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Abstract

The process of radiation from high-energy electron and electron-
positron pair production by a photon in oriented single crystal is con-
sidered using the method which permits inseparable consideration of
both coherent and incoherent mechanisms of photon emission from an
electron and of pair creation by a photon and includes the action of field
of axis (or plane) as well as the multiple scattering of radiating elec-
tron or particles of the created pair (the Landau-Pomeranchuk-Migdal
(LPM) effect). The total intensity of radiation and total probabil-
ity pair creation are calculated. The theory, where the energy loss
of projectile has to be taken into account, and found probabilities of
pair creation agree quite satisfactory with available CERN data. From
obtained results it follows that multiple scattering appears only for rel-
atively low energy of radiating electron or a photon, while at higher
energies the field action excludes the LPM effect.
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1 Introduction
The mechanisms of basic electromagnetic process in oriented single crystal
(radiation and pair production by a photon) differ substantially from the
mechanisms of independent photon emission from electron or pair photo-
production at separate centers acting in an amorphous medium (the Bethe-
Heitler mechanisms). In crystal the coherent interaction of an electron (or
a photon) with many centers occurs. Under some generic assumptions the
general theory of the coherent radiation mechanism was developed in [1] (of
the coherent pair creation mechanism in [2]). Recently authors developed the
new approach to analysis of pair creation by a photon [3] and radiation [4] in
oriented crystals . This approach not only permits indivisible consideration of
both the coherent and incoherent mechanisms of radiation (or pair creation by
a photon) but also gives insight on the Landau-Pomeranchuk-Migdal (LPM)
effect (influence of multiple scattering) on the considered processes.

The properties of process are connected directly with details of motion
of emitting particle (or particles of created pair). The momentum transfer
from a particle to a crystal we present in a form q =< q > +qs, where
< q > is the mean value of momentum transfer calculated with averaging
over thermal(zero) vibrations of atoms in a crystal. The motion of particle
in an averaged potential of crystal, which corresponds to the momentum
transfer < q >, determines the coherent mechanism of process. The term qs

is attributed to the random collisions of particle which define the incoherent
radiation (pair creation). Such random collisions we will call "scattering"
since < qs >= 0. If the formation length of the process is large with respect
to distances between atoms forming the axis, the additional averaging over
the atom position should be performed.

If the electron (or photon) angle of incidence ϑ0 (the angle between the
electron momentum p (or photon momentum k) and the axis (or plane)) is
small ϑ0 � V0/m, where V0 is the characteristic scale of the potential, the
field E of the axis (or plane) can be considered constant over the process
formation length and the constant-field approximation is valid. In this case
the behavior of radiation probability is determined by the parameter χ and

3



the pair production probability is determined by the parameter κ:

χ =
ε

m

E

E0
, κ =

ω

m

E

E0
, (1)

where ε(ω) is the electron (photon) energy, m is the electron mass,
E0 = m2/e = 1.32 · 1016 V/cm is the critical field, the system � = c = 1
is used.

The very important feature of coherent radiation (or coherent pair cre-
ation) mechanism is the strong enhancement of its probability at high energies
(from factor ∼ 10 for main axes in crystals of heavy elements like tungsten
to factor ∼ 160 for diamond) comparing with the Bethe-Heitler mechanism
which takes place in an amorphous medium. If ϑ0 � V0/m the theory passes
over to the coherent bremsstrahlung theory or the coherent pair production
theory (see [6, 7, 8]). Side by side with coherent mechanism the incoherent
mechanism of radiation is acting. In oriented crystal this mechanism changes
also with respect to an amorphous medium [9]. The details of theory and
description of experimental study of radiation and pair creation which con-
firms the mentioned enhancement can be found in [8]. The study of radiation
and pair creation in oriented crystals is continuing and new experiments are
performed recently [10, 11, 12, 13].

At high energies the multiple scattering of radiating electron or particles
of created pair (the LPM effect) suppresses radiation (or pair creation) prob-
ability when ε ≥ εe (or ω ≥ ωe). In an amorphous medium (or in crystal
in the case of random orientation) the characteristic electron energy start-
ing from which the LPM effect becomes essential is εe ∼ 2.5 TeV for heavy
elements [14] and this value is inversely proportional to the density. In the
vicinity of crystalline axis (just this region gives the crucial contribution to
the Bethe-Heitler mechanism) the local density of atoms is much higher than
average one and for heavy elements and at low temperature the gain could
attain factor ∼ 103. So in this situation the characteristic electron energy can
be ε0 ∼ 2.5 GeV and this energy is significantly larger than "threshold" en-
ergy εt starting from which the probability of coherent radiation exceeds the
incoherent one. For pair photoproduction the characteristic photon energies
are 4 times larger: ωe = 4εe ∼ 10 TeV for heavy elements in an amorphous
medium and in crystal ω0 = ωe/ξ(0) ∼ 10 GeV. The last energy is of the
order of the threshold energy ωt for which the probability of pair creation in
the axis field becomes equal to the Bethe-Maximon probability, see Sec.12.2
and Table 12.1 in [8]. It should be noted that the main contribution into the
multiple scattering gives the small distance from axis where the field of crys-
talline axis attains the maximal value. For the same reason the LPM effect in
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oriented crystals originates in the presence of crystal field and nonseparable
from it. This means that in problem under consideration we have both the
dense matter with strong multiple scattering and high field of crystalline axis.

