РОССИЙСКАЯ АКАДЕМИЯ НАУК Ордена Ленина Сибирское отделение ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН

А.Д. Букин

КИНЕМАТИЧЕСКАЯ РЕКОНСТРУКЦИЯ ДВУХЧАСТИЧНЫХ СОБЫТИЙ

ИЯФ 2006-42

НОВОСИБИРСК 2006

Кинематическая реконструкция двухчастичных событий

А.Д. Букин Институт ядерной физики им. Г.И.Будкера 630090, Новосибирск, РФ

Аннотация

В работе проведена кинематическая реконструкция двухчастичных событий в аналитическом виде при некоторых предположениях и приближениях. Данные результаты могут быть также использованы для аналитической минимизации части функции правдоподобия в многочастичных событиях, что дает возможность использовать более эффективные программы безусловной минимизации вместо программ численной минимизации с условиями на параметры. Кроме увеличения быстродействия это также повышает надежность минимизации.

Kinematical reconstruction of two-particle events

A.D. Bukin Budker Institute of Nuclear Physics 630090, Novosibirsk, Russia

Abstract

In the paper a kinematical reconstruction of two-particle events is carried out in analytical form under some simplifications. These results can be used for analytical minimization of the part of the likelihood function for multiparticle events, that gives a possibility to use more effective general purpose minimization routines instead of routines for minimization with constraints. Besides the decrease of CPU time consumption it provides more reliable convergeance of minimization.

©Институт ядерной физики им. Г.И.Будкера СО РАН

1 Введение

Процедурой кинематической реконструкции в физике элементарных частиц называется уточнение параметров частиц, используя известные связи между этими параметрами, например, значение полной энергии этих частиц, полного импульса, значений инвариантных масс промежуточных нестабильных состояний и т.п. Обычно эта процедура осуществляется с помощью программ численной минимизации некоторой целевой функции, обычно называемой функцией правдоподобия или χ^2 , если минимизируется сумма квадратов отклонений параметров частиц от их измеренных значений. Так как между параметрами существуют жесткие связи, то приходится использовать программы условной минимизации (например, DONLP2 [1]), которые по эффективности уступают программам безусловной минимизации, таким как MINUIT [2]. Но даже и MINUIT при большом числе параметров функции имеет не 100%-ю эффективность (может не достигать точки минимума). Поэтому аналитическое решение проблемы кинематической реконструкции дает не только выигрыш в быстродействии программы реконструкции, но и повышает надежность.

В данной работе приводится аналитическое решение проблемы кинематической реконструкции двухчастичных событий.

2 Условия, при которых получено аналитическое решение

Решение найдено для простейшего вида минимизируемой функции: вклад от каждой частицы предполагается, как сумма квадратов отклонений параметров частицы от измеренных значений. Причем точность измерения углов в разных проекциях одинакова, так что квадрат отклонения угла от измеренного направления можно представить в виде

$$2 \cdot \frac{p \cdot \hat{p} - \mathbf{p} \cdot \hat{\mathbf{p}}}{p \cdot \hat{p}} \approx 2 \cdot \frac{p \cdot \hat{p} - \mathbf{p} \cdot \hat{\mathbf{p}}}{\hat{p}^2}.$$

Здесь обозначено **р** – вектор импульса частицы, $\hat{\mathbf{p}}$ – вектор измеренного импульса частицы, p – величина импульса, \hat{p} – величина измеренного импульса. Такое приближение возможно, если разрешение по углу частицы хорошее и

$$1 - \cos \alpha \approx \frac{\alpha^2}{2}.$$

Замена в знаменателе величины импульса на его измеренное значение возможно в том случае, когда энергия частицы (или импульс) тоже измеряются с хорошим разрешением.

3 Вариант, когда измеряются параметры только одной частицы — фотона

Рассмотрим случай, когда используется для реконструкции информация о регистрации только одной частицы, причем эта частица — фотон. Про другую частицу известно только, какая у нее масса — m_0 , а экспериментальной информации о ней или нет (например, эта частица — нейтрино), или ее намеренно не используют, например, для оценки эффективности регистрации этой частицы.

Тогда минимизируемая функция выглядит так:

$$\chi^2 = \left(\frac{E_1 - \hat{E}_1}{\sigma_E}\right)^2 + \left(\frac{\Delta\alpha}{\sigma_\theta}\right)^2 \approx \left(\frac{E_1 - \hat{E}_1}{\sigma_E}\right)^2 + 2\frac{E_1\hat{E}_1 - \mathbf{p}_1 \cdot \hat{\mathbf{p}}_1}{\hat{E}_1^2 \sigma_\theta^2}.$$
 (1)

Здесь использовано, что масса первой частицы равна нулю, т.е. $p_1=E_1,$ $\hat{p}_1=\hat{E}_1.$

р₁, *E*₁ – точные значения импульса и энергии частицы,

 \hat{p}_1, \hat{E}_1 – измеренные значения. Для того, чтобы можно было выполнить кинематическую реконструкцию этой системы из двух частиц, надо, чтобы была известна полная энергия W и полный импульс **P**.

Перейдем в систему центра масс этой системы:

$$\mathbf{p}_{1} = \mathbf{q} + \frac{\epsilon_{1}}{M_{0}}\mathbf{P} + \frac{(\mathbf{q}\cdot\mathbf{P})}{M_{0}\cdot(W+M_{0})}\mathbf{P}, \quad E_{1} = \frac{W}{M_{0}}\epsilon_{1} + \frac{(\mathbf{q}\cdot\mathbf{P})}{M_{0}},$$

$$\mathbf{p}_{2} = -\mathbf{q} + \frac{\epsilon_{2}}{M_{0}}\mathbf{P} - \frac{(\mathbf{q}\cdot\mathbf{P})}{M_{0}\cdot(W+M_{0})}\mathbf{P}, \quad E_{2} = \frac{W}{M_{0}}\epsilon_{2} - \frac{(\mathbf{q}\cdot\mathbf{P})}{M_{0}},$$
(2)

где $M_0 = \sqrt{W^2 - P^2}$ – инвариантная масса системы двух частиц, **q** – вектор импульса первой частицы в системе центра масс, ϵ_1 – энергия первой частицы в системе центра масс. Легко проверить, что

$$\epsilon_1 = |\mathbf{q}| = q_0 = \frac{M_0^2 - m_0^2}{2M_0}$$

Формально можно пересчитать и измеренные значения \hat{p}_1 , \hat{E}_1 в систему центра масс:

$$\hat{\mathbf{p}}_{1} = \hat{\mathbf{q}} + \frac{\hat{\epsilon}_{1}}{M_{0}}\mathbf{P} + \frac{(\hat{\mathbf{q}}\cdot\mathbf{P})}{M_{0}\cdot(W+M_{0})}\mathbf{P}, \quad \hat{E}_{1} = \frac{W}{M_{0}}\hat{\epsilon}_{1} + \frac{(\hat{\mathbf{q}}\cdot\mathbf{P})}{M_{0}}, \\ \hat{\mathbf{q}} = \hat{\mathbf{p}}_{1} - \frac{\hat{E}_{1}}{M_{0}}\mathbf{P} + \frac{(\hat{\mathbf{p}}_{1}\cdot\mathbf{P})}{M_{0}\cdot(W+M_{0})}\mathbf{P}, \quad \hat{\epsilon}_{1} = \frac{W}{M_{0}}\hat{E}_{1} - \frac{(\hat{\mathbf{p}}_{1}\cdot\mathbf{P})}{M_{0}}.$$
(3)

