. (B.5)

29



Appendix C

Let us calculate now the chiral components of the tensor

J ij =
1

π1+ǫΓ(1− ǫ)

∫
d~r

~r 2(~q2 − ~r)2

( q1
~q 2
1

− (~q1 − r)

(q1 − ~r)2

)i( q3
~q 2
3

− (~q3 − r)

(q3 − ~r)2

)j
.

(C.1)
Writing

( q1
~q 2
1

− (~q1 − r)

(q1 − ~r)2

)i
=
( q1
~q 2
1

− k1
~k 2
1

)i
+
( k1
~k 2
1

− (~q1 − r)

(q1 − ~r)2

)i
(C.2)

we can split the tensor in the sum of two pieces:

J ij = J ij
1 + J ij

2 , (C.3)

where

J ij
1 =

( q1
~q 2
1

− k1
~k 2
1

)i 1

π1+ǫΓ(1− ǫ)

∫
d~r

~r 2(~q2 − ~r)2

( q3
~q 2
3

− (~q3 − r)

(q3 − ~r)2

)j
,

J ij
2 =

1

π1+ǫΓ(1− ǫ)

∫
d~r

~r 2(~q2 − ~r)2

( k1
~k 2
1

− (~q1 − r)

(q1 − ~r)2

)i( q3
~q 2
3

− (~q3 − r)

(q3 − ~r)2

)j
.

(C.4)
The first tensor can be obtained from Eq. (B.5) by the replacement ~q1 →
~q2, ~q2 → ~q3; we get

J ij
1 ≃

( q1
~q 2
1

− k1
~k 2
1

)i( q3
~q 2
3

+
k2
~k 2
2

)j 1

~q 2
2

(
1

ǫ
+ ln

(
~q 2
2
~k 2
2

~q 2
3

))
. (C.5)

The tensor J ij
2 is infrared finite and can be calculated at ǫ = 0. The calcula-

tion of its chiral components can be performed easily using the decomposition
of the integrand into a sum of terms of the type (a+− r+)−1(b−− r−)−1 and
the integral

∫
d2r

π(a+ − r+)(b− − r−)
θ(Λ2 − ~r 2) = ln

(
Λ2

(~a−~b)2

)
. (C.6)

It gives

J++
2 =

( k

~k 2
− k1
~k 2
1

)+( q3
~q 2
3

+
k2
~k 2
2

)+ 1

~q 2
2

ln

(
~q 2
3
~k 2
1

~k 2
2 ~q

2
1

)
,
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J+−
2 =

( q1
~q 2
1

− k1
~k 2
1

)+( q3
~q 2
3

+
k2
~k 2
2

)− 1

~q 2
2

ln

(
~q 2
3
~k 2
1

~k 2~q 2
2

)
, (C.7)

where ~k = ~k1 + ~k2 and J−−
2 =

(
J++
2

)∗
, J−+

2 =
(
J+−
2

)∗
. Therefore, for the

+− component we have

J+− ≃
( q1
~q 2
1

− k1
~k 2
1

)+( q3
~q 2
3

+
k2
~k 2
2

)− 1

~q 2
2

(
1

ǫ
+ ln

(
~k 2
1
~k 2
2

~k 2

))

= − 1

q−1 k
−
1 q

+
3 k

+
2

(
1

ǫ
+ ln

(
~k 2
1
~k 2
2

µ2~k 2

))
. (C.8)
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