Below we consider case ϑ0 � V0/m. Than the distance of an electron
from axis � as well as the transverse field of the axis can be considered as
constant over the formation length. For an axial orientation of crystal the
ratio of the atom density n(�) in the vicinity of an axis to the mean atom
density na is

n(x)
na

= ξ(x) =
x0

η1
e−x/η1 , ε0 =

εe

ξ(0)
, (2)

where

x0 =
1

πdnaa2
s

, η1 =
2u2

1

a2
s

, x =
�2

a2
s

, (3)

Here � is the distance from axis, u1 is the amplitude of thermal vibration,
d is the mean distance between atoms forming the axis, as is the effective
screening radius of the axis potential (see Eq.(9.13) in [8])

U(x) = V0

[
ln
(

1 +
1

x+ η

)
− ln

(
1 +

1
x0 + η

)]
. (4)

The local value of parameters χ(x) (κ(x)), see Eq.(1), which determines the
radiation (pair creation) probability in the field Eq.(4) is

χ(x) = −dU(�)
d�

ε

m3
= χsfa, fa =

2
√
x

(x+ η)(x + η + 1)
,

χs =
V0ε

m3as
≡ ε

εs
, κ(x) = κsfa, κs =

V0ω

m3as
≡ ω

ωs
. (5)

The parameters of the axial potential for the ordinarily used crystals are
given in Table 9.1 in [8]. The particular calculation below will be done for
tungsten and germanium crystals studied in [10, 12]. The relevant parameters
are given in Table 1.

2 Processes in limiting cases

2.1 Radiation
It is useful to compare the characteristic energy ε0 (or ω0 for pair creation)
with "threshold" energy εt (or ωt for pair creation) for which the radiation
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Table 1. Parameters of radiation (pair creation) process in the tungsten
(the axis < 111 >) and germanium (the axis < 110 >) crystals for different
temperatures T, the energies ε and ω are in GeV

Crystal T(K) V0(eV) x0 η1 η ε0 εt εs(ωs) εm(ωm) ω0 h
W 293 413 39.7 0.108 0.115 7.43 0.76 34.8 14.35 29.7 0.348
W 100 355 35.7 0.0401 0.0313 3.06 0.35 43.1 8.10 12.25 0.612
Ge 100 114.5 19.8 0.064 0.0633 59 0.85 179 51 236 0.459

intensity (pair creation probability) in the axis field becomes equal to the
Bethe-Maximon one. Since the maximal value of parameter χ(x) :

χm = χ(xm), κm = κ(xm), xm =
1
6
(
√

1 + 16η(1 + η) − 1 − 2η),

χm =
ε

εm
, κm =

ω

ωm
(6)

is small for such electron energy (εt � εm), one can use the decomposition
of radiation intensity over powers of χ (see Eq.(4.52) in [8]) and carry out
averaging over x. Retaining three terms of decomposition we get

IF =
8αm2χ2

s

3x0

(
a0(η) − a1(η)χs + a2(η)χ2

s + . . .
)
,

a0(η) = (1 + 2η) ln
1 + η

η
− 2,

a1(η) =
165

√
3π

64

[
1√
η
− 1√

1 + η
− 4

(√
1 + η −√

η
)3
]
,

a2(η) = 64
[
(1 + 2η)

(
1

η(1 + η)
+ 30

)
− 12(1 + 5η(1 + η)) ln

1 + η

η

]
.(7)

The intensity of incoherent radiation in low energy region ε ≤ εt � εm is
(see Eq.(21.16) in [8] and Eq.(41) below)

Iinc =
αm2

4π
ε

εe
g0r

[
1 + 34.4

(
χ2 lnχ+ 2.54χ2

)]
,

g0r = 1 +
1
L0

[
1
18

− h

(
u2

1

a2

)]
, f =

∞∫
0

f(x)e−
x

η1
dx

η1
, (8)
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where

εe =
m

16πZ2α2λ3
cnaL0

, L0 = ln(ma) +
1
2
− f(Zα),

h(z) = −1
2

[1 + (1 + z)ezEi(−z)] , a =
111Z−1/3

m
,

f(ξ) = Re [ψ(1 + iξ) − ψ(1)] =
∞∑

n=1

ξ2

n(n2 + ξ2)
, (9)

here ψ(z) is the logarithmic derivative of the gamma function, Ei(z) is the
integral exponential function, f(ξ) is the Coulomb correction. For χ = 0
this intensity differs from the Bethe-Maximon intensity only by the term
h(u2

1/a
2) which reflects the nonhomogeneity of atom distribution in crystal.

For u1 � a one has h(u2
1/a

2) 	 −(1+C)/2+ln(a/u1), C = 0.577.. and so this
term characterizes the new value of upper boundary of impact parameters
u1 contributing to the value < q2

s > instead of screening radius a in an
amorphous medium.

Conserving in Eq.(7) only the main (the first) term of decomposition,
which corresponds to the classical radiation intensity, neglecting the correc-
tions in Eq.(8) (g0 = 1, χ = 0), using the estimate V0 	 Zα/d and Eqs.(3),
(5), we get

εt 	 3L0dm
2

2πa0(η)
= 63

L0d

a0(η)
MeV, (10)

where the distance d is taken in units 10−8 cm. Values of εt found using
this estimate for tungsten, axis < 111 >, d=2.74 ·10−8 cm are consistent
with points of intersection of coherent and incoherent intensities in Fig.1 (see
Table 1). For some usable crystals (axis < 111 >, room temperature) one
has from Eq.(10)

εt(C(d)) 	 0.47 GeV, εt(Si) 	 2.0 GeV, εt(Ge) 	 1.7 GeV, (11)

so this values of εt are somewhat larger than in tungsten except the diamond
very specific crystal where value of εt is close to tungsten one.