Подставляя в (1), получим, что в силу своей Лоренц-инвариантности

$$E_1\hat{E}_1 - \mathbf{p}_1 \cdot \hat{\mathbf{p}}_1 = \epsilon_1\hat{\epsilon}_1 - \mathbf{q} \cdot \hat{\mathbf{q}}_2$$

 \mathbf{a}

$$E_1 - \hat{E}_1 = \frac{W}{M_0} \cdot (q_0 - \hat{\epsilon}_1) + \frac{(\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}} \cdot \mathbf{P})}{M_0},$$

И

$$\chi^2 = \frac{1}{\sigma_E^2} \cdot \left(\frac{W}{M_0} \cdot (q_0 - \hat{\epsilon}_1) + \frac{(\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}} \cdot \mathbf{P})}{M_0}\right)^2 + \frac{2}{\hat{E}_1^2 \sigma_\theta^2} \cdot (\epsilon_1 \hat{\epsilon}_1 - \mathbf{q} \cdot \hat{\mathbf{q}}) .$$
(4)

Теперь требуется найти минимум функции (4) по направлению вектора **q** при постоянной длине $|\mathbf{q}| = q_0$.

Для нахождения стационарных точек можно применить метод неопределенных множителей Лагранжа [3]. Модифицируем минимизируемую функцию:

$$\tilde{\chi}^{2} = \frac{1}{\sigma_{E}^{2}} \cdot \left(\frac{W}{M_{0}} \cdot (q_{0} - \hat{\epsilon}_{1}) + \frac{(\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}} \cdot \mathbf{P})}{M_{0}} \right)^{2} + \frac{2}{\hat{E}_{1}^{2} \sigma_{\theta}^{2}} \cdot (\epsilon_{1} \hat{\epsilon}_{1} - \mathbf{q} \cdot \hat{\mathbf{q}}) + \beta \cdot \left(\mathbf{q}^{2} - q_{0}^{2} \right).$$
(5)

Уравнение для стационарных точек $\frac{d\tilde{\chi}^2}{d\mathbf{q}} = 0$ легко решается:

$$\mathbf{q} = \frac{\hat{\mathbf{q}}}{\beta \hat{E}_1^2 \sigma_{\theta}^2} - \frac{\mathbf{P}}{\beta M_0^2 \sigma_E^2} \cdot \left[W \cdot (q_0 - \hat{\epsilon}_1) + (\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}} \cdot \mathbf{P}) \right], \tag{6}$$

где

$$(\mathbf{q} \cdot \mathbf{P}) = \frac{\left(\frac{P^2}{M_0^2 \sigma_E^2} + \frac{1}{\hat{E}_1^2 \sigma_{\theta}^2}\right) \cdot (\hat{\mathbf{q}} \cdot \mathbf{P}) - \frac{W P^2 \cdot (q_0 - \hat{\epsilon}_1)}{M_0^2 \sigma_E^2}}{\frac{P^2}{M_0^2 \sigma_E^2} + \beta},$$
(7)

а величина β находится из уравнения $\mathbf{q}^2=q_0^2.$

Для упрощения конечных формул, мы можем заметить, что вектор \mathbf{q} является линейной комбинацией двух векторов \mathbf{P} и $\hat{\mathbf{q}}$, что, впрочем, было естественно ожидать с самого начала. Мы можем записать искомый вектор в виде

$$\mathbf{q} = q_0 \cdot \left(\frac{\mathbf{P}}{P}\cos\varphi + \frac{\mathbf{p}_{\perp}}{p_{\perp}}\sin\varphi\right),\tag{8}$$

где

$$\mathbf{p}_{\perp} = \hat{\mathbf{q}} - \frac{(\hat{\mathbf{q}}\mathbf{P})}{P^2}\mathbf{P}, \ p_{\perp} = \sqrt{\hat{\mathbf{q}}^2 - \left(\frac{\hat{\mathbf{q}}\mathbf{P}}{P}\right)^2}.$$
(9)

Если подставить искомый вектор в такой форме в (4) и вычислить производную по φ , то получим уравнение для стационарных точек:

$$\left(a_2^2 + 2a_4^2\sin\varphi\right)\cos\varphi + \left(2a_4a_5 - a_3\right)\sin\varphi = 0,\tag{10}$$

где

$$a_{1} = \frac{1}{\hat{E}_{1}\sigma_{\theta}} \cdot \sqrt{2q_{0}\hat{\epsilon}_{1}}, \quad a_{2} = \frac{1}{\hat{E}_{1}\sigma_{\theta}} \cdot \sqrt{2q_{0}p_{\perp}}, \quad a_{3} = \frac{2q_{0}}{\hat{E}_{1}^{2}P\sigma_{\theta}^{2}} \cdot \left(\hat{\mathbf{q}}\mathbf{P}\right), \\ a_{4} = \frac{q_{0}P}{M_{0}\sigma_{E}}, \qquad a_{5} = \frac{1}{M_{0}\sigma_{E}} \cdot \left[W \cdot \left(q_{0} - \hat{\epsilon}_{1}\right) - \left(\hat{\mathbf{q}}\mathbf{P}\right)\right].$$
(11)

Введя переменную $t = tg \frac{\varphi}{2}$ и сделав замену

$$\sin \varphi = \frac{2t}{1+t^2}, \quad \cos \varphi = \frac{1-t^2}{1+t^2},$$

получим уравнение четвертой степени

$$a_{2}^{2}t^{4} + 2\left(a_{3} + 2a_{4}^{2} - 2a_{4}a_{5}\right)t^{3} + 2\left(a_{3} - 2a_{4}^{2} - 2a_{4}a_{5}\right)t - a_{2}^{2} = 0$$
(12)

Решение такого уравнения хорошо известно [3] (решение Феррари):

$$t = \frac{Q_2 + Q_4 - a_6}{2},\tag{13}$$

где

$$Q_4 = \pm \sqrt{2(a_6^2 + Q_3) + \frac{2}{3a_2^2 Q_3} (4a_4^2 a_6 - a_2^2 - a_2^2 a_6^2) + \frac{2}{a_2^2 Q_2} (8a_4^2 - 2a_2^2 a_6 - a_2^2 a_6^3)},$$
(14)

$$Q_2 = \pm \sqrt{a_6^2 - 2Q_3 + 2\frac{1 + a_6^2}{3Q_3} - \frac{8a_4^2a_6}{3a_2^2Q_3}},$$
(15)

$$Q_3 = \sqrt[3]{Q_1 + 2\left(\frac{a_4}{a_2}\right)^2 a_6 - 4\left(\frac{a_4}{a_2}\right)^4},\tag{16}$$

$$Q_{1}^{2} = 16 \left(\frac{a_{4}}{a_{2}}\right)^{8} - 16a_{6} \frac{4a_{6}^{2} + 27}{27} \left(\frac{a_{4}}{a_{2}}\right)^{6} + 4a_{6}^{2} \frac{4a_{6}^{2} + 13}{9} \left(\frac{a_{4}}{a_{2}}\right)^{4} + \frac{\left(a_{6}^{2} + 1\right)^{3}}{27} - \frac{4a_{6}}{9} \left(\frac{\left(a_{6}^{2} + 1\right)a_{4}}{a_{2}}\right)^{2},$$
(17)

$$a_6 = \frac{a_3 - 2a_4a_5 + 2a_4^2}{a_2^2},\tag{18}$$

$$\chi^2 = \left(\frac{8a_4}{Q_r}\right)^2 - \frac{4a_2^2 \cdot (a_6 + 2x)}{Q_r} + a_1^2 + a_2^2 a_6 - a_4^2 + a_5^2, \tag{19}$$

$$Q_r = 4 + (a_6 - 2x)^2, \quad x = \frac{Q_2 + Q_4}{2}.$$
 (20)

Всего здесь получается четыре решения при разных знаках Q_2 и Q_4 . Из них надо выбрать одно решение, в котором t и x — действительные, и при этом χ^2 принимает наименьшее значение.

