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1 Introduction
This paper is devoted to the investigation of conformal properties of the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [1] and the relationship be-
tween the BFKL approach and the colour dipole model [2].

The BFKL approach gives the most common basis for the theoretical
description of semihard processes in QCD and has a wide field of appli-
cations covering scattering processes with arbitrary momentum and colour
exchanges. Now the next-to-leading (NLO) corrections to the kernel of the
BFKL equation are known both for the forward scattering [3], [4] and for any
momentum and colour transfer [5]-[7].

The BFKL approach is based on the gluon reggeization. Originally it was
formulated in the momentum representation, and the BFKL kernel was cal-
culated in the space of transverse momenta ~q1, ~q2 of two interacting reggeized
gluons. Later it was recognized that for the case of scattering of colourless
objects the BFKL equation possesses remarkable properties, which become
mostly apparent in the space of conjugate coordinates ~r1, ~r2. It was shown
[8] that in this case the BFKL equation can be written in the special repre-
sentation (in the space of states |Ψ〉 with the “dipole" property 〈~r, ~r|Ψ〉 = 0),
where the equation is invariant under the conformal (Möbius) transforma-
tions of the transverse coordinates. Following Ref. [9] we will call this rep-
resentation Möbius representation. For brevity, we will also call the BFKL
kernel in this representation Möbius kernel, and its form in the coordinate
space Möbius (or dipole) form. The Möbius form of the LO BFKL kernel is
explicitly conformal invariant [10]. Moreover, it coincides with the kernel of
the evolution equation in the colour dipole model.

The colour dipole model is formulated in the coordinate space. Unlike
the BFKL approach, it is applicable only to scattering of colorless particles.
Its attractive feature is a clear physical interpretation. The model is applied
not only at low parton density, but also in the high density regime, where
parton fusion is essential [11], and evolution equations become nonlinear.
In general, in this regime there is an infinite hierarchy of coupled equations
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[12]–[14]. In the simplest case, when the target is a large nucleus, it is reduced
to the Balitsky-Kovchegov (BK) equation [13]. It was shown [9] that the
BK equation appears as a special case of the nonlinear evolution equation
which sums the fan diagrams for the BFKL Green’s functions in the Möbius
representation. Therefore in the LO there is a full agreement between the
BFKL approach and colour dipole model.

Recently the NLO corrections to the BK kernel have been calculated
[15]–[17] and investigation of inter-relation of the BFKL approach and the
colour dipole model in the NLO became possible. A clear understanding
of this inter-relation is important for the further development of theoretical
description of small-x processes. Not less significant is the understanding of
conformal properties of the NLO BFKL kernel in the Möbius representation
because the conformal invariance is extremely important for integrability of
the BFKL equation. Evidently, in QCD the conformal invariance is violated
by the running coupling, i.e. by the terms proportional to β– function. But
one could expect that the Möbius form is quasi-conformal, i.e. the conformal
invariance is violated only by such terms, and that it remains unbroken in
N = 4 SUSY Yang-Mills One could expect also coincidence of the Möbius
form of the BFKL kernel and the kernel of the colour dipole model.

However, the situation is not so simple, because the NLO kernels are not
unambiguously defined. Their ambiguity is analogous to the ambiguity of the
NLO anomalous dimensions. It is caused by the possibility to redistribute
radiative corrections between the kernels and the impact factors.

We prove that this ambiguity permits one to match the Möbius form of
the BFKL kernel and the kernel of the colour dipole model and to construct
the Möbius invariant NLO BFKL kernel in N = 4 SUSY.

The NLO corrections consist of quark and gluon parts. The quark part
of the BK kernel was found Refs. [13, 16]; the corresponding part of the
Möbius form of the BFKL kernel was calculated in Refs. [10, 18]. Taking
into account of the ambiguity mentioned above, it was shown there that up
to the difference in the renormalization scales the quark parts agree with each
other. Moreover, the “abelian" piece of the quark part is conformal invariant
[18]. This is especially interesting for the QED Pomeron [19, 20] because this
piece is proportional to the total QED kernel.

The Möbius form for the gluon part was obtained in Ref. [21]. As well as
the quark part, it turned out strikingly simple compared with the gluon part
of the BFKL kernel in transverse momentum space. However, it was found
that the conformal invariance of this form is broken not only by the terms
proportional to β– function. In principle, this result did not mean that the
conformal invariance was broken in N = 4 SUSY Yang-Mills theory because
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the field structure of this theory differs from QCD. The extension of the BFKL
framework to the supersymmetric theories was started in Ref. [22], where
the forward kernel was found for the SUSY N=4 in the space of the Born
eigenfunctions and in the momentum space with the dimension D = 4 + 2ε.
This analysis has been expanded Ref. the [23], where the Möbius form of
the nonforward BFKL kernel was obtained for the supersymmetric theories
with arbitrary N. It turned out that this form violates conformal invariance
at any N. However, because of the ambiguity discussed above a possibility of
existence of a conformal invariant kernel at N = 4 was not excluded. Also
Regge limits of 4-point correlators were studied in N=4 SUSY directly in the
coordinate space via conformal invariance and the connection of the analysis
to the AdS/CFT duality was discussed in Ref. [24].