For large values of the parameter χm (ε � εm) the incoherent radiation
intensity is suppressed due to the action of the axis field. In this case the
local intensity of radiation can by written as (see Eq.(7.129) in [8])

Iinc =
29Γ(1/3)
31/62430

ε

εe

αm2

χ2/3(x)

[
g0r +

1
L0

(
0.727 +

lnχ(x)
3

)]
. (12)
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Here we have taken into account that

ln
1
γϑ1

= ln(ma) → ln(ma) − h

(
u2

1

a2

)
− f(Zα) = L0 − h

(
u2

1

a2

)
− 1

2
. (13)

Averaging the function (χ(x))−2/3 and lnχ(x)(χ(x))−2/3 over x according
with Eq.(8) one can find the effective value of upper boundary of the trans-
verse momentum transfer (∝ mχ

1/3
m instead of m) which contributes to the

value< q2
s >. Using the obtained results we determine the effective logarithm

L by means of interpolation procedure

L = L0gr, gr = g0r +
1

6L0
ln
(
1 + 70χ2

m

)
. (14)

Let us introduce the local characteristic energy of electron (see Eq.(2))

εc(x) =
εe(na)
ξ(x)gr

=
ε0
gr
ex/η1 , (15)

In this notations the contribution of multiple scattering into the local in-
tensity for small values of χm and ε/ε0 has a form (see Eq.(15) in [15] and
Eq.(50) below)

ILPM (x) = −αm
2

4π
ε

εc(x)

[
4πε

15εc(x)

(
1 +

171
√

3
16

χ(x)

)

+
64ε2

21ε2c(x)

(
ln

ε

εc(x)
+ 2.04

)]
. (16)

Integrating this expression over x with the weight 1/x0 we get

ILPM =
αm2

4π
ε

εe
gr

[
−2πεgr

15ε0
(1 + 37µ) +

64
63
ε2g2

r

ε20

(
ln

ε0
εgr

− 1.71
)]

,

µ =

∞∫
0

e−2x/η1χ(x)
dx

η1
. (17)

It should be noted that found Eq.(17) has a good accuracy only for energy
much smaller (at least on one order of magnitude) than ε0 (see discussion
after Eq.(15) in [15]).
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2.2 Pair creation
For small value of the parameter κ the probability of coherent pair creation
is (see Eq.(12.11) in [8])

WF =
9
32

√
π

2
αm2

ωx0

κ2
m√−κ′′m

exp(−8/3κm), (18)

where κm (which defines the value of ωt) is given in Eq.(6), κ′′m = κ′′(xm).
We find that ωt ∼ ωm ∼ ω0 for main axes of crystals of heavy elements.
So at ω ∼ ωt all the discussed effects are simultaneously essential in these
crystals. In crystals of elements with intermediate Z (Ge, Si, diamond) the
ratio ωt/ωm ∼ 1 but ωm/ω0 � 1. So, the LPM effect for such crystals is
significantly weaker.

At ω � ωt the incoherent mechanism of pair creation dominates. It
integral cross section in oriented crystal has the form (see Eq.(26.30) in [8])

σp =
28Z2α3

9m2

[
L0 − 1

42
− h

(
u2

1

a2

)]
, (19)

where notations see in Eq.(9).
The influence of axis field on the incoherent pair creation process begins

when ω becomes close to ωm. For small values of the parameter κm the
correction to the cross section Eq.(6) is (see Eq.(7.137) in [8])

∆σp =
176
175

Z2α3

m2
κ2

(
Lu − 1789

1980

)
, κ2 =

∞∫
0

dx

η1
e−x/η1κ2(x), Lu = L0−h

(
u2

1

a2

)
.

(20)
The coherent and incoherent contribution to pair creation can separated

also for κm � 1 (ω � ωm). In this case one can use the perturbation
theory in calculation of the probability of incoherent process and neglect the
LPM effect because of domination of the coherent contribution and additional
suppression (by the axis field) the incoherent process. In this case the local
cross section of pair creation has the form (see Eq.(7.138) in [8])

σp(x) =
8Z2α3Γ3(1/3)

25m2(3κ(x))2/3Γ(2/3)

(
Lu + 0.4416 +

1
3

lnκ(x)
)
. (21)

Averaging the function (κ(x))−2/3 and lnκ(x)(κ(x))−2/3 over x according
with Eq.(20) one can find the effective value of upper boundary of the trans-
verse momentum transfer (∝ mκ

1/3
m instead of m) which contributes to the
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value< q2
s >. Using the obtained results we determine the effective logarithm

L by means of interpolation procedure

L = L0g, g = 1 +
1
L0

[
− 1

42
− h

(
u2

1

a2

)
+

1
3

ln
(

6 − 3κ2
m + 3κ3

m

6 + κ2
m

)]
. (22)

Let us introduce the local characteristic energy of photon

ωc(x) =
m

4πZ2α2λ3
cn(x)L

=
ωe(na)
ξ(x)g

=
ω0

g
ex/η1 , (23)

where λc = 1/m. In this notations the local probability for small values of
κm and ω/ω0 has a form (see Eq.(7.137) in [8] and Eq.(2.23) in [14])

W (x) =
7
9π

αm2

ωc(x)

[
1 +

396
1225

κ2(x) − 3312
2401

ω2

ω2
c (x)

]
, (24)

where the term with κ2(x) arises due to the field action and the term with
ω2/ω2

c (x) reflects influence of multiple scattering (the LPM effect). Averaging
this expression over x we have

∞∫
0

dx

x0

1
ωc(x)

=
g

ω0

η1
x0

=
g

ωe(na)
,

∞∫
0

dx

x0

1
ω3

c (x)
=

g

ωe(na)
g2

3ω2
0

, (25)

∞∫
0

dx

x0

κ2(x)
ωc(x)

=
g

ωe(na)
κ2, W ≡W (x) = W0g

[
1 +

396
1225

κ2 − 1104
2401

(
ωg

ω0

)2
]
,

where W0 is

W0 =
7
9

αm2

πωe(na)
=

28
9
Z2α3

m2
naL0. (26)

3 General theory

3.1 Radiation
The spectral probability of radiation under the simultaneous action of multi-
ple scattering and an external constant field was derived in [8] (see Eqs.(7.89)
and (7.90)). Multiplying the expression by ω and integrating over ω one ob-
tains the total intensity of radiation I. For further analysis and numerical
calculation it is convenient to carry out some transformations
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1. Changing of variables: ν → aν/2, τ → 2t/a, (ντ → νt).