Для проверки правильности реализации этих формул в программах удобно иметь какой-либо численный пример.

Возьмем $m_0 = 0.1349766$ ГэВ/ c^2 , $\mathbf{P} = (-5, 0.1, 2.5)$, $\hat{\mathbf{p}}_1 = (-4, -1, 2)$ ГэВ/c, и для первого варианта выберем полную энергию такую, чтобы χ^2 могла достигать значения 0, т.е.

$$W = |\hat{\mathbf{p}}_1| + \sqrt{m_0^2 + (\hat{\mathbf{p}}_1 - \mathbf{P})^2} \approx 6.156811599307 \,\,\Gamma \mathfrak{sB}.$$

Угловое и энергетическое разрешение примем равным $\sigma_E = 0.05$, $\sigma_{\theta} = 0.01$.

Все величины, вычисленные по приведенным формулам, перечислены в табл. 1.

Как и ожидалось, в одном из вариантов (отрицательное Q_2 , положительное Q_4) χ^2 принимает нулевое значение. В этом варианте $\cos \varphi = 0.54256790364$, $\sin \varphi = 0.8400119463$, $\mathbf{p}_1 = (-4, -1, 2)$, $\mathbf{p}_2 = (-1, 1.1, 0.5)$.

Два варианта имеют комплесное решение для x и t, поэтому должны быть отброшены.

Рассмотрим другой случай, где минимум не будет равен нулю. Для этого достаточно выбрать другое значение W = 6 ГэВ (вторая колонка в табл. 1).

Параметр	Значение	
	Вариант 1	Вариант 2
W	6.156811599307	6
M_0	2.578047530470	2.177154105708
q_0	1.285490338808	1.084392993834
\mathbf{p}_{\perp}	(-0.01727, -1.07965, 0.00864)	(-0.01727, -1.07965, 0.00864)
p_{\perp}	1.079827241461	1.079827241461
a_1	39.67109312440	35.08817649140
a_2	36.35941597414	33.39456892244
a_3	853.8909955573	521.6700505245
a_4	55.75738271374	55.69574462779
a_5	-30.25216625149	-31.88213013390
a_6	7.901035808400	9.215499857070
Q_1	13.35285658053	15.59288095145
Q_3	3.050722592025	3.299216605985
Q_2	-7.344659048313	-8.658567059709
Q_4	-16.33480340659	-18.96572517769
x	-11.83973122745	-13.81214611870
t	-15.79024913165	-18.41989604723
Q_r	1001.327870558	1361.170281564
χ^2	9908.853703572	9483.170255733
Q_2	-7.344659048313	-8.658567059709
Q_4	16.33480340659	18.96572517769
x	4.495072179136	5.153579058989
t	0.544554274936	0.545829130454
Q_r	5.186157433405	5.191717758610
χ^2	$2.9 \cdot 10^{-23}$	14.11559932949
Q_2	7.344659048313	8.658567059709
Q_4	-0.39451i	-0.29610i
x	3.67233 - 0.19725i	4.32928 - 0.14805i
t	-0.27818 - 0.19725i	-0.27847 - 0.14805i
Q_r	—	—
χ^2	—	_
Q_2	7.344659048313	8.658567059709
Q_4	0.39451i	0.29610i
x	3.67233 + 0.19725i	4.32928 + 0.14805i
t	-0.27818 + 0.19725i	-0.27847 + 0.14805i
Q_r	—	—
χ^2	—	—

Таблица 1: Численные примеры для кинематической реконструкции

И здесь минимум $\chi^2 = 14.12$ получается при отрицательном Q_2 и положительном Q_4 . При этом $\cos \varphi = 0.54091581476$, $\sin \varphi = 0.84107673927$, $\mathbf{p}_1 = (-3.95060102, -0.833191621, 1.975300509)$, $\mathbf{p}_2 = (-1.04939898, 0.93319162, 0.52469949)$.

Интересен вопрос, насколько устойчивы полученные формулы. Например, в случае, когда общий импульс системы $\mathbf{P} = 0$ (например, в экспериментах на встречных пучках). Легко убедиться, что q_0 , $\hat{\mathbf{q}}$, $\hat{\epsilon}_1$ вычисляются без проблем. Однако, \mathbf{p}_{\perp} становится неопределенным. Из промежуточных параметров величина a_2 тоже не определена.

Довольно трудно преобразовать полученные формулы, чтобы устранить эту неопределенность. Проще решить заново эту задачу для случая $\mathbf{P} = 0$. Решая эту задачу с помощью неопределенных множителей Лагранжа, получим, что искомый вектор $\mathbf{q} = \mathbf{p}_1$ пропорционален вектору $\hat{\mathbf{q}} = \hat{\mathbf{p}}_1$, а абсолютная величина равна q_0 . В итоге:

$$\mathbf{q} = \mathbf{p}_1 = \frac{q_0}{\hat{E}_1} \cdot \hat{\mathbf{p}}_1, \quad \mathbf{p}_2 = -\mathbf{p}_1, \quad \chi^2 = \left(\frac{\hat{E}_1 - q_0}{\sigma_E}\right)^2.$$
(21)

Другой особый случай, когда тоже не определен вектор \mathbf{p}_{\perp} , это — параллельные вектора **Р** и \hat{p}_1 . Решение получается похожим на предыдущее

$$\mathbf{q} = \pm \frac{q_0}{\hat{E}_1} \cdot \hat{\mathbf{p}}_1, \quad \mathbf{p}_2 = \mathbf{P} - \mathbf{p}_1, \tag{22}$$

~

только

$$\mathbf{p}_{1} = \pm \frac{q_{0}M_{0}}{W\mp P} \cdot \frac{\mathbf{P}}{P}, \quad E_{1} = \frac{q_{0}M_{0}}{W\mp P},$$

$$\chi^{2} = \left(\frac{\hat{E}_{1} - E_{1}}{\sigma_{E}}\right)^{2} + \frac{2q_{0}M_{0}}{(W\mp P)\hat{E}_{1}^{2}\sigma_{\theta}^{2}} \cdot \left[\hat{E}_{1} \mp \frac{(\hat{\mathbf{p}}_{1}\mathbf{P})}{P}\right].$$
(23)

Какие знаки выбрать в этом случае, зависит от того, в каком случае получается меньшее значение χ^2 .