The gluon part of the BK kernel calculated in Ref. [17] agreed neither with
the Möbius form of Ref. [21], nor with the eigenvalues of the forward BFKL
kernel [3, 22]. It was found afterwards that Ref. [17] contained an error, which
was corrected in Ref. [25]. The discrepancy of the results of Refs. [17] and
[3, 22, 21] was analyzed in detail in Ref. [26]. A special attention was paid
to the case of the forward scattering. It was shown for this case that with
account of the ambiguity of the NLO kernels, of the correction performed in
Ref. [25] and of the difference in the renormalization scales, the discrepancy
disappeared. Besides this, the functional identity of the forward BFKL kernel
in the momentum and Möbius representations in the leading order (LO) was
exhibited and its NLO validity in N = 4 supersymmetric Yang-Mills theory
was proved.

Here we demonstrate that with account of the correction of Ref. [25]
and the difference in the renormalization scales (it was discussed in detail
in Ref. [26] and we will not mention it further) the ambiguity of the NLO
kernels permits us to match the gluon parts for the non-forward case also.
Moreover, this ambiguity allows us to present the kernel in the form where
the conformal invariance is violated only by renormalization. It is especially
interesting for the N=4 SUSY Yang-Mills.

Our paper is organized as follows. In the next section, our notation is
introduced, the ambiguity of the NLO kernels is briefly discussed and a short
overview of the discrepancy between the kernels is given. Section 3 presents
the transformation of the BFKL kernel (allowed by the NLO ambiguity)
which removes this discrepancy. In section 4 the transformation to the quasi-
conformal shape is presented. Section 5 gives the quasi-conformal (conformal
at N=4) kernels in QCD and SUSY Yang-Mills theories. Section 6 presents
our conclusions.

7



2 General overview
Our notation is the same as in Refs. [10, 21]. Thus we denote Reggeon trans-
verse momenta (conjugate coordinates) in initial and final t-channel states as
~q ′i (~r ′i ) and ~qi (~ri), i = 1, 2. At space-time dimension D = 4 + 2ε the state
normalization is

〈~q|~q ′〉 = δ(~q − ~q ′) , 〈~r|~r ′〉 = δ(~r − ~r ′) , 〈~r|~q〉 =
ei~q ~r

(2π)(1+ε)
. (1)

We will also use ~pij′ = ~pi − ~p ′j for brevity.
The s-channel discontinuities of scattering amplitudes for the processes

A+B → A′ +B′ have the form

−4i(2π)D−2δ(~qA − ~qB)discsAA
′B′

AB = 〈A′Ā|
(
s

s0

)K̂ 1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 . (2)

In this expression s0 is an appropriate energy scale, qA = pA′A, qB = pBB′ ,
and K̂ is the BFKL kernel,

〈~q1, ~q2|K̂ |~q ′1 , ~q ′2 〉 = δ(~q11′+~q22′)
Kr (q1, q′1, q)

~q 2
1 ~q

2
2

+δ(~q22′)δ (~q11′)
(
ω
(
~q 2
1

)
+ ω(~q 2

2 )
)
,

(3)
where ω(t) is the gluon Regge trajectory and Kr (q1, q′1, q) represents real
particle production in Reggeon collisions. The impact factors are introduced
through

〈~q1, ~q2|B̄′B〉 = 4p−Bδ(~qB − ~q1 − ~q2)ΦB′B(~q1, ~q2) , (4)

〈A′Ā|~q1, ~q2〉 = 4p+
Aδ(~qA − ~q1 − ~q2)ΦA′A(~q1, ~q2) , (5)

where p± = (p0 ± pz)/
√

2. The kernel Kr(~q1, ~q ′1 ; ~q) and the impact factors
Φ are expressed through the Reggeon vertices according to Ref. [27]. So, the
real part of the Born kernel reads

KBr (~q1, ~q ′1 ; ~q)
~q 2
1 ~q

2
2

=
αs(µ2)Nc

π2

(
1
~q 2
11′

+
(~q2 ~q11′)
~q 2
2 ~q

2
11′
− (~q1 ~q11′)

~q 2
1 ~q

2
11′
− (~q1 ~q2)
~q 2
1 ~q

2
2

)
, (6)

while the one-loop trajectory has the form

ω(~q 2) = −αs(µ
2)Nc

(2π)2+2ε

∫
d2+2εk

(
2
~k 2
− 2~k(~k − ~q)
~k 2(~k − ~q)2

)
. (7)

At once we can see that Eq. (2) does not give the unique definition of the
kernel. Indeed, the discontinuity discsAA

′B′

AB in Eq. (2) remains intact if one
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changes both the kernel and the impact factors via an arbitrary nonsingular
operator: Ô

K̂ → Ô−1K̂Ô , 〈A′Ā| → 〈A′Ā|Ô ,
1

~̂q 2
1 ~̂q

2
2

|B̄′B〉 → Ô−1 1

~̂q 2
1 ~̂q

2
2

|B̄′B〉. (8)

Actually, the kernel K̂ (3) is obtained from the symmetric kernel, usually
used in the momentum space, just by such transformation. Only owing to
this transformation the Möbius form of K̂ is conformal invariant and coincides
with the dipole kernel in the leading order. But even if the kernel is fixed in
the LO, transformations with Ô = 1 − Ô, where Ô ∼ αs, are still possible.
Within the NLO accuracy these transformations give

K̂ → K̂ − [K̂B , Ô]. (9)

Such transformations can be used for simplify the form of the kernel, in
particular of its Möbius form. Indeed, it was shown [10, 21] that this form is
simplified by the transformation

K̂ → K̂ = K̂ +
αs
8π
β0[K̂B , ln

(
~̂q 2
1 ~̂q

2
2

)
] , (10)

where K̂ is the kernel defined in Eq. (3), K̂B = K̂
B
is its LO value and β0 is

the first coefficient of the beta-function. In the following this transformation
is assumed to be done.

