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Abstract

The features of electromagnetic processes are considered which con-
nected with finite size of space region in which final particles (photon,
electron-positron pair) are formed. The longitudinal dimension of the
region is known as the formation length. If some external agent is
acting on an electron while traveling this distance the emission pro-
cess can be disrupted. There are different agents: multiple scattering
of projectile, polarization of a medium, action of external fields, etc.
The theory of radiation under influence of the multiple scattering, the
Landau-Pomeranchuk-Migdal (LPM) effect, is presented. The proba-
bility of radiation is calculated with an accuracy up to "next to leading
logarithm" and with the Coulomb corrections taken into account. The
integral characteristics of bremsstrahlung are given. The LPM effect
for pair creation is also presented. The multiple scattering influences
also on radiative corrections in a medium (and an external field too)
including the anomalous magnetic moment of an electron and the po-
larization tensor as well as coherent scattering of a photon in a Coulomb
field. The polarization of a medium alters the radiation probability in
soft part of spectrum. Specific features of radiation from a target of
finite thickness include: the boundary photon emission, interference
effects for a thin target, the multi-photon radiation. The experimental
study of LPM effect is described. For electron-positron colliding beams
following items are discussed: the mechanisms of radiation, the beam-
size effect in bremsstrahlung, the coherent radiation and mechanisms
of electron-positron creation.

c©Budker Institute of Nuclear Physics SB RAS
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1 Introduction

1.1 General outlook
The electromagnetic interaction is of the local nature, e.g. the interaction
Hamiltonian in quantum electrodynamics is

Hint(x) = eψ(x)γµψ(x)Aµ(x), (1.1)

i.e. the current in a point x interacts with an electromagnetic field Aµ(x) in
the same point. However the process of photon radiation takes place not in
one point but in some domain of space-time, in which a photon (an emitted
wave in the classical language) is originating. The longitudinal dimension
of this domain is called the formation (coherence) length. It is evident that
the minimal size of the formation length is the wave length of the emitted
photon. One can estimate the formation length from the phase factor entering
the expression for the probability of photon emission. In the quasiclassical
operator method (see Eq.(A.1), Appendix A) this factor is (in this paper we
employ units such that � = c = 1)

exp
[
− iε
ε′

(ωt− kr(t))
]
, (1.2)

where ε(ε′) is the energy of the initial (final) electron, ω is the photon energy,
ε′ = ε−ω, k is the wave vector of the photon, r(t) is the particle location on
a classical trajectory, t is the time. The main contribution into the integral
over time in the general expression for the probability of radiation Eq.(A.1)
gives the region

ε

ε′
(ωt− kr(t)) ∼ 1, (1.3)

Taking into account that

k =
√
E(ω)ωn, r(t) = vt, E(ω) = 1− ω2

0

ω2
, ω2

0 =
4παne

m
, nv = v cosϑ,

(1.4)
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where E(ω) is the dielectric constant, ω0 is the plasma frequency, ne is the
electron density, we have from Eq.(1.3) for ϑ� 1

t ∼ tf = lf (ω) =
2εε′

ωm2

(
1 + γ2ϑ2 +

ω2
p

ω2

) , ωp = ω0γ. (1.5)

In this paper we consider the processes at high energies, i.e. the Lorentz
factor γ = ε/m� 1. Then from Eq.(1.5) follows:

1. ultrarelativistic particle radiates into the narrow cone with the vertex
angle ϑ ≤ 1/γ along the momentum of the initial particle, the con-
tribution of larger angles is suppressed because of shortening of the
formation length;

2. the effect of the polarization of a medium described by the dielectric
constant E(ω) manifest itself for soft photons only when ω ≤ ωb, since
on the Earth ω0 < 100 eV we have ωb < εω0/m < 2 · 10−4ε;

3. when ϑ ≤ 1/γ, ω0γ/ω � 1 the formation length is of the order

lf � lf0(ω) =
2εε′

ωm2
. (1.6)

In the classical case ω � ε one has lf0 = 2γ2/ω. So for ultrarelativistic
particles the formation length extends substantially. For example for a ε =
25 GeV electron emitting a ω = 100 MeV photon, lf0 = 10µm, i.e.∼ 105

interatomic distances.
The formation length is important in many electromagnetic processes

including creation of electron-positron pair, magnetic bremsstrahlung, tran-
sition radiation, Čerenkov radiation. There is also a set of applications in-
volving other forces.