2. Turn the contour of integration over t at the angle −π/4.

One finds after substitution t→ √
2t

I(ε) =
αm2

2π

1∫
0

ydy

1 − y

x0∫
0

dx

x0
Gr(x, y),

Gr(x, y) =

∞∫
0

Fr(x, y, t)dt − r3
π

4
, y =

ω

ε
,

Fr(x, y, t) = Im
{
eϕ1(t)

[
r2ν

2
0(1 + ibr)ϕ2(t) + r3ϕ3(t)

]}
,

br =
4χ2(x)
u2ν2

0

, u =
y

1 − y
,

ϕ1(t) = (i− 1)t+ br(1 + i)(ϕ2(t) − t),

ϕ2(t) =
√

2
ν0

tanh
ν0t√

2
, ϕ3(t) =

√
2ν0

sinh(
√

2ν0t)
, (27)

where
r2 = 1 + (1 − y)2, r3 = 2(1 − y), ν2

0 =
1 − y

y

ε

εc(x)
, (28)

ω is the photon energy, the function εc(x) is defined in Eq.(15) and χ(x) is
defined in Eq.(5).

In order to single out the influence of the multiple scattering (the LPM
effect) on the process under consideration, we should consider both the co-
herent and incoherent contributions. The probability of coherent radiation is
the first term (ν2

0 = 0) of the decomposition of Eq.(27) over ν2
0 . The coherent

intensity of radiation is (compare with Eq.(17.7) in [8])

IF (ε) =

x0∫
0

I(χ)
dx

x0
. (29)

Here I(χ) is the radiation intensity in constant field (magnetic bremsstrahlung
limit, see Eqs. (4.50), (4.51) in [8]). It is convenient to use the following rep-
resentation for I(χ)
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I(χ) = i
αm2

2π

λ+i∞∫
λ−i∞

(
χ2

3

)s

Γ (1 − s) Γ (3s− 1)

×(2s− 1)(s2 − s+ 2)
ds

cosπs
,

1
3
< λ < 1. (30)

The intensity of incoherent radiation is the second term (∝ ν2
0) of the

mentioned decomposition. The expression for the intensity of incoherent
radiation follows from Eq.(21.21) in [8]):

Iinc(ε) =
αm2

60π
ε

ε0
g

x0∫
0

e−x/η1J(χ)
dx

x0
, (31)

here J(χ) is the integral over photon energy ω:

J(χ) =

1∫
0

[
y2(f1(z) + f2(z)) + 2(1 − y)f2(z)

]
dy,

z =
(

y

χ(1 − y)

)2/3

, (32)

where y = ω/ε, the functions f1(z) and f2(z) are defined in the just mentioned
equation in [8]:

f1(z) = z4Υ(z) − 3z2Υ′(z) − z3,

f2(z) = (z4 + 3z)Υ(z)− 5z2Υ′(z) − z3, (33)

here Υ(z) is the Hardy function:

Υ(z) =

∞∫
0

sin
(
zτ +

τ3

3

)
dτ. (34)

We used the following relations between the function Υ(z) and its derivatives:

Υ(n) =
dn

dzn
Im

∞∫
0

exp
(
i

(
zτ +

τ3

3

))
dτ = Im

∞∫
0

(iτ)n exp
(
i

(
zτ +

τ3

3

))
dτ,

zΥ(z) = Υ′′(z) + 1, Υ(n+3)(z) = (n+ 1)Υ(n) + zΥ(n+1). (35)

12



Integrating Eq.(32) by parts one can represent the integral J(χ) in the form

J(χ) =
χ3

6
d2

dχ2
(J1(χ) + J2(χ)) +

d

dχ
(χ2J2(χ)), J1,2(χ) =

f1,2(∞)
χ

+ i1,2(χ),

i1,2(χ) = χ

∞∫
0

f ′
1,2(z)

z3dz

1 + χz3/2
. f ′

1(z) = z2Υ(5)(z) − 3zΥ(4),

f ′
2(z) = z2Υ(5)(z) − 5zΥ(4) + 3Υ(3). (36)

Since the integrals in Eq.(36) for the separate terms of functions f ′
1.2(z) in

form Eq.(33) diverges, we transformed it to the form Eq.(36). We used also
the important formula

∞∫
0

z3/2f ′
1,2(z)dz = 0, (37)

which follows from the equation
∞∫
0

Υ′(z) dz√
z

= 0 having applied integration

by parts for separate terms of functions f ′
1.2(z) in form Eq.(36).