4 Вариант с двумя фотонами в конечном состоянии

В этом случае при переходе в систему центра масс минимизируемая функция записывается в виде

$$\chi^{2} = \frac{1}{\sigma_{E1}^{2}} \cdot \left(\frac{W}{M_{0}} \cdot (q_{0} - \hat{\epsilon}_{1}) + \frac{(\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}}_{1} \cdot \mathbf{P})}{M_{0}}\right)^{2} + \frac{2}{\hat{E}_{1}^{2} \sigma_{\theta_{1}}^{2}} \cdot (\epsilon_{1} \hat{\epsilon}_{1} - \mathbf{q} \cdot \hat{\mathbf{q}}_{1}) + \frac{1}{\sigma_{E2}^{2}} \cdot \left(\frac{W}{M_{0}} \cdot (q_{0} - \hat{\epsilon}_{2}) - \frac{(\mathbf{q} \cdot \mathbf{P}) + (\hat{\mathbf{q}}_{2} \cdot \mathbf{P})}{M_{0}}\right)^{2} + \frac{2}{\hat{E}_{2}^{2} \sigma_{\theta_{2}}^{2}} \cdot (\epsilon_{2} \hat{\epsilon}_{2} + \mathbf{q} \cdot \hat{\mathbf{q}}_{2}) .$$
(24)

Здесь

$$\epsilon_{1} = \epsilon_{2} = q_{0} = \frac{M_{0}}{2},$$

$$\mathbf{p}_{1} = \mathbf{q} + \frac{\epsilon_{1}}{M_{0}} \mathbf{P} + \frac{(\mathbf{q} \cdot \mathbf{P})}{M_{0} \cdot (W + M_{0})} \mathbf{P}, \quad E_{1} = \frac{W}{M_{0}} \epsilon_{1} + \frac{(\mathbf{q} \cdot \mathbf{P})}{M_{0}},$$

$$\mathbf{p}_{2} = -\mathbf{q} + \frac{\epsilon_{2}}{M_{0}} \mathbf{P} - \frac{(\mathbf{q} \cdot \mathbf{P})}{M_{0} \cdot (W + M_{0})} \mathbf{P}, \quad E_{2} = \frac{W}{M_{0}} \epsilon_{2} - \frac{(\mathbf{q} \cdot \mathbf{P})}{M_{0}},$$
(25)

В соответствии со схемой минимизации при наличии связей с неопределенными множителями Лагранжа добавим к χ^2 слагаемое

$$\beta \cdot \left(\frac{\mathbf{q}^2}{q_0^2} - 1\right)$$

и продифференцируем по **q**:

$$\frac{1}{\sigma_{E1}^{2}} \cdot \left(\frac{W}{M_{0}} \cdot (q_{0} - \hat{\epsilon}_{1}) + \frac{(\mathbf{q} \cdot \mathbf{P}) - (\hat{\mathbf{q}}_{1} \cdot \mathbf{P})}{M_{0}}\right) \cdot \frac{\mathbf{P}}{M_{0}} - \frac{\hat{\mathbf{q}}_{1}}{\hat{E}_{1}^{2} \sigma_{\theta_{1}}^{2}} - \frac{1}{\sigma_{E2}^{2}} \cdot \left(\frac{W}{M_{0}} \cdot (q_{0} - \hat{\epsilon}_{2}) - \frac{(\mathbf{q} \cdot \mathbf{P}) + (\hat{\mathbf{q}}_{2} \cdot \mathbf{P})}{M_{0}}\right) \cdot \frac{\mathbf{P}}{M_{0}} + \frac{\hat{\mathbf{q}}_{2}}{\hat{E}_{2}^{2} \sigma_{\theta_{2}}^{2}} + \beta \frac{\mathbf{q}}{q_{0}^{2}} = 0.$$
(26)

Введем обозначения:

$$b_{1} = \frac{1}{M_{0}\sigma_{E1}}, \quad b_{2} = \frac{1}{M_{0}\sigma_{E2}}, \quad b_{3} = W \cdot (q_{0} - \hat{\epsilon}_{1}) - (\hat{\mathbf{q}}_{1} \cdot \mathbf{P}),$$

$$b_{4} = W \cdot (q_{0} - \hat{\epsilon}_{2}) - (\hat{\mathbf{q}}_{2} \cdot \mathbf{P}), \\ b_{5} = \frac{\hat{\epsilon}_{1}}{\hat{E}_{1}\sigma_{\theta1}}, \quad b_{6} = \frac{\hat{\epsilon}_{2}}{\hat{E}_{2}\sigma_{\theta2}}.$$
(27)

Сначала найдем значение (qP), умножив уравнение (26) на P:

$$(\mathbf{qP}) = \frac{1}{(b_1^2 + b_2^2)P^2 + \frac{4\beta}{M_0^2}} \cdot \left[\left(b_4 b_2^2 - b_3 b_1^2 \right) P^2 - \left(\frac{b_5}{\hat{\epsilon}_1} \right)^2 \cdot \left(b_3 + \frac{(2\hat{\epsilon}_1 - M_0)W}{2} \right) + \left(\frac{b_6}{\hat{\epsilon}_2} \right)^2 \cdot \left(b_4 + \frac{(2\hat{\epsilon}_2 - M_0)W}{2} \right) \right].$$

$$(28)$$

Подставим это значение в (26) и найдем **q**:

$$\mathbf{q} = \frac{M_0^2}{4\beta} \cdot \left[\left(\frac{b_5}{\hat{\epsilon}_1} \right)^2 \hat{\mathbf{q}}_1 - \left(\frac{b_6}{\hat{\epsilon}_2} \right)^2 \hat{\mathbf{q}}_2 \right] + \\ + \frac{M_0^2 \mathbf{P}}{4\beta + (b_1^2 + b_2^2) P^2 M_0^2} \cdot \left\{ b_2^2 b_4 - b_1^2 b_3 + \frac{(b_1^2 + b_2^2) M_0^2}{8\beta} \times \right. \\ \left. \times \left[\left(\frac{b_5}{\hat{\epsilon}_1} \right)^2 \cdot (2b_3 + (2\hat{\epsilon}_1 - M_0) W) - \left(\frac{b_6}{\hat{\epsilon}_2} \right)^2 \cdot (2b_4 + (2\hat{\epsilon}_2 - M_0) W) \right] \right\}$$
(29)

Минимизируемая функция

$$\chi^{2} = b_{1}^{2}b_{3}^{2} + b_{2}^{2}b_{4}^{2} + (b_{1}^{2} + b_{2}^{2})(\mathbf{qP})^{2} + 2(b_{1}^{2}b_{3} - b_{2}^{2}b_{4})(\mathbf{qP}) + + \left(\frac{b_{5}^{2}}{\hat{\epsilon}_{1}} + \frac{b_{6}^{2}}{\hat{\epsilon}_{2}}\right)M_{0} + 2\left(\frac{b_{6}}{\hat{\epsilon}_{2}}\right)^{2}(\hat{\mathbf{q}}_{2}\mathbf{q}) - 2\left(\frac{b_{5}}{\hat{\epsilon}_{1}}\right)^{2}(\hat{\mathbf{q}}_{1}\mathbf{q}).$$
(30)