In the NLO the Möbius form can be written [10, 21] as follows:

〈~r1, ~r2|K̂M |~r ′1 , ~r ′2 〉 =

=
αs(µ2)Nc

2π2

∫
d~ρ

~r12
2

~r 2
1ρ~r

2
2ρ

[
δ(~r11′)δ(~r2′ρ) + δ(~r1′ρ)δ(~r22′)− δ(~r11′)δ(r22′)

]

+
α2
s(µ

2)N2
c

4π3

[
δ(~r11′)δ(~r22′)

∫
d~ρ g0(~r1, ~r2; ρ)

+δ(~r11′)g1(~r1, ~r2;~r ′2 ) + δ(~r22′)g1(~r2, ~r1;~r ′1 ) +
1
π
g2(~r1, ~r2;~r ′1 , ~r

′
2 )

]
. (11)

Here ~riρ = ~ri − ~ρ, and the whole kernel is symmetric with respect to the
substitution 1 ↔ 2, 1′ ↔ 2′. The Möbius kernel (11) is defined with an
accuracy to any functions independent of ~r1 or of ~r2 such that after their
addition the kernel remains zero at ~r1 = ~r2 [10, 21]. Therefore, one can add

9



to the kernel only the functions which are antisymmetric with respect to the
~r1 ↔ ~r2 substitution. These functions do not change the symmetric part of
the kernel. But this part alone plays a role because of the symmetry of the
impact factors.

The transformation (10) considerably simplifies the “non-abelian" piece
of the quark part of the Möbius form [10]. In particular, it removes its
contribution to the function g2. Moreover, just after this transformation the
Möbius form of the quark contribution to the BFKL kernel [10, 18] coincides
with the quark part of the linearized BK kernel [15, 16] calculated in the
colour dipole model.

However, the transformation (10) does not remove the disagreement of the
gluon contribution. The BFKL framework gives for the gluon contribution
to the functions gi in (11) [21]

g0(~r1, ~r2; ~ρ) = 2πζ(3)δ (~ρ)− g(~r1, ~r2; ~ρ) , (12)

g1(~r1, ~r2;~r ′2 ) =
11
6

~r 2
12

~r 2
22′~r 2

12′
ln
(
~r 2
12

r2µ

)
+

11
6

(
1
~r 2
22′
− 1
~r 2
12′

)
ln
(
~r 2
22′

~r 2
12′

)
+

1
2~r 2

22′
ln
(
~r 2
12′

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

)
− ~r 2

12

2~r 2
22′~r 2

12′
ln
(
~r 2
12

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

)
, (13)

where

ln r2µ = 2ψ (1)− ln
µ2

4
− 3

11

(
67
9
− 2ζ(2)

)
, (14)

and

g2(~r1, ~r2;~r ′1 , ~r
′
2 ) =

1
2~r 4

1′2′

(
~r 2
11′ ~r 2

22′ − 2~r 2
12 ~r

2
1′2′

d
ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
− 1
)

+
~r 2

12 ln
(
~r 2

11′
~r 2

1′2′

)
2~r 2

11′~r 2
12′ ~r 2

22′
+

ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)
4~r 2

11′ ~r 2
22′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

)

+
ln
(
~r 2

12 ~r
2
1′2′

~r 2
11′~r

2
22′

)
2~r 2

12′~r 2
21′

(
~r 2

12

2~r 2
1′2′

+
1
2
− ~r 2

22′

~r 2
1′2′

)
+
~r 2

21′ ln
(
~r 2

21′~r
2
1′2′

~r 2
12 ~r

2
11′

)
2~r 2

11′~r 2
22′~r 2

1′2′

+
ln
(
~r 2

12
~r 2

1′2′

)
4~r 2

11′~r 2
22′

+
ln
(
~r 2

22′
~r 2

12

)
2~r 2

11′ ~r 2
12′

+
~r 2

12 ln
(
~r 2

12~r
2
1′2′

~r 2
12′ ~r

2
21′

)
4~r 2

11′~r 2
22′~r 2

1′2′
+

ln
(
~r 2

12~r
2
1′2′

~r 2
12′~r

2
22′

)
2~r 2

11′ ~r 2
1′2′

+
ln
(

~r 2
12~r

2
11′

~r 2
22′ ~r

2
1′2′

)
2~r 2

12′~r 2
1′2′

+ (1↔ 2, 1′ ↔ 2′), d = ~r 2
12′~r 2

21′ − ~r 2
11′~r 2

22′ . (15)
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Remind that the coefficients of δ(~r11′)δ(r22′) in Eq. (11) are written in the
integral form in order to make explicit cancellation of the ultraviolet singular-
ities of separate terms. Therefore one can take g0 in various forms (without
change of the integral

∫
d~ρ g0(~r1, ~r2; ρ)). Here we change the form of g0 in

comparison with our previous papers using the equalities∫
d~ρ

~r 2
12

~r 2
1ρ~r

2
2ρ

ln

(
~r 2
1ρ

~r 2
12

)
ln

(
~r 2
2ρ

~r 2
12

)
=
∫

d~ρ

~r 2
2ρ

ln

(
~r 2
1ρ

~r 2
12

)
ln

(
~r 2
1ρ

~r 2
2ρ

)
= 4πζ(3).