There is a number of physical interpretation of the formation length.

• The momentum transfer q to a nucleus in the process of the photon
emission by the particle with the momentum p

q = p− p′ − k, (1.7)

takes the minimal value when it is longitudinal q‖ = qmin = p− p′ − k,
and in this case qmin = 1/lf0 = (�/lf0), i.e. from the uncertainty
principle follows that if the minimal momentum transfer is small, then
the formation length is large.
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• For creation of the electron-positron pair the formation length is the
distance required for the final state particles to separate enough that
they act as independent particles.

• This is the distance over which the amplitudes of several interactions
can add coherently to the total probability.

• The transverse size of the region, where the radiation is formed �⊥
is determined by the minimal transverse momentum transfer qmin

⊥ :
�⊥ = 1/qmin

⊥ = (�/qmin
⊥ ). Although usually q⊥ � q‖ and this di-

mension is much smaller, we consider below the situation when the
constraint of q⊥ is the main effect.

The formation length concept is important because within it the amplitudes
can add coherently if a charged particle is moving freely. In the opposite case,
when some perturbation is acting on the particle within the formation length,
breakdown of the coherence happens and radiation will be suppressed.

1.2 Processes in a medium
Landau and Pomeranchuk were the first to show that if the formation length
of the bremsstrahlung becomes comparable to the distance over which the
multiple scattering becomes important, the bremsstrahlung will be sup-
pressed [1]. They considered radiation of soft photons. Migdal [2], [3] devel-
oped a quantitative theory of this phenomenon. Now the common name is
the Landau- Pomeranchuk -Migdal (LPM) effect.

Let us estimate a disturbance of the emission process due to a multiple
scattering. As it is known, the mean angle of the multiple scattering at some
length lf0 is

ϑs =
√
ϑ2

s =
εs

ε

√
lf0

2Lrad
, εs = m

√
4π
α

= 21.2 MeV, (1.8)

where α = e2 = 1/137, Lrad is the radiation length. Since we are interesting
in influence of the multiple scattering on the radiation process we put here
the formation length Eq.(1.6). One can expect that when ϑs ≥ 1/γ this
influence will be substantial. From this inequality we have

ε′

εLP
≥ ω

ε
, εLP =

m4Lrad

ε2s
, (1.9)

here εLP is the characteristic energy scale, for which the multiple scattering
will influence the radiation process for the whole spectrum. It was introduced
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in [1] and denoted by E0 = εLP . For tungsten we have εLP = 2.7 TeV, and
similar values for all the heavy elements. For the light elements the energy
εLP is much larger. When ε� εLP the multiple scattering will influence the
emission of soft photons only with energy

ω ≤ ωLP =
ε2

εLP
, (1.10)

e.g. for particles with energy ε = 25 GeV one has ωLP � 230 MeV. Of course,
we estimate here the criterion only. For description of the effect one has to
calculate the probability of the bremsstrahlung taking into account multiple
scattering.

Side by side with the multiple scattering of an emitting electron one has
to take into account also the influence of the medium on the radiated elec-
tromagnetic field. As it was shown above Eq.(1.5), this effect leads also
to suppression of the soft photon emission (the dielectric suppression, the
Ter-Mikaelian effect, see in [4]).

A clear qualitative analysis of different mechanisms of suppression is pre-
sented in early papers [5],[6]. More simple derivation of the Migdal’s results
is given in [8].

The next step in a quantitative theory of the Landau-Pomeranchuk-
Migdal (LPM) effect was made in [9]. This theory is based on the quasi-
classical operator method in QED developed by the authors (see [7], [8], [10],
[11]). One of the basic equations (obtained with the use of kinetic equations
describing the motion of an electron in the medium in the presence of an ex-
ternal field) is the Schrödinger equation in an external field with imaginary
potential (Eq.(3.3) of [9]; see (A.22) in Appendix A).