Теперь осталось найти константу β из условия $\mathbf{q}^2 = q_0^2$. Это условие сводится к уравнению четвертой степени относительно β . После приведения к виду, когда коэффициент при четвертой степени

$$x = \beta + \frac{M_0^2 P^2}{8} \left(b_1^2 + b_2^2 \right) \tag{31}$$

равен единице, а коэффициент при третьей степени равен нулю, коэффициент при второй степени \boldsymbol{x} равен

$$A_{2} = \frac{1}{2} \left(\frac{b_{5}b_{6}M_{0}}{\hat{\epsilon}_{1}\hat{\epsilon}_{2}} \right)^{2} \left(\hat{\mathbf{q}}_{1}\hat{\mathbf{q}}_{2} \right) - \frac{1}{32} \left[\left(b_{1}^{2} + b_{2}^{2} \right) P^{2}M_{0}^{2} \right]^{2} - \left[\frac{\left(b_{1}^{2}b_{3} - b_{2}^{2}b_{4} \right) PM_{0}}{2} \right]^{2} - \left(\frac{b_{5}M_{0}}{2\hat{\epsilon}_{1}} \right)^{2} \cdot \left[b_{5}^{2} + \left(b_{1}^{2}b_{3} - b_{2}^{2}b_{4} \right) \cdot \left(2b_{3} + 2\hat{\epsilon}_{1}W - M_{0}W \right) \right] + \left(\frac{b_{6}M_{0}}{2\hat{\epsilon}_{2}} \right)^{2} \cdot \left[\left(b_{1}^{2}b_{3} - b_{2}^{2}b_{4} \right) \cdot \left(2b_{4} + 2\hat{\epsilon}_{2}W - M_{0}W \right) - b_{6}^{2} \right],$$

$$(32)$$

при первой степени

$$A_{1} = \frac{(b_{1}^{2}+b_{2}^{2})P^{2}M_{0}^{2}}{4} \cdot A_{2} + \left(\frac{b_{5}M_{0}^{2}}{4\sqrt{2}\hat{\epsilon}_{1}^{2}}\right)^{2} \left(b_{1}^{2}+b_{2}^{2}\right) \left(2b_{3}+2\hat{\epsilon}_{1}W-WM_{0}\right) \times \\ \times \left[4\left(b_{1}^{2}b_{3}-b_{2}^{2}b_{4}\right)\hat{\epsilon}_{1}^{2}P^{2}+b_{5}^{2}\cdot\left(2b_{3}+2\hat{\epsilon}_{1}W-WM_{0}\right)\right] - \\ - \left(\frac{b_{6}M_{0}^{2}}{4\sqrt{2}\hat{\epsilon}_{2}^{2}}\right)^{2} \left(b_{1}^{2}+b_{2}^{2}\right) \left(2b_{4}+2\hat{\epsilon}_{2}W-WM_{0}\right) \times \\ \times \left[4\left(b_{1}^{2}b_{3}-b_{2}^{2}b_{4}\right)\hat{\epsilon}_{2}^{2}P^{2}-b_{6}^{2}\cdot\left(2b_{4}+2\hat{\epsilon}_{2}W-WM_{0}\right)\right] - \\ - \left(\frac{b_{5}b_{6}M_{0}^{2}}{4\hat{\epsilon}_{1}\hat{\epsilon}_{2}}\right)^{2} \left(b_{1}^{2}+b_{2}^{2}\right) \times \\ \times \left(2b_{4}+2\hat{\epsilon}_{2}W-WM_{0}\right) \left(2b_{3}+2\hat{\epsilon}_{1}W-WM_{0}\right) + \\ + \left(\frac{M_{0}^{2}P^{2}}{8\sqrt{2}}\right)^{2} \left(b_{1}^{2}+b_{2}^{2}\right) \left[16\left(b_{1}^{2}b_{3}-b_{2}^{2}b_{4}\right)^{2}+\left(b_{1}^{2}+b_{2}^{2}\right)^{2}P^{2}M_{0}^{2}\right]$$

$$\tag{33}$$

и постоянный член

$$A_0 = \left(\frac{\left(b_1^2 + b_2^2\right)M_0^2P^2}{64}\right)^2 \left[64A_2 + 3\left(b_1^2 + b_2^2\right)^2 M_0^4P^4\right]$$
(34)

Уравнение для x

$$x^4 + A_2 x^2 + A_1 x + A_0 = 0, (35)$$

согласно алгоритму Феррари [3], имеет решение

$$x = \frac{Q_2 + Q_4}{2}, \quad \beta = x - \frac{M_0^2 P^2}{8} \left(b_1^2 + b_2^2 \right), \tag{36}$$

где

$$Q_{4} = \pm \sqrt{2Q_{3} - \frac{4}{3}A_{2} + \frac{A_{2}^{2} + 12A_{0}}{18Q_{3}} - 2\frac{A_{1}}{Q_{2}}},$$

$$Q_{2} = \pm \sqrt{-2Q_{3} - \frac{2}{3}A_{2} - \frac{A_{2}^{2} + 12A_{0}}{18Q_{3}}},$$

$$Q_{3} = \sqrt[3]{Q_{1} + \frac{72A_{0}A_{2} - 27A_{1}^{2} - 2A_{2}^{2}}{432}},$$

$$Q_{1} = \sqrt{\frac{(27A_{1}^{2} + 4A_{2}^{3})A_{1}^{2}}{6912} - \frac{(9A_{1}^{2} + A_{2}^{3})A_{0}A_{2}}{432} - \frac{(2A_{0} - A_{2}^{2})A_{0}^{2}}{54}}.$$
(37)

Из формально полученных четырех решений надо выбрать одно с действительными x и β и минимальным значением $\chi^2.$

Для удобства отладки программ приведем численный пример. Возьмем $\hat{\mathbf{p}}_1 = (-4, -1, 2) \ \Gamma \Im B/c$, $\hat{\mathbf{p}}_2 = (-2, 0, 1) \ \Gamma \Im B/c$, и для первого варианта выберем полную энергию и импульс такие, чтобы χ^2 могла достигать значения 0, т.е.

$$\mathbf{P} = (-6, -1, 3),$$

 $W = |\hat{\mathbf{p}}_1| + |\hat{\mathbf{p}}_2| \approx 6.8186436724556 \ \Gamma$ əB.

Угловое и энергетическое разрешение примем равным

$$\sigma_{E1} = 0.05, \, \sigma_{\theta 1} = 0.01, \, \sigma_{E2} = 0.03, \, \sigma_{\theta 2} = 0.02.$$

Все величины, вычисленные по приведенным формулам, перечислены в табл. 2 (в данном варианте $q_0 = M_0/2$ — в таблице не приводится).

Как и ожидалось, в одном из вариантов (отрицательное Q_2 , положительное Q_4) χ^2 принимает нулевое значение (минимальное). В этом варианте $\mathbf{p}_1 = (-4, -1, 2), \mathbf{p}_2 = (-2, 0, 1).$