Entering in Eq.(36) expression (1 + u)−1 we present as contour integral

1
(1 + u)

=
i

2

λ+i∞∫
λ−i∞

us

sinπs
ds, u = χz3/2, −1 < λ < 0. (38)

Substituting in the integral in Eq.(36) the functions f ′
1,2(z) in the form given

by the same equation and integrating over the variables z and τ , we get after
change of variable s→ 2s, displacement of integration contour and reduction
of similar terms the new representation of the function J(χ), which is suitable
for both analytical and numerical calculation:

J(χ) =
iπ

2

λ+i∞∫
λ−i∞

χ2s

3s

Γ(1 + 3s)
Γ(s)

R(s)
ds

sin2 πs
, −1

3
< λ < 0 (39)

where
R(s) = 15 + 43s+ 31s2 + 28s3 + 12s4. (40)

In the case χ � 1, closing the integration contour on the right, one can
calculate the asymptotic series in powers of χ

J(χ) = 15+516χ2

(
ln

χ√
3
− C

)
+1893χ2+. . . 	 15

[
1 − 34.4χ2

(
ln

1
χ
− 2.542

)]
(41)
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Closing the integration contour on the left one obtains the series over the
inverse powers of χ

J(χ) =
58πΓ(1/3)

81 · 31/6χ2/3
+

628π31/6Γ(2/3)
243χ4/3

− 13
χ2

(
lnχ− 1

2
ln 3 − C +

57
52

)
+ . . . .

(42)
Now we get over to the third term (∝ ν4

0 ) of the decomposition. In this
case it is convenient to turn back the integration contour in Eq.(27) and
perform inverse transformation t → t/

√
2, so that

√
2ν0t → νt (ν =

√
iν0).

In the terms ∝ ν4
0 of the decomposition the integrals over t have the form

∞∫
0

exp
(
−i
(
t+

at3

3

))
t2n+1dt, or i

∞∫
0

exp
(
−i
(
t+

at3

3

))
t2ndt, (43)

where a = χ2/u2. The radiation intensity is contains the imaginary part
of these integrals where the integrand is even function of t. Because of this
the final result is expressed in terms of MacDonald functions K1/3(z) and
K2/3(z) (z = 2u/3χ) and their derivatives. Using the recurrence relations we
find after quite cumbersome calculation

I(3) = −αm
2

8400
ε2

ε20
g2

r

x0∫
0

e−2x/η1P (χ)
dx

x0
, (44)

where

P (χ) =
9
√

3
64π

1∫
0

[r2F2(z) + r3F3(z)] z3 1 − y

y
dy, u =

y

1 − y
,

F2(z) = (7820 + 126z2)zK2/3(z) − (280 + 2430z2)K1/3(z),

F3(z) = (264 − 63z2)zK2/3(z) − (24 + 3z2)K1/3(z). (45)

Passing on to the variable u and having applied the representation

1
(1 + u)m

=
1

2πi

λ+i∞∫
λ−i∞

Γ(−s)Γ(m+ s)
Γ(m)

usds, −m < λ < 0, (46)

taking into account the table integrals over u
∞∫
0

xµKν(x)dx = 2µ−1Γ
(

1 + µ+ ν

2

)
Γ
(

1 + µ− ν

2

)
, (47)
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substituting s→ 2s and using the tripling formula

33sΓ(s)Γ(s+ 1/3)Γ(s+ 2/3) = 2π
√

3Γ(3s), (48)

we get after reduction of similar terms the following expression for the func-
tion P (χ)

P (χ) =
1

2πi

λ+i∞∫
λ−i∞

D(s)
(
χ2

3

)s−1

(1 − 2s)Γ(1 − s)Γ(3s)
ds

cos(πs)
, 0 < λ < 1,

D(s) = 192 + 532s− 210s2 + 73s3 − 349s4 + 42s5. (49)

Closing the integration contour to the right we get the asymptotic series over
powers of χ

P (χ) = 560 + 5985
√

3χ− 388800χ2 + . . . (50)

Closing the integration contour to the left we get the series over powers of
1/χ

P (χ) =
192
χ2

+
4280
243

31/3Γ
(

1
3

)
1

χ8/3
− 635

√
3

χ3
− + . . . (51)

The inverse radiation length in tungsten crystal (axis< 111 >) 1/Lcr(ε) =
I(ε)/ε Eq.(27), well as coherent contribution 1/LF (ε) = IF (ε)/ε Eq.(29) and
incoherent contribution 1/Linc(ε) = Iinc(ε)/ε Eq.(31) are shown in Fig.1 for
two temperatures T=100 K and T=293 K as a function of incident electron
energy ε. In low energy region (ε ≤ 0.3 GeV) the asymptotic expressions
Eqs.(7) and (8) are valid. One can see that at temperature T=293 K the
intensity IF (ε) is equal to Iinc(ε) at ε 	 0.4 GeV and temperature T=100
K the intensity IF (ε) is equal to Iinc(ε) at ε 	 0.7 GeV. The same esti-
mates follow from comparison of Eqs.(7) and (8), see also Eq.(10). At higher
energies the intensity IF (ε) dominates while the intensity Iinc(ε) decreases
monotonically.