(16)
In the colour dipole approach the gluon contribution was found in Ref. [17].
With account of the correction given in Ref. [25], it gives

gBC0 (~r1, ~r2, ~ρ) = 2πζ(3)δ (~ρ)− gBC1 (~r1, ~r2, ~ρ), (17)

gBC1 (~r1, ~r2;~r ′2 ) =
11
6

~r 2
12

~r 2
22′~r 2

12′
ln
(
~r 2
12

r2µBC

)
+

11
6

(
1
~r 2
22′
− 1
~r 2
12′

)
ln
(
~r 2
22′

~r 2
12′

)
− ~r 2

12

~r 2
22′~r12′

ln
(
~r 2
12

~r22′

)
ln
(
~r 2
12

~r12′

)
, (18)

where
ln r2µBC

= − lnµ2 − 3
11

(
67
9
− 2ζ(2)

)
, (19)

gBC2 (~r1, ~r2;~r ′1 , ~r
′
2 ) = ln

(
~r 2
12′~r 2

21′

~r 2
11′~r 2

22′

)[
~r 2
11′~r 2

22′ + ~r 2
12′~r 2

21′ − 4~r 2
12~r

2
1′2′

2d~r 4
1′2′

+
1

4~r 2
11′~r 2

22′

(
~r 4
12

d
− ~r 2

12

~r 2
1′2′

)
+

1
4~r 2

12′~r 2
21′

(
~r 4
12

d
+

~r 2
12

~r 2
1′2′

)]
− 1
~r 4
1′2′

. (20)

3 Matching of the gluon parts

In principle, if the kernels K̂M and K̂BC can be connected by the transforma-
tion (9), one can easily write a formal expression for the operator Ô. Indeed,
let us denote K̂M −K̂BC = ∆̂, the eigenstates of the Born kernel K̂B |µ〉, and
the corresponding eigenvalues ωBµ . Then, if ∆̂ =

[
K̂B , Ô

]
, one has(

ωBµ′ − ωBµ
)
〈µ′|Ô|µ〉 = 〈µ′|∆̂|µ〉. (21)

It can be seen from this equation that the operator Ô exists only if the
operator ∆̂ has zero matrix elements between states of equal eigenvalues. If
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so, supposing that the states |µ〉 form a complete set, one has

Ô =
∑
µ,µ′

|µ′〉〈µ′|∆̂|µ〉〈µ|
ωBµ′ − ωBµ

(22)

and

〈~r1, ~r2|Ô|~r ′1 , ~r ′2 〉 =
∑
µ,µ′

〈~r1, ~r2|µ′〉〈µ′|∆̂|µ〉〈µ|~r ′1 , ~r ′2 〉
ωBµ′ − ωBµ

. (23)

Since we know 〈~r1, ~r2|∆̂|~r ′1 , ~r ′2 〉 from Eqs. (11), (12)-(15) and(17)-(20), we
can find

〈µ′|∆̂|µ〉 =
∫
d~r1d~r2d~r

′
1d~r

′
2 〈µ′|~r ′1 , ~r ′2 〉〈~r ′1 , ~r ′2 |∆̂|~r1, ~r2〉〈~r1, ~r2|µ〉 (24)

using the known eigenfunctions 〈~r1, ~r2|µ〉 in the coordinate space [8] and
then 〈~r1, ~r2|Ô|~r ′1 , ~r ′2 〉 using Eq. (23). However, it is rather difficult because of
complexity of the eigenfunctions and the corresponding eigenvalues. In fact,
we did not do it, but we have guessed the operator Ô:

〈~q1, ~q2|Ô|~q ′1 , ~q ′2 〉 = −δ(~q11′ + ~q22′)
KBr (~q1, ~q ′1 ; ~q)

2~q 2
1 ~q

2
2

ln ~q 2
11′

+
αsNc
4π2

δ(~q22′)δ (~q11′)
∫
d2+2εk ln~k 2

(
2
~k 2
−

~k(~k − ~q1)
~k 2(~k − ~q1)2

−
~k(~k − ~q2)
~k 2(~k − ~q2)2

)
.

(25)
Let us show that the transformation defined by Eqs. (9) and (25), being
applied to the kernel K̂M , converts the functions gi given by Eqs. (11) and
(12)-(15) into the functions gBCi (17)-(20).

In the momentum space, we have for the commutator [K̂
B
, Ô]

〈~q1, ~q2|[K̂
B
, Ô] |~q ′1 , ~q ′2 〉 = δ(~q11′+~q22′)

[∫
d~k
KBr (~q1, ~q1 − ~k; ~q)

2~q 2
1 ~q

2
2

KBr (~q1 − ~k, ~q ′1 ; ~q)

(~k − ~q1)2(~k + ~q2)2

× ln
~k 2

(~k − ~q11′)2
+
αsNc
4π2

KBr (~q1, ~q ′1 ; ~q)
~q 2
1 ~q

2
2

×
∫
d~k

(
~k(~k − ~q ′1 )
~k 2(~k − ~q ′1 )2

−
~k(~k − ~q1)
~k 2(~k − ~q1)2

+ (1↔ 2, 1′ ↔ 2′)

)
ln
~q 2
11′

~k 2

]
. (26)
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Since all integrals here and below are convergent, we put ε = 0 hence-
forth. The first line in Eq. (26) is equal to the doubled contribution
〈~q1, ~q2|K̂s2|~q ′1 , ~q ′2 〉 to the BFKL kernel, defined in Ref. [21]. Denoting the
remaining terms in Eq. (26) as 〈~q1, ~q2|V̂|~q ′1 , ~q ′2 〉, after integration we obtain