Параметр	Значение	
	Вариант 1	Вариант 2
Р	(-6, -1, 3)	(-5, 0.1, 2.5)
W	6.8186436724556	6
M_0	0.7027812831307	2.1771541057008
b_1	28.458356077593	9.1863042434925
b_2	47.430593462654	15.310507072488
b_3	-0.8245408522749	-3.4455111718664
b_4	0.8245408522749	1.6631977392679
b_5	7.6679724451080	26.014443885206
b_6	7.8573336119779	9.4120589621124
A_2	$-1.8765675294467 \cdot 10^8$	$-8.7461229294720\cdot 10^{7}$
A_1	$6.3667995328021 \cdot 10^{11}$	$2.0255608389153 \cdot 10^{11}$
A_0	$2.9318134645226\cdot 10^{15}$	$5.9737968189656\cdot 10^{14}$
Q_1	$2.4736759306702 \cdot 10^{21} i$	$1.7054424216377 \cdot 10^{21}i$
Q_3	(2.247454664181 +	(1.1323885553612 +
	$3.808361765643i) \cdot 10^7$	$1.6833934797320i) \cdot 10^7$
Q_2	-5933.490995686	-3607.2072274868
Q_4	-23552.33975928	-16559.493778965
x	-14742.91537748	-10083.350503226
β	-23431.80426637	-15988.017169893
q	(0.31063, 0.05349, -0.15532)	(0.97353, 0.01716, -0.48677)
χ^2	31807.38818797	23524.460773668
Q_2	-5933.490995686	-3607.2072274868
Q_4	23552.33975928	16559.493778965
x	8809.424381798	6476.1432757392
β	120.5354929088	571.47660907256
d	(-0.06407, 0.00000, -0.34401)	(-0.34478, -1.01804, 0.17239)
χ^2	$1.8 \cdot 10^{-23}$	857.6982922577
Q_2	5933.490995686	3607.2072274868
Q_4	-11202.75291392	-7043.0245632330
x	-2634.630959115	-1717.9086679059
β	-11323.51984800	-7622.5753345726
q	(-0.31131, -0.04834, 0.15565)	(-0.96984, 0.09624, 0.48492)
χ^2	7592.147924567	6839.0302549447
Q_2	5933.490995686	3607.2072274868
Q_4	11202.75291392	7043.0245632330
x	8568.121954801	5325.1158953927
β	-120.7669340874	-579.55077127401
q	(-0.15245, 0.30729, 0.07622)	(-0.34587, 1.01758, 0.17294)
χ^2	424.0271600806	2870.1760113046

Таблица 2: Численные примеры для кинематической реконструкции

Остальные три решения имеют бо́льшее значение χ^2 , поэтому должны быть отброшены.

Рассмотрим другой случай, где минимум не будет равен нулю. Для этого достаточно выбрать другое значение $W = 6 \Gamma$ эВ и $\mathbf{P} = (-5, 0.1, 2.5)$ (вторая колонка в табл. 2).

 $\dot{\rm M}$ здесь минимум $\chi^2=857.70$ получается при отрицательном Q_2 и положительном $Q_4.$ При этом

 $\mathbf{p}_1 = (-3.421378445, -0.956511269, 1.710689222),$

 $\mathbf{p}_2 = (-1.57862156, 1.05651127, 0.78931078).$

В этом варианте формулы получились более громоздкие и, что еще хуже, промежуточные результаты принимают большие значения. При первом взгляде создается впечатление, что при $\mathbf{P} = 0$ в формулах не возникает никаких особенностей. Однако, при попытке решить задачу при $\mathbf{P} = 0$ в формуле для Q_4 возникает неопределенность $\frac{A_1}{Q_2} = \frac{0}{0}$. Получим разложение решения при $P \to 0$ по степеням P. Из выраже-

Получим разложение решения при $P \to 0$ по степеням P. Из выражения (29) видно, что нам не подходят решения с бесконечными β , поэтому и коэффициенты уравнения (35) A_0 , A_1 , A_2 , и искомое решение x можно разложить по степеням P. Попробуем разложение до четвертой степени:

$$A_{0} = A_{00} + A_{01}P + A_{02}P^{2} + A_{03}P^{3} + A_{04}P^{4},$$

$$A_{1} = A_{10} + A_{11}P + A_{12}P^{2} + A_{13}P^{3} + A_{14}P^{4},$$

$$A_{2} = A_{20} + A_{21}P + A_{22}P^{2} + A_{23}P^{3} + A_{24}P^{4},$$

$$x = x_{0} + x_{1}P + x_{2}P^{2} + x_{3}P^{3} + x_{4}P^{4}.$$
(38)

Для этой операции нам потребуется ввести новые обозначения:

$$\mathbf{P}\hat{\mathbf{q}}_1 = P\hat{\epsilon}_1\cos\psi_1, \quad \mathbf{P}\hat{\mathbf{q}}_2 = P\hat{\epsilon}_2\cos\psi_2. \tag{39}$$

Члены разложения нулевого порядка:

$$A_{00} = A_{10} = 0, \quad A_{20} = -q_0^2 \cdot \left[\left(\frac{b_5^2}{\hat{\epsilon}_1} \right)^2 + \left(\frac{b_6^2}{\hat{\epsilon}_2} \right)^2 - 2 \left(\frac{b_5 b_6}{\hat{\epsilon}_1 \hat{\epsilon}_2} \right)^2 (\hat{\mathbf{q}}_1 \hat{\mathbf{q}}_2) \right].$$
(40)

В уравнении

$$x_0^4 + A_{20}x_0^2 = 0 (41)$$

надо отбросить решения $x_0 = \beta_0 = 0$, так как они приводят к бесконечным значениям в (29). Поэтому

$$x_{0} = \pm q_{0} \sqrt{\left(\frac{b_{5}^{2}}{\hat{\epsilon}_{1}}\right)^{2} + \left(\frac{b_{6}^{2}}{\hat{\epsilon}_{2}}\right)^{2} - 2\left(\frac{b_{5}b_{6}}{\hat{\epsilon}_{1}\hat{\epsilon}_{2}}\right)^{2} (\hat{\mathbf{q}}_{1}\hat{\mathbf{q}}_{2})}.$$
 (42)

Для поправки первого порядка уравнение получается следующее (учитываем, что $A_{01} = A_{11} = 0$):

$$4x_0^3 x_1 + 2A_{20} x_0 x_1 + A_{21} x_0^2 = 0,$$

$$A_{21} = 4q_0^3 \cdot \left[(\hat{\epsilon}_2 - q_0) b_2^2 - (\hat{\epsilon}_1 - q_0) b_1^2 \right] \times$$

$$\times \left[\frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right].$$
(43)

Отсюда

$$x_1 = -\frac{A_{21}}{2x_0}.$$
 (44)

Поправка второго порядка получается аналогично (учитываем, что $A_{02}=0) {\rm :}$

$$x_2 = -\frac{4x_0 \cdot (A_{12} + A_{22}x_0) + A_{21}^2}{8x_0^3},\tag{45}$$

где

$$A_{12} = q_0^4 \cdot \left(b_1^2 + b_2^2\right) \cdot \left\{ 2 \left[\frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right]^2 - \left(\frac{b_5^2}{\hat{\epsilon}_1} \right)^2 - \left(\frac{b_6^2}{\hat{\epsilon}_2} \right)^2 + 2 \left(\frac{b_5 b_6}{\hat{\epsilon}_1 \hat{\epsilon}_2} \right)^2 (\hat{\mathbf{q}}_1 \hat{\mathbf{q}}_2) \right\},$$

$$A_{22} = -4q_0^4 \cdot \left[(\hat{\epsilon}_2 - q_0) b_2^2 - (\hat{\epsilon}_1 - q_0) b_1^2 \right]^2 - 2q_0^2 \cdot \left(b_1^2 \hat{\epsilon}_1 \cos \psi_1 - b_2^2 \hat{\epsilon}_2 \cos \psi_2 \right) \cdot \left(\frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right).$$

$$(46)$$

Поправка третьего порядка равна ($A_{03} = 0$):

$$x_{3} = -\frac{A_{21}^{3} + 8\left[\left(A_{23}x_{0} + A_{13}\right)x_{0}^{2} + A_{12}A_{21}\right]x_{0} + 4A_{21}A_{22}x_{0}^{2}}{16x_{0}^{5}}$$
(47)