The inverse radiation length given in Fig.1 can be compared with data
directly only if the crystal thickness l � Lcr(ε) (thin target). Otherwise
one has to take into account the energy loss. The corresponding analysis is
simplified essentially if l ≤ Lmin = (max(I(ε)/ε))−1. The radiation length
Lcr(ε) varies slowly on the electron trajectory for such thicknesses. This is
because of weak dependence of Lcr(ε) on energy in the region Lcr(ε) 	 Lmin

and the relatively large value of Lcr(ε) � Lmin in the region where this
dependence is essential but variation of energy on the thickness l is small. For
W, axis < 111 >, T=293 K one has Lmin = 320 µm at energy ε = 300 GeV,
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Figure 1: The inverse radia-
tion length in tungsten, axis <
111 > at different temperatures
T vs the electron initial energy.
Curves 1 and 4 are the total ef-
fect: Lcr(ε)−1 = I(ε)/ε Eq.(27)
for T=293 K and T=100 K cor-
respondingly, the curves 2 and
5 give the coherent contribution
IF (ε)/ε Eq.(29), the curves 3 and
6 give the incoherent contribution
Iinc(ε)/ε Eq.(31) at corresponding
temperatures T.

see Fig.1. For this situation dispersion can be neglected (see discussion in
Sec.17.5 of [8]) and energy loss equation acquires the form

1
ε

dε

dl
= −Lcr(ε)−1 ≡ −I(ε)

ε
. (52)

In the first approximation the final energy of electron is

ε1 = ε0 exp (−l/Lcr(ε0)) , (53)

where ε0 is the initial energy. In the next approximation one has

ln
ε(l)
ε0

= −Lcr(ε0)

ε0∫
ε1

Lcr(ε)−1 dε

ε
. (54)

If the dependence of Lcr(ε)−1 on ε is enough smooth it’s possible to substitute
the function Lcr(ε)−1 by an average value with the weight 1/ε:

Lcr(ε)−1 → ε0L
cr(ε1)−1 + ε1L

cr(ε0)−1

ε0 + ε1
≡ 1
L
. (55)

Numerical test confirms this simplified procedure. Using it we find

ln
ε(l)
ε0

= −L
cr(ε0)
L

ln
ε0
ε1

= − l

L
,

∆ε
ε0

= 1 − exp
(
− l

L

)
≡ l

Lef
. (56)
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Figure 2: Comparison of theory and experiment.(a) Enhancement of radi-
ation intensity (the ratio LBM/Lef ) in tungsten, axis < 111 >, T=293 K.
The curve 1 is for the target with thickness l = 200 µm, where the energy
loss was taken into account (according with Eq.(56)). The curve 2 is for
a considerably more thinner target, where one can neglect the energy loss
(Lef → Lcr). The data are from [10].
(b) Enhancement of the probability of pair creation in tungsten for different
temperatures, axis < 111 >. The data are from [12].

Enhancement of radiation length (the ratio of Bethe-Maximon radiation
length LBM and Lef ) in tungsten, axis < 111 >, T=293 K is shown in
Fig.2(a). The curve 1 is for the target with thickness l = 200 µm, where the
energy loss was taken into account according using the simplified procedure
Eq.(56). The curve 2 is for a considerably more thinner target, where one
can neglect the energy loss. The only available data are from [10]. The
measurement of radiation from more thin targets is of evident interest.
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3.2 Pair creation
The general expression for integral probability of pair creation by a photon
under the simultaneous action of multiple scattering and an external constant
field was obtained in [5] (see Eqs.(2.14) and (1.12)). This expression can be
found also from Eq.(27) using the standard QED substitution rules: ε →
−ε, ω → −ω, ω2dω → ε2dε and exchange εc(x) → ωc(x)/4;

W =
αm2

2πω

1∫
0

dy

y(1 − y)

x0∫
0

dx

x0
G(x, y), G(x, y) =

∞∫
0

F (x, y, t)dt+ s3
π

4
,

F (x, y, t) = Im
{
ef1(t)

[
s2ν

2
0 (1 + ib)f2(t) − s3f3(t)

]}
, b =

4κ2
1

ν2
0

, y =
ε

ω
,

f1(t) = (i− 1)t+ b(1 + i)(f2(t) − t), f2(t) =
√

2
ν0

tanh
ν0t√

2
,

f3(t) =
√

2ν0
sinh(

√
2ν0t)

, (57)

where

s2 = y2 + (1− y)2, s3 = 2y(1− y), ν2
0 = 4y(1− y)

ω

ωc(x)
, κ1 = y(1− y)κ(x),

(58)
ε is the energy of one of the particles of pair, the function ωc(x) is defined in
Eq.(23) and κ(x) is defined in Eq.(5).

In order to single out the influence of the multiple scattering (the LPM
effect) on the process under consideration, we should consider both the coher-
ent and incoherent contributions. The probability of coherent pair creation
is the first term (ν2

0 = 0) of the decomposition of Eq.(57) over ν2
0 (compare

with Eq.(2.17) in [5] and see Eq.(12.7) in [8])

WF =
αm2

2
√

3πω

1∫
0

dy

y(1 − y)

x0∫
0

dx

x0

[
2s2K2/3(λ)

+s3

∞∫
λ

K1/3(z)dz

]
, λ =

2
3κ1

. (59)

The probability of incoherent pair creation is the second term (∝ ν2
0 ) of

the mentioned decomposition (compare with Eq.(2.26) in [5] and compare
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with Eq.(21.31) in [8])

W inc =
4Z2α3naL

15m2

1∫
0

dy

∞∫
0

dx

η1
e−x/η1f(x, y), (60)

where L is defined in Eq.(10),

f(x, y) = f1(z) + s2f2(z), z = z(x, y) = κ
−2/3
1 , (61)

here functions f1,2(z) are defined in Eq.(33). In further analysis and nu-
merical calculation it is convenient to use given above representations of the
Hardy function and its derivative Eqs.(34),(35).

The probabilities W Eq.(57), WF Eq.(59), and W inc Eq.(60) at different
temperatures T are shown in Fig.3 as a function of photon energy ω. In low
energy region (ω ≤ 1 GeV) one can neglect the coherent process probability
WF as well as influence of axis field on the incoherent process probability and
the LPM effect and the probability of process is WLE = naσp Eq.(19). In this
energy region as one can see in Fig.3 the probability W is by 10% at T=293
K and by 20% at T=100 K less than the probability at random orientation
W ran which is taken as W ran = WBM (the Bethe-Maximon probability is
WBM = W0(1 − 1/42L0)=2.17 1/cm in tungsten).