〈~q1, ~q2|V̂|~q ′1 , ~q ′2 〉 = δ(~q11′ + ~q22′)
(αsNc)

2

8π3

(
1
~k 2

+
(~q2 ~k)

~q 2
2
~k 2
− (~q1 ~k)

~q 2
1
~k 2
− (~q1 ~q2)
~q 2
1 ~q

2
2

)

×
(

ln2 ~q
′ 2

1

~k 2
+ ln2 ~q

′2
2

~k 2
− ln2 ~q

2
1

~k 2
− ln2 ~q

2
2

~k 2

)
, (27)

where ~k = ~q11′ .
The Möbius form of K̂s2 was found in Ref. [21]. To obtain such form for

the operator V̂ we have to transform Eq. (27) into the coordinate space. It
can be done using the following integrals:∫

d~k

2π
ei
~k ~r

~k

~k 2
=
i~r

~r 2
, (28)

∫
d~q

2π

∫
d~k

2π
ei[~q ~r+

~k ~ρ] 1
~q 2

ln
(~q − ~k)2

~k 2
ln

(~q − ~k)2

~q 2

=
1
~ρ 2

ln

(
(~r + ~ρ)2

~r 2

)
ln

(
(~r + ~ρ)2

~ρ 2

)
, (29)

∫
d~q

2π

∫
d~k

2π
ei[~q ~r+

~k ~ρ] 1
~q 2

ln2 (~q − ~k)2

~k 2
=

1
~ρ 2

ln2

(
(~r + ~ρ)2

~r 2

)
, (30)

∫
d~q

2π

∫
d~k

2π
ei[~q ~r+

~k ~ρ] (~q ~k)

~q 2~k 2
ln2 (~k + ~q)2

~q 2
= − (~r ~ρ)

~r 2~ρ 2
ln2

(
(~ρ− ~r)2

~ρ 2

)
, (31)

∫
d~q

2π

∫
d~k

2π
ei[~q ~r+

~k ~ρ] (~q ~k)

~q 2~k 2
ln2

~k 2

~q 2
= − (~r ~ρ)

~r 2~ρ 2
ln2

(
~ρ 2

~r 2

)
, (32)

∫
d~q1
2π

∫
d~q2
2π

∫
d~k

2π
ei[~q1 ~r1+~q2 ~r2+

~k ~ρ] (~q1 ~q2)
~q 2
1 ~q

2
2

ln2 ~q
2
1

~k 2
=

4(~r1 ~r2)
~r 2
1 ~r

2
2 ~ρ

2
ln
(
~r 2
1

~ρ 2

)
. (33)
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The result is

8π4

(αsNc)
2 〈~r1~r2|V̂|~r

′
1~r
′
2 〉 = vM (~r1, ~r2;~r ′1 , ~r

′
2 )

+
[
~r 2
11′ − ~r 2

1′2′

~r 2
11′~r 2

12′~r 2
1′2′

ln
(
~r 2
11′

~r 2
12′

)
+

1
~r 2
11′~r 2

1′2′
ln
(
~r 2
11′~r 2

12′

~r 4
1′2′

)
+ (1↔ 2, 1′ ↔ 2′)

]
,

(34)
where

vM (~r1, ~r2;~r ′1 , ~r
′
2 ) = πδ(~r22′)

~r 2
12 + ~r 2

21′ − ~r 2
11′

2~r 2
11′~r 2

21′
ln
(
~r 2
21′

~r 2
12

)
ln
(

~r 4
11′

~r 2
12~r

2
21′

)

−~r 2
12

 ln
(
~r 2
12′
~r 2
11′

)
~r 2
11′~r 2

12′~r 2
22′

+
ln
(
~r 2
22′
~r 2
21′

)
~r 2
11′~r 2

21′~r 2
1′2′

+
ln
(
~r 2
12′
~r 2
1′2′

)
~r 2
11′~r 2

22′~r 2
1′2′


− ~r 2

22′ − ~r 2
12′

~r 2
11′~r 2

22′~r 2
1′2′

ln
(
~r 2
12′~r 2

21′

~r 2
22′~r 2

1′2′

)
+ (1↔ 2, 1′ ↔ 2′). (35)

The terms in the square brackets in Eq. (34) do not depend either on
~r1 or on ~r2 and therefore they are omitted in the Möbius form. As for
vM (~r1, ~r2;~r ′1 , ~r

′
2 ), it turns into zero at ~r1 = ~r2, so that it satisfies the re-

quirements for the Möbius forms. Using the Möbius form of K̂s2 [21] (see
Eqs. (44), (54), (55), (67) and (69) there) and Eq. (35), we obtain

8π4

(αsNc)
2 〈~r1~r2|[K̂

B
, Ô]M |~r ′1~r ′2 〉

= πδ (~r22′)
[

1
~r 2
11′

ln
(
~r 2
21′

~r 2
12

)
ln
(
~r 2
11′

~r 2
21′

)
− ~r 2

12

~r 2
11′~r 2

21′
ln
(
~r 2
11′

~r 2
12

)
ln
(
~r 2
12

~r 2
21′

)]