где

$$A_{13} = 4q_0^5 \cdot \left(b_1^2 + b_2^2\right) \left[\left(\hat{\epsilon}_1 - q_0\right) b_1^2 - \left(\hat{\epsilon}_2 - q_0\right) b_2^2 \right] \left[\frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right],$$

$$A_{23} = -\frac{q_0}{2} \cdot \left[\left(\hat{\epsilon}_1 - q_0\right) b_1^2 - \left(\hat{\epsilon}_2 - q_0\right) b_2^2 \right] \times \\ \times \left[8q_0^2 \cdot \left(b_1^2 \hat{\epsilon}_1 \cos \psi_1 - b_2^2 \hat{\epsilon}_2 \cos \psi_2 \right) + \frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right].$$
(48)

Наконец, поправка четвертого порядка

$$x_{4} = -\frac{A_{24}x_{0}^{3} + A_{14}x_{0}^{2} + A_{13}A_{21} + A_{12}A_{22} + A_{04}x_{0}}{2x_{0}^{4}} - \frac{A_{22}^{2} + 2A_{21}A_{23}}{8x_{0}^{3}} - \frac{48A_{12}^{2}x_{0}^{2} + 64A_{12}A_{21}^{2}x_{0} + 5A_{21}^{4} + 24A_{21}^{2}A_{22}x_{0}^{2}}{128x_{0}^{7}},$$
(49)

где

$$A_{04} = -\frac{q_0^6}{4} \left(b_1^2 + b_2^2 \right)^2 \cdot \left[\left(\frac{b_5^2}{\hat{\epsilon}_1} \right)^2 + \left(\frac{b_6^2}{\hat{\epsilon}_2} \right)^2 - 2 \left(\frac{b_5 b_6}{\hat{\epsilon}_1 \hat{\epsilon}_2} \right)^2 (\hat{\mathbf{q}}_1 \hat{\mathbf{q}}_2) \right],$$

$$A_{14} = \left(b_1^2 + b_2^2 \right) q_0^4 \cdot \left\{ 4 \left[(\hat{\epsilon}_1 - q_0) b_1^2 - (\hat{\epsilon}_2 - q_0) b_2^2 \right]^2 q_0^2 + 2 \left(b_1^2 \hat{\epsilon}_1 \cos \psi_1 - b_2^2 \hat{\epsilon}_2 \cos \psi_2 \right) \cdot \left[\frac{b_5^2}{\hat{\epsilon}_1} \cos \psi_1 - \frac{b_6^2}{\hat{\epsilon}_2} \cos \psi_2 \right] \right\},$$

$$A_{24} = -q_0^2 \cdot \left(b_1^2 \hat{\epsilon}_1 \cos \psi_1 - b_2^2 \hat{\epsilon}_2 \cos \psi_2 \right)^2 - 2 \left[(\hat{\epsilon}_1 - q_0) b_1^2 - (\hat{\epsilon}_2 - q_0) b_2^2 \right]^2 - \frac{q_0^4}{2} \cdot \left[(\hat{\epsilon}_1 - q_0) b_1^2 - (\hat{\epsilon}_2 - q_0) b_2^2 \right]^2 - \frac{q_0^4}{2} \cdot \left[(\hat{\epsilon}_1 - q_0) b_1^2 - (\hat{\epsilon}_2 - q_0) b_2^2 \right]^2 - \frac{q_0^4}{2} \cdot \left(b_1^2 + b_2^2 \right)^2$$

$$(50)$$

В этом подходе выражение для вектора ${\bf q}$ записывается в следующем виде:

$$\mathbf{q} = \frac{q_0^2}{\beta} \cdot \left[\left(\frac{b_5}{\hat{\epsilon}_1} \right)^2 \hat{\mathbf{q}}_1 - \left(\frac{b_6}{\hat{\epsilon}_2} \right)^2 \hat{\mathbf{q}}_2 \right] + \\ + \frac{q_0^2 \mathbf{P}}{\beta + (b_1^2 + b_2^2) P^2 q_0^2} \cdot \left\{ \left(b_1^2 \hat{\epsilon}_1 \cos \psi_1 - b_2^2 \hat{\epsilon}_2 \cos \psi_2 \right) P + \\ + \left[(\hat{\epsilon}_1 - q_0) b_1^2 - (\hat{\epsilon}_2 - q_0) b_2^2 \right] W + \\ + \frac{(b_1^2 + b_2^2) q_0^2 P}{\beta} \cdot \left[\frac{b_6^2}{\hat{\epsilon}_2} \cdot \cos \psi_2 - \frac{b_5^2}{\hat{\epsilon}_1} \cdot \cos \psi_1 \right] \right\}.$$
(51)

Сравним два варианта расчета при малых, но ненулевых значениях P. В табл. 3 приведены расчеты с точными формулами, а в табл. 4 — разложение в ряд по P.

Теперь мы можем сравнить точное решение с приближенным. В варианте номер 3 минимальное значение χ^2 равно 14173.04, а при разложении решения в ряд получилось на 0.07 меньше. Это не должно удивлять, так как хотя полный импульс системы совпадает с за-

Параметр	Значение		
	Вариант 3	Вариант 4	
Р	(-0.05, 0.1, 0.3)	(-0.01, 0.02, 0.06)	
W	6	6	
M_0	5.991452244657	5.999658323605	
b_1	3.338088861150	3.333523164363	
b_2	5.563481435250	5.555871940605	
b_3	-9.481926699882	-9.494913440976	
b_4	4.577062230974	4.583331117462	
b_5	97.59315835405	99.49649085650	
b_6	48.57849419556	49.70468808944	
A_2	$-1.139471323949 \cdot 10^{7}$	$-1.128249245915 \cdot 10^{7}$	
A_1	$-3.070250783161 \cdot 10^{8}$	$-1.253570078170 \cdot 10^{7}$	
A_0	$-4.270916607892\cdot 10^9$	$-6.766833956760\cdot 10^{6}$	
Q_1	$2.931602955222 \cdot 10^{17}$	$1.110000171504\cdot 10^{16}$	
Q_3	$1.926035116172\cdot 10^{6}$	$1.881461492936\cdot 10^{6}$	
Q_2	-26.94446403528	-1.111075488500	
Q_4	-27.80835451252i	-1.079151426516i	
x	-13.47223 - 13.90418i	-0.55554 - 0.53958i	
β	-32.83334 - 13.90418i	-1.32998 - 0.53958i	
q			
χ^2			
Q_2	-26.94446403528	-1.111075488500	
Q_4	27.80835451252i	1.079151426516i	
x	-13.47223 + 13.90418i	-0.55554 + 0.53958i	
β	-32.83334 + 13.90418i	-1.32998 + 0.53958i	
q	_		
χ^2	—	—	
Q_2	26.94446403528	1.111075488500	
Q_4	-6751.160956031	-6717.884230336	
x	-3362.108245998	-3358.386577424	
β	-3381.469357109	-3359.161021868	
q	(2.41283, 1.24059, -1.27026)	(2.42575, 1.27177, -1.22364)	
χ^2	27675.13287183	28062.96768131	
Q_2	26.94446403528	1.111075488500	
Q_4	6751.160956031	6717.884230336	
x	3389.052710033	3359.497652912	
β	3369.691598922	3358.723208468	
q	(-2.41707, -1.25331, 1.24954)	(-2.42591, -1.27226, 1.22282)	
χ^2	14173.04007391	14627.19956734	