With energy increase the influence of axis field begins and the LPM effect
manifests itself according to Eq.(25) (the terms with κ2 and (ωg/ω0)2 cor-
respondingly). This leads first to not large increase of the probability W inc

which attains the maximum at ω ∼ ωm. The probability WF in this region
is defined by Eq.(18) and its contribution is relatively small. The probability
WF becomes comparable with W inc at ω 	 1.5ωm. At higher energies WF

dominates, while W inc decreases monotonically.
In Fig.2(b) the calculated total integral probability W of pair creation

by a photon Eq.(57) is compared with data of NA43 CERN experiment [12].
The enhancement is the ratio W/WBM . One can see that the theory quite
satisfactory describes data. This statement differs from conclusion made in
[12]. One of reasons for this difference is diminishing of incoherent contribu-
tion (see Fig.3): for W, < 111 >, T=100 K at photon energy ω = 55 GeV
one has W inc = 0.35WBM , while in [12] it was assumed that W inc = WBM .

The third term (∝ ν4
0) of the decomposition the pair creation probability

over ν2
0 can be obtained from the corresponding expressions for radiation

using the QED standard substitutions (cp with Eq.(57)) and taking into
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Figure 3: (a) Pair creation probability in tungsten, axis < 111 > at different
temperatures T. Curves 1 and 3 are the total probability W Eq.(57) for
T=293 K and T=100 K, the curves 2 and 4 give the coherent contribution
WF Eq.(59), the curves 5 and 6 give the incoherent contributionW inc Eq.(60)
at corresponding temperatures T.
(b) Pair creation probability in germanium , axis < 110 > at T=100 K.
Curve 1 is the total probability W Eq.(57), the curve 2 gives the coherent
contribution WF Eq.(59), the curve 3 gives the incoherent contribution W inc

Eq.(60). The dashed line is the Bethe-Maximon probability

account that ω0 = 4ε0 (see Table 1)

W (3) = −αm
2

8400
ω

ω2
0

g2

x0∫
0

e−2x/η1T (κ)
dx

x0
,

T (κ) =
9
√

3
4π

1∫
0

[s2F2(λ) − s3F3(λ)] λ3y(1 − y)dy. (62)

4 The LPM effect in oriented crystal
The contribution of the LPM effect in the total intensity of radiation I Eq.(27)
is defined as

ILPM = I − IF − Iinc (63)

The relative contribution (negative since the LPM effect suppresses the ra-
diation process) ∆r = −ILPM/I is shown in Fig.4(a). This contribution has
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Figure 4: The LPM effect in oriented crystal:(a) The relative contribution
into radiation intensity of the LPM effect ∆r (per cent) in tungsten, axis
< 111 >. Curve 1 is for T=100 K and curve 2 is for T=293 K.
(b) The relative contribution of the LPM effect into total pair creation prob-
ability ∆ (per cent) in tungsten, axis < 111 >. Curve 1 is for T=293 K and
curve 2 is for T=100 K.

the maximum ∆r 	 0.8% at ε 	 0.7 GeV for T=293 K and ∆r 	 0.9%
at ε 	 0.3 GeV for T=100 K or, in general, at ε ∼ εt. The left part of
the curves is described quite satisfactory by Eq.(17). For explanation of the
right part of the curves let us remind that at ε � εm the behavior of the
radiation intensity at x ∼ η1 is defined by the ratio of the contributions to
the momentum transfer of multiple scattering and that of the external field
on the formation length lf (see Eq.(21.3) in [8])

k =
< q2

s >

< q >2
=

ϑ̇2
slf

(wlf )2
∼ ε

ε0
χ−4/3

m =
ε

ε0

(εm

ε

)4/3

,

1
LF

∼ α

lf
∼ αm2

ε
χ2/3

m =
αm2

εm
χ−1/3

m , (64)

where w is an acceleration in an external field. The linear over k term de-
termines the contribution into intensity of incoherent process: 1/Linc(ε �
εm) ∼ k/LF (ε) ∼ αm2/(ε0χ

2/3
m ). The LPM effect is defined by the next term

of decomposition over k (∝ k2) and decreases with energy even faster than
1/Linc(ε). Moreover one has to take into account that at ε ≥ εs the con-
tribution of relevant region x ∼ η1 into the total radiation intensity is small
and 1/LF (ε) decreases with the energy growth as χ−1/3

m . For such energies
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the main contribution gives the region x ∼ χ
2/3
s = (ε/εs)2/3 and 1/Lcr(ε)

increases until energy ε ∼ 10εs (see Fig.1). This results in essential reduction
of relative contribution of the LPM effect ∆r.

Figure 5: The relative contribution of the LPM effect into total pair creation
probability ∆ (per cent) in germanium crystal, axis < 110 >, for T=100 K.