−~r 2
12

 ln
(
~r 2
12′~r

2
21′

~r 2
12~r

2
1′2′

)
2~r 2

11′~r 2
22′~r 2

1′2′
+

ln
(
~r 2
1′2′
~r 2
22′

)
~r 2
11′~r 2

21′~r 2
22′

+
ln
(
~r 2
11′~r

2
22′

~r 2
12~r

2
1′2′

)
2~r 2

12′~r 2
21′~r 2

1′2′

− ln
(
~r 2
22′~r

2
1′2′

~r 2
12~r

2
12′

)
~r 2
12′~r 2

1′2′

−
ln
(
~r 2
12~r

2
11′

~r 2
21′~r

2
1′2′

)
~r 2
21′

~r 2
11′~r 2

22′~r 2
1′2′

−
ln
(
~r 2
12~r

2
12′

~r 2
11′~r

2
22′

)
~r 2
11′~r 2

12′
−

ln
(
~r 2
1′2′
~r 2
12

)
2~r 2

11′~r 2
22′
−

ln
(
~r 2
11′~r

2
22′

~r 2
12~r

2
1′2′

)
2~r 2

12′~r 2
21′

−
ln
(
~r 2
12~r

2
1′2′

~r 2
11′~r

2
22′

)
~r 2
22′

~r 2
12′~r 2

21′~r 2
1′2′

−
ln
(
~r 2
11′~r

2
22′

~r 2
12~r

2
1′2′

)
~r 2
11′~r 2

1′2′
+ (1↔ 2, 1′ ↔ 2′). (36)
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From the definition (11) it follows that the transformation K̂M → K̂M −
[K̂

B
, Ô]M leaves g0 untouched and changes only g1,2. Using Eqs. (13), (15)

we get

g1(~r1, ~r2;~r ′2 ) → gT1 (~r1, ~r2;~r ′2 ) =
11
6

~r 2
12

~r 2
22′~r 2

12′
ln
(
~r 2
12

r2µ

)
+

11
6

(
1
~r 2
22′
− 1
~r 2
12′

)
ln
(
~r 2
22′

~r 2
12′

)
− ~r 2

12

~r 2
22′~r 2

12′
ln
(
~r 2
12

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

)
, (37)

and
g2(~r1, ~r2;~r ′1 , ~r

′
2 )→ gT2 (~r1, ~r2;~r ′1 , ~r

′
2 ) = g

T (s)
2 (~r1, ~r2;~r ′1 , ~r

′
2 )

+
[(

(~r12′ ~r11′)
~r 2
11′~r 2

12′~r 2
1′2′

+
1

2~r 4
1′2′

+
~r 2
12

4~r 2
1′2′

(
1

~r 2
11′~r 2

22′
+

1
~r 2
12′~r 2

21′

)
− ~r 2

12

4~r 2
11′~r 2

22′~r 2
12′~r 2

21′

)
× ln

(
~r 2
11′

~r 2
12′

)
+ (1↔ 2, 1′ ↔ 2′)

]
, (38)

where
g
T (s)
2 (~r1, ~r2;~r ′1 , ~r

′
2 ) = gBC2 (~r1, ~r2;~r ′1 , ~r

′
2 ) (39)

is symmetric with respect to the replacement (~r ′1 ↔ ~r ′2 ) (as well as with
respect to the replacement (~r1 ↔ ~r2)), and the terms in the square brackets
are antisymmetric, so that they can be omitted with account of the symmetry
of impact factors. There is also another reason for omitting the first term:
it does not depend on ~r2. In the following we will assume that this term is
omitted. Note that using Eq. (16) we can rewrite gT0 = g0 in the form

gT0 (~r1, ~r2, ~ρ) = 2πζ(3)δ (~ρ)− gT1 (~r1, ~r2, ~ρ). (40)

Comparing Eqs. (37) and (40) with Eqs. (18) and (17) we see that up to the
normalization points the functions gT1 and gT0 coincide with gBC1 and gBC0

correspondingly. Therefore, we conclude that the symmetrized gluon part of
the Möbius form of the kernel can be written as

K̂− [K̂
B
, Ô] = K̂ +

αs
8π
β0[K̂B , ln

(
~̂q 2
1 ~̂q

2
2

)
]− [K̂

B
, Ô], (41)

where β0 is the first coefficient of the beta-function, the kernel K is defined in
Eq. (3) and the operator Ô in Eq. (25). It coincides (up to the difference in
the renormalizations) with the gluon part of the kernel of the colour dipole
approach found in Ref. [17] (with account of the correction given in Ref. [25]).

Since the Möbius form of the quark part of K̂ coincides with the quark
part of the linearized BK kernel [15, 16] calculated in the colour dipole model,
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and only gluons contribute to [K̂
B
, Ô] (see Eq. (26)), it means that the the

symmetrized Möbius form of the kernel (41) coincides with the kernel of
the colour dipole model (up to the difference in the renormalization scales).
Thus, the discrepancy between the BFKL and the colour dipole approaches
is completely removed.

4 Transformation to the quasi-conformal shape
As can be seen from the representation (11) and from the explicit expres-
sions for gTi , given by Eqs. (37)-(40), (20), the conformal invariance of the
Möbius form of the kernel (41) is violated not only by the terms related to
renormalization. However, from the results of Ref. [25] it is clear that we can
transform the form (41) to the quasi-conformal kernel. Indeed, the transfor-
mation from the usual kernel for the evolution of colour dipoles to the kernel
for the evolution of the “composite dipole operators" used in Ref. [25] has the
same nature as the transformation (9). Let us show that the transformation
K̂→ K̂QC = K̂− [K̂B , O1], where

〈~r1~r2|Ô1M |~r ′1~r ′2 〉 =
αs(µ)Nc

4π2

∫
d~ρ

~r12
2

~r 2
1ρ~r

2
2ρ

ln

(
~r12

2

~r 2
1ρ~r

2
2ρ

)

×

[
δ(~r11′)δ(~r2′ρ) + δ(~r1′ρ)δ(~r22′)− δ(~r11′)δ(r22′)

]
, (42)

eliminates the nonconformal terms in K̂M which are not proportional to the
β–function.