New activity with the theory of the LPM effect is connected with a very
successful series of experiments [12] - [15] performed at SLAC recently. In
these experiments the cross section of the bremsstrahlung of soft photons
with energy from 200 keV to 500 MeV from electrons with energy 8 GeV and
25 GeV was measured for a variety in materials with an accuracy of the order
of a few percent. Both the LPM and the dielectric suppression was observed
and investigated. These experiments were the challenge for the theory since
in all the published before papers calculations are performed to logarithmic
accuracy which is not enough for a description of the new experiments. The
contribution of the Coulomb corrections (at least for heavy elements) is larger
then experimental errors and these corrections should be taken into account.
In papers [17]-[25] the problem was investigated using different approaches.

Very recently the LPM was studied at CERN [16] using iridium target
and electrons with energy 287, 207 and 149 GeV. For iridium according to
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Eqs.(1.9) and (1.10) εLP = 2.2 TeV, ωLP � 37 GeV for the highest energy
and the LPM suppression of bremsstrahlung was observed in much wider
interval of photon energies than at SLAC.

The crossing process for the bremsstrahlung is the pair creation by a pho-
ton. The created particles in a medium can undergo the multiple scattering.
It should be emphasized that for the bremsstrahlung the formation length
(1.6) increases strongly if ω � ε. Just because of this the LPM effect was
investigated at SLAC at a relatively low energy. For the pair creation the
formation length

lp =
2ε(ω − ε)
m2ω

(1.11)

attains maximum at ε = ω/2 and this maximum is lp,max = (ω/2m)λc. Be-
cause of this even for heavy elements the effect of multiple scattering on pair
creation becomes noticeable at photon energies ω ≥ 10 TeV [21]. Starting
from these energies one has to take into account the influence of a medium
on the pair creation and on the bremsstrahlung hard part of the spectrum in
electromagnetic showers being created by the cosmic ray particles of the ul-
trahigh energies. These effects can be quite significant in the electromagnetic
calorimeters operating in the detectors on the colliders in TeV range.

The nonlinear effects of QED are due to the interaction of a photon with
electron-positron field. These processes are the photon-photon scattering,
the coherent photon scattering, the photon splitting into two photons, and
the coalescence of two photons into photon in the Coulomb field.

The process of creation of the electron-positron pair by a photon con-
nected with the coherent photon scattering [26]. In the quasiclassical ap-
proximation the amplitude M of the coherent photon scattering is described
by diagram where the electron-positron pair is created by the initial photon
with 4-momentum k1 (ω,k1) and then annihilate into the final photon with
4-momentum k2. For high energy photon ω � m this process occurs over a
rather long distance, known as the time of life of the virtual state

lf =
ω

2q2c
, (1.12)

where qc ≥ m is the characteristic transverse momentum of the process.
When the virtual electron (or positron) is moving in a medium it scatters
on atoms. The mean square of momentum transfer to the electron from a
medium on the distance lf is

q2s = 4πZ2α2naL(qc)lf , L(qc) = ln
q2c
q2min

, q2min = a−2
s +∆2 +

m4

ω2
, (1.13)
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where Z is the charge of nucleus, na is the number density of atoms in the
medium, ∆ is the photon momentum transfer (∆ = |k2−k1| � qc), as is the
screening radius of atom.

The coherent photon scattering amplitude M can be obtained from gen-
eral formulas for probabilities of electromagnetic processes in the frame of
the quasiclassical operator method (see e.g. [10]). It can be estimated as

M ∼ αω

2πlfna

q2s
q2c

=
α

πna
q2s . (1.14)

We use the normalization condition ImM = ωσp for the case ∆ = 0, where
σp is the total cross section of pair creation by a photon.

In the case of small momentum transfer qs ≡ √
q2s � m we have in the

region of small ∆ � m

q2c = m2, M ∼ 2Z2α3ω

m2
ln

m2

a−2
s + ∆2 + m4

ω2

. (1.15)

At an ultrahigh energy it is possible that qs � m. In this case the
characteristic momentum transfer is qc, the combination q2c/m2 enters in the
formation length lf Eq.(1.5). The self-consistency condition is

q2c = q2s =
2πωZ2α2naL(qc)

q2c
, q2c = ε2ϑ2

c (1.16)

where L(qc) is defined in