The contribution of the LPM effect in the total pair creation probability
W Eq.(57) is defined as

WLPM = W −WF −W inc (65)

The relative contribution (negative since the LPM effect suppresses the pro-
cess) ∆ = −WLPM/W is shown in Fig.4(b). This contribution has the maxi-
mum ∆ 	 5.5% at ω 	 7 GeV for T=293 K and ∆ 	 4.3% at
ω 	 12 GeV for T=100 K for tungsten crystal. For germanium crystal
the value ∆ = −WLPM/W is shown in Fig.5. This contribution attains the
maximum ∆ 	 1.7% at ω 	 34 GeV for T=100 K or, in general, at ω ∼ ωm.
The left part of the curves is described by the term with (ωg/ω0)2 in Eq.(25).
For understanding of the right part of the curves one has to take into account
that at ω � ωm the behavior of the pair creation probability at x ∼ η1 is
defined by the ratio of the contributions to the momentum transfer of mul-
tiple scattering and that of the external field on the formation length lf (see
Eqs.(1.4), (2.28), (2.29) and discussion in [5])
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k =
< q2

s >

< q >2
=

ϑ̇2
slf

(wlf )2
∼ ω

ω0
κ−4/3

m =
ω

ω0

(ωm

ω

)4/3

,

WF ∼ α

lf
∼ αm2

ω
κ2/3

m , (66)

where w is an acceleration in an external field. The linear over k term de-
termines the contribution into probability of incoherent process: W inc(ω �
ωm) ∼ kWF ∼ αm2/(ω0κ

2/3
m ) (cp Eq.(21)). The LPM effect is defined by

the next term of decomposition over k (∝ k2) and decreases with energy even
faster than W inc.

It follows from Eq.(66) that maximal influence of multiple scattering on
the process under consideration is reached at ω ∼ ωm ∼ ω0 where k ∼ 1
for tungsten crystal. The analysis shows (see Fig.4 in [16]) that at ω ∼ ωe

the LPM effect results in 10% suppression of total (incoherent) pair creation
probability. In oriented crystal ωe → ω0 and at ω ∼ ωm the coherent and
incoherent contributions are nearly equal. So, at this photon energy one can
expect ∼ 5% LPM effect for pair creation process. This perfectly agrees with
performed numerical calculation. For germanium crystal k ∼ ωm/ω0 ∼ 1/5 at
ω ∼ ωm (see discussion after Eq.(18)) and for this energy one can expect the
LPM effect of order ∼ 1% for pair creation process (the term with (ωg/ω0)2

in Eq.(25)).
In just the same way the maximal influence of multiple scattering on the

incoherent radiation process (see Eq.(64)) is reached in heavy elements, e.g.
tungsten, at ε ∼ εm ∼ ε0 where k ∼ 1. However at ε ∼ εm the intensity of in-
coherent radiation constitutes only one tenth of coherent contribution. Owing
to this the maximum of the LPM effect manifestation in the radiation process
is shifted to the left up to ε ∼ εt, where the coherent and incoherent contribu-
tions to the radiation intensity are nearly equal and ν2

0 ∼ εt/ε0 ∼ 1/10. This
explains essentially smaller influence of the LPM effect on radiation process.

5 Conclusion
So the rather prevalent assumption that the LPM effect can essentially sup-
press the radiation and pair creation process in oriented crystals is proved
wrong due to action of axis field. On the other hand, the LPM effect can
be observed in accurate measurements. For observation the LPM effect of
mentioned scale in an amorphous tungsten in hard part of the spectrum of
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radiation process the electrons with the energy ε 	 2.5 TeV are needed (or
for pair creation process the photons with energy ω 	 10 TeV are needed)
[4].

So in high energy region the mechanisms of radiation and pair creation by
a photon are very different in an amorphous medium and in oriented crystal.
In amorphous medium the radiation intensity is suppressed substantially at
ε > εe (or the probability of pair creation is suppressed substantially at
ω > ωe) due to the LPM effect and tends to zero at ε � εe (or ω � ωe)
[4]. In oriented crystal the coherent mechanism dominates and at χs � 1 (or
κs � 1) the radiation intensity (or probability of pair creation) is decreasing
also (see Eq.(17.17) (or Eq.(12.16)) in [8]). The incoherent mechanism is
suppressed and the LPM effect is suppressed more strongly as it is follow
from the above discussion. It should be noted that the radiation intensity
(and the probability of pair creation) in oriented crystal is always much higher
than in a corresponding amorphous medium.

It’s instructive to compare the LPM effect in oriented crystal for radiation
and pair creation processes. The manifestation of the LPM effect is essen-
tially different because of existence of threshold in pair creation process. The
threshold energy ωm is relatively high (in W, axis < 111 >, ωm ∼ 8 GeV
for T=100 K and ωm ∼ 14 GeV for T=293 K). Below ωm influence of field
of axis is weak and the relative contribution of the LPM effect attains 5.5 %
for T=100 K [3]. There is no threshold in radiation process and IF becomes
larger than Iinc at much lower energy εt and starting from this energy the
influence of field of axis suppresses strongly the LPM effect. So the energy
interval in which the LPM effect could appear is much narrower than for pair
creation and its relative contribution is less than 1 % in W, axis < 111 >.
Since value of εt depends weakly on Z (Eq.(10)), εm ∝ Z−1 (Eqs.(5), (6))
and ε0 ∝ Z−2 (Eq.(9)) the relative contribution of the LPM effect ∆ for light
elements significantly smaller. Thus, the above analysis shows that influence
of multiple scattering on basic electromagnetic processes in oriented crystal
(radiation and pair creation) is very limited especially for radiation process.

Let us note the important result obtained connected with decomposition
of Eqs.(27) and (57) over powers of ν2

0 . The above analysis shows that the
characteristics of the processes under consideration are described quite satis-
factory by the two first terms of the decomposition over ν2

0 (the coherent and
incoherent contributions). The applicability of the third term of the decom-
position (∝ ν4

0 ) is restricted to either very low energy interval (see Eqs.(8)
and (20) and corresponding comments) or very high energy region (because
a weak dependence of k on ε (ω) since k ∝ ε1/3). In the both limiting cases
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the LPM effect is negligibly small, but in the energy interval where the LPM
effect could manifest itself, one has to apply the general formulas Eqs.(27)
and (57).
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