Indeed, with the help of the integrals from Appendix A of Ref. [26], for
the commutator of this operator with the Born part of the Möbius kernel
(11) we obtain

〈~r1~r2|[K̂BM , Ô1M ]|~r ′1~r ′2 〉 = −α
2
s(µ)N2

c

4π4

[
πδ(~r11′)

~r 2
12

~r 2
22′~r 2

12′
ln
(
~r 2
12

~r 2
22′

)
ln
(
~r 2
12

~r 2
12′

)

+πδ(r22′)
~r 2
12

~r 2
11′~r 2

21′
ln
(
~r 2
12

~r 2
11′

)
ln
(
~r 2
12

~r 2
21′

)
+

~r 2
12

~r 2
11′~r 2

22′~r 2
1′2′

ln
(
~r 2
12~r

2
1′2′

~r 2
12′ ~r 2

21′

)]
. (43)

Then, using the functions gTi (37)–(40) for the kernel K̂, we obtain the func-
tions gQCi for the kernel K̂QC = K̂− [K̂B , O1]:

gQC0 (~r1, ~r2; ~ρ) = 6πζ (3) δ (~ρ)− g(~r1, ~r2; ~ρ) , (44)
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gQC1 (~r1, ~r2;~r ′2 ) =
11
6

~r 2
12

~r 2
22′~r 2

12′
ln
(
~r 2
12

r2µ

)
+

11
6

(
1
~r 2
22′
− 1
~r 2
12′

)
ln
(
~r 2
22′

~r 2
12′

)
, (45)

where ln r2µ is defined in Eq. (14), and

gQC2 (~r1, ~r2;~r ′1 , ~r
′
2 ) =

=
1

~r 4
1′2′

(
~r 2
11′ ~r 2

22′ − 2~r 2
12 ~r

2
1′2′

d
ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
− 1
)

+
~r 2
12

~r 2
11′~r 2

22′~r 2
1′2′

ln
(
~r 2
12~r

2
1′2′

~r 2
12′ ~r 2

21′

)
+

1
2~r 2

11′ ~r 2
22′

ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

)
, d = ~r 2

12′~r 2
21′ − ~r 2

11′~r 2
22′ . (46)

From the representation (11) and the expressions (44)–(46) it can be seen
that the conformal invariance is violated only by the terms proportional to
11/6. Remind that in the quark contribution the violation has the same
form with −nf/3 (nf is the quark flavour number) instead of 11/6, so that
the total violation is proportional to the β-function. It means that the kernel
K̂QC = K̂−[K̂B , O1] is quasi-conformal, i.e. nonconformal terms in its Möbius
form have origin from the renormalization procedure.

The part of the gluon contribution to the Möbius form of K̂QC symmetric
with respect to the substitution (~r ′1 ↔ ~r ′2 ) coincides with the corresponding
contribution to the kernel for the evolution of the “composite dipole opera-
tors" obtained in Eq. (70) of Ref. [25], if one does not pay attention to the
misprint in this equation (instead of d2z3d

2z4/z
2
34 must be d2z3d

2z4/z
4
34) and

to the difference in the renormalization scales: r2µBC
instead of our r2µ (14),

being

r2µBC
=

r2µ
4e2ψ(1)

, µ2
BC =

µ2

4e2ψ(1)
. (47)

As was pointed out in Ref. [26], we think that this difference arose because
the renormalization scheme used in Refs. [17] and [25] is not equivalent to the
conventional MS renormalization scheme defined in the momentum space.

5 Möbius forms for total (quasi-) conformal
kernels

In this section we present the Möbius form for the total quasi-conformal
BFKL kernels in QCD and extended supersymmetric Yang-Mills theories
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with arbitrary N . In all these theories the quasi-conformal kernel K̂QC is
defined by the relation

K̂QC = K̂ +
αs
8π
β0[K̂B , ln

(
~̂q 2
1 ~̂q

2
2

)
]− [K̂

B
, Ô + Ô1], (48)

where β0 is the first coefficient of the beta-function for the corresponding the-
ory, the operators Ô and Ô1 are defined in Eqs. (25) and (42) respectively.
For QCD the kernel K is the usual BFKL kernel defined in the momentum
representation (see Eq. (3)). For SUSY Yang-Mills theories in theMS renor-
malization scheme it is obtained [22] from the QCD kernel by the change
of the coefficients nf with nMNc (nM is the number of gluinos, nM = N)
in the “non-Abelian" part and nf with −nMN3

c in the “Abelian" part of
the quark contribution, and by addition of the contribution of ns scalars
(nS = 2(N − 1)). The latter contribution is defined in the momentum space
by Eqs. (19)-(22) and (28) in Ref. [23].