Таблица 3: Численные примеры для кинематической реконструкции

Параметр	Значение	
	Вариант 3	Вариант 4
Р	(-0.05, 0.1, 0.3)	(-0.01, 0.02, 0.06)
P	0.320156211872	0.064031242374
W	6	6
M_0	5.991452244657	5.999658323605
b_1	3.338088861150	3.333523164363
b_2	5.563481435250	5.555871940605
$\cos\psi_1$	0.434829574066	0.468834035949
$\cos\psi_2$	0.520915569627	0.551360038959
b_5	97.59315835405	99.49649085650
b_6	48.57849419556	49.70468808944
A_2	$-1.139471658914 \cdot 10^{7}$	$-1.128249246028 \cdot 10^{7}$
A_1	$-3.069842174684 \cdot 10^{8}$	$-1.253568589830 \cdot 10^{7}$
A_0	$-4.058069444363\cdot 10^9$	$-6.696322672482\cdot 10^{6}$
x_0	-3290.254259427	-3341.395763629
x_1	-246.8362141059	-270.4535734380
x_2	84.55432882357	82.47998860435
x_3	-40.08998821447	-42.85635357154
x_4	-16.42007926344	-14.89917553684
x	-3362.101694964	-3358.386575439
β	-3381.462806975	-3359.161019884
\mathbf{q}	(2.41284, 1.24059, -1.27026)	(2.42575, 1.27177, -1.22364)
χ^2	27675.14599746	28062.96768528
x_0	3290.254259427	3341.395763629
x_1	246.8362141059	270.4535734380
x_2	211.9618010898	195.3455668941
x_3	-61.08161874707	-63.27310656151
x_4	1.694512827804	5.639448788616
x	3389.019839159	3359.497642596
β	3369.658728047	3358.723198151
q	(-2.41710, -1.25332, 1.24955)	(-2.42591, -1.27226, 1.22282)
χ^2	14172.97444291	14627.19954671

Таблица 4: Численные примеры для кинематической реконструкции (разложение решения в ряд поP)

данным очень точно, в то же время в рамках приближения есть дисбаланс полной энергии, равный 0.06 МэВ. Немного, но вполне может "допустить улучшение" χ^2 по сравнению с точным значением. Точное значение $\mathbf{p}_1 = (-2.442331, -1.202796, 1.401083)$, приближенное решение $\mathbf{p}_1 = (-2.442355, -1.202808, 1.401095)$. Различие небольшое, но заметное. Здесь безразмерный параметр, который может характеризовать малость P, равен $P/M_0 = 0.05$

В следующем варианте $P/M_0=0.01$ – в пять раз меньше. Точное значение $\chi^2=14627.19956734$, приближенное – на $2\cdot 10^{-5}$ меньше. Разница существенно уменьшилась. Дисбаланс энергии тоже стал меньше: $1.8\cdot 10^{-5}$ МэВ. Значения реконструированных импульсов

 $\mathbf{p}_1 = (-2.430919, -1.262242, 1.252882)$ – точное,

 $\mathbf{p}_1 = (-2.430919, -1.262242, 1.252882)$ – приближенное,

хотя различие здесь совсем не видно. По-видимому, переход к приближенному варианту решения возможен при $P/M_0 < 10^{-3} \div 10^{-2}$.

5 Возможности применения полученного решения

Использование прямых формул по сравнению с численной минимизацией функции правдоподобия для двухчастичных событий, несомненно, дает существенный выигрыш в скорости счета, по-видимому, раз в 100. Однако, это имеет значение, только если обрабатывается очень большой массив событий. Кроме того, не для любых случаев подходит полученное решение. Например, вариант с регистрацией только одной из двух частиц может быть востребован для реконструкции события $\pi^0 \gamma$, если по каким-то причинам хочется восстановить импульс π^0 -мезона, не используя фотоны от его распада (например, для оценки вероятности регистрации π^0).

Решение задачи реконструкции, когда массы обеих конечных частиц равны нулю и они обе зарегистрированы в детекторе, очевидным образом подходит только для двухфотонной аннигиляции — используя χ^2 , можно отделять $\gamma\gamma$ события от других нейтральных событий.

Однако, есть возможность применить найденные решения и для реконструкции многочастичных событий. Известно, что наличие связей между параметрами существенно осложняет поиск минимума функции. Если в многочастичном событии выделить две подходящие частицы для аналитической минимизации соответствущей части функции правдоподобия, тогда, во-первых, сократится число параметров функции, которая численно минимизируется, и во-вторых, снимутся ограничения на параметры, обусловленные законами сохранения энергии-импульса, и можно использовать программу безусловной минимизации, например, MINUIT.

Например, если в конечном состоянии есть фотон и нейтрино, то можно применить аналитическое решение для двухчастичного состояния, когда одна частица зарегистрирована, а другая (нейтрино) — нет. Или в конечном состоянии имеются два фотона, тогда можно применить решение с обеими зарегистрированными частицами. Тогда на каждом шаге численной минимизации полная энергия двухчастичного состояния вычисляется, как полная энергия всего события минус текущие значения энергии остальных частиц. Аналогично, суммарный импульс двух частиц вычисляется, как полный импульс события минус текущие значения импульса остальных частиц. Аналитически вычисленное значение χ^2 для выбранных двух частиц надо складывать с χ^2 для остальных частиц и минимизировать суммарный χ^2 . Такой прием может не только ускорить процесс минимизации, но и повысить надежность достижения минимума функции.

6 Заключение

Получены решения для аналитической минимизации функции правдоподобия при кинематической реконструкции двухчастичных событий при некоторых условиях и приближениях.

Полученные решения могут быть использованы не только для кинематической реконструкции двухчастичных событий, но и при реконструкции многочастичных событий для аналитической минимизации части функции правдоподобия, что может существенно ускорить работу программ реконструкции и повысить надежность результатов.

Список литературы

- P. Spelucci. An SQP method for general nonlinear programs using only equality constrained subproblems. Mathematical Programming 82 (1998), p.413-448.
 P. Spelucci. A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res. 47 (1998) 355-400 (published by Physica Verlag, Heidelberg, Germany).
- F. James, M. Roos. 'MINUIT' A system for Function Minimization and Analysis of the Parameter Errors and Correlations, Computer Physics Communications 10 (1975) 343.
 F. James. MINUIT. Function Minimization and Error Analysis. Reference Manual. CERN Program Library Long Writeup D506, March 1994.
- [3] Г. Корн, Т. Корн. Справочник по математике для научных работников и инженеров. М.: Наука, 1973.

А.Д. Букин

Кинематическая реконструкция двухчастичных событий

A.D. Bukin

Kinematical reconstruction of two-particle events

ИЯФ 2006-42

Ответственный за выпуск А.М. Кудрявцев Работа поступила 12.07.2006 г. Сдано в набор 14.07.2006 г. Подписано в печать 15.07.2006 г. Формат бумаги 60×90 1/16 Объем 1.5 печ.л., 1.2 уч.-изд.л. Тираж 100 экз. Бесплатно. Заказ № 42 Обработано на IBM РС и отпечатано на ротапринте ИЯФ им. Г.И. Будкера СО РАН Новосибирск, 630090, пр. академика Лаврентьева, 11.