In the QCD case, using the gluon contribution from the previous section
and taking the quark part from Refs. [10, 18], for the Möbius form of the
quasi-conformal kernel (48) we get

g
QC(QCD)
0 (~r1, ~r2; ~ρ) = 6πζ (3) δ (~ρ)− gQC(QCD)

1 (~r1, ~r2; ~ρ) , (49)

g
QC(QCD)
1 (~r1, ~r2;~r ′2 ) =

~r 2
12

~r 2
22′~r 2

12′

[
67
18
− ζ(2)− 5nf

9Nc
+

β0

2Nc
ln
(
~r 2
12µ

2

4e2ψ(1)

)
+
β0

2Nc
~r 2
12′ − ~r 2

22′

~r 2
12

ln
(
~r 2
22′

~r 2
12′

)]
, (50)

g
QC(QCD)
2 (~r1, ~r2;~r ′1 , ~r

′
2 ) =

~r 2
12

~r 2
11′~r 2

22′~r 2
1′2′

ln
(
~r 2
12~r

2
1′2′

~r 2
12′ ~r 2

21′

)
+

1
~r 4
1′2′

(
~r 2
11′ ~r 2

22′ − 2~r 2
12 ~r

2
1′2′

d
ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
− 1
)(

1 +
nf
N3
c

)
+
(

3nf
2N3

c

~r 2
12

~r 2
1′2′d

+
1

2~r 2
11′ ~r 2

22′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

))
ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
. (51)

Here β0 = 11
3 Nc −

2
3nf . With account of r1 ↔ r2 symmetrization this result

coincides with the result of Ref. [25] up to the different µ (47).
Since the dimensional regularization violates the supersymmetry, the reg-

ularization which is commonly used in supersymmetric theories is the di-
mensional reduction. So, we take the scalar and fermion contributions from
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Ref. [23], add the gluon one found in the previous section, and express our re-
sult in the dimensional reduction scheme, which differs from the MS scheme
by the finite charge renormalization (see Ref. [23] for details):

αs → αs

(
1− αsNc

12π

)
. (52)

Thus we find

g0
SUSY (~r1, ~r2; ~ρ) = 6πζ (3) δ (~ρ)− gSUSY (~r1, ~r2; ~ρ) , (53)

gSUSY (~r1, ~r2;~r ′2 ) =
~r 2
12

~r 2
22′~r 2

12′

[
32
9
− ζ(2)− 5nM + 2nS

9
+

β0

2Nc
ln
(
~r 2
12µ

2

4e2ψ(1)

)
+
β0

2Nc
~r 2
12′ − ~r 2

22′

~r 2
12

ln
(
~r 2
22′

~r 2
12′

)]
, (54)

gSUSY (~r1, ~r2;~r ′1 , ~r
′
2 ) =

1
~r 4
1′2′

(
~r 2
11′ ~r 2

22′ − 2~r 2
12 ~r

2
1′2′

d
ln
(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
− 1
)

×
(

1− nM +
nS
2

)
+
(

(2nS − 3nM )
2~r 2

1′2′

~r 2
12

d
+

1
2~r 2

11′ ~r 2
22′

(
~r 4

12

d
− ~r 2

12

~r 2
1′2′

))
× ln

(
~r 2
12′ ~r 2

21′

~r 2
11′~r 2

22′

)
+

~r 2
12

~r 2
11′~r 2

22′~r 2
1′2′

ln
(
~r 2
12~r

2
1′2′

~r 2
12′ ~r 2

21′

)
,

d = ~r 2
12′~r 2

21′ − ~r 2
11′~r 2

22′ , β0 =
(

11
3
− 2nM

3
− nS

6

)
Nc . (55)

Finally for N = 4 SUSY theory, we put nS = 6, nM = 4, β0 = 0 and write

〈~r1~r2|K̂QCM |~r
′
1~r
′
2 〉N=4 =

=
αsNc
2π2

∫
d~ρ

~r12
2

~r 2
1ρ~r

2
2ρ

[
δ(~r11′)δ(~r2′ρ) + δ(~r1′ρ)δ(~r22′)− δ(~r11′)δ(r22′)

]

×
(

1− αsNcζ(2)
2π

)
+
α2
sN

2
c

4π4

 ln
(
~r 2
12′ ~r

2
21′

~r 2
11′~r

2
22′

)
2~r 2

11′ ~r 2
22′

(
~r 4

12

~r 2
12′~r 2

21′ − ~r 2
11′~r 2

22′
− ~r 2

12

~r 2
1′2′

)

+
~r 2
12 ln

(
~r 2
12~r

2
1′2′

~r 2
12′ ~r

2
21′

)
~r 2

11′~r 2
22′~r 2

1′2′
+ 6π2ζ (3) δ(~r11′)δ(r22′)

 . (56)

This kernel is conformally invariant and coincides with the linearized BK
kernel obtained in Ref. [25] with account of r1 ↔ r2 symmetrization.
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6 Conclusion
The main results of this paper are the following. First, we demonstrated
that the discrepancy between the gluon contribution to the Möbius form of
the BFKL kernel, calculated in Ref. [21], and the corresponding contribution
to the kernel of the colour dipole model, calculated in Refs. [17] and [25],
can be removed due to the ambiguity of the kernels in the next-to-leading
order, which allows the transformations (9). It was explicitly shown that
the symmetrized gluon part of the Möbius form of the kernel (41) coincides
(up to the difference in the renormalization scales (47)) with the gluon part
of the kernel of the colour dipole approach found in Ref. [17] (with account
of the correction of Ref. [25]). In our opinion, the scales differ because the
renormalization scheme used in Refs. [17] and [25] is not equivalent to the
conventional MS renormalization scheme defined in the momentum space.

Second, using the ambiguity mentioned above and the results of Ref. [25],
we constructed the quasi-conformal kernel (48) and found the Möbius form
of this kernel in QCD and N–extended supersymmetric Yang-Mills theories.
The nonconformal terms in this form are proportional to the first coefficient
of the β–function. At N = 4 the Möbius form is conformally invariant and
coincides with the result of Ref. [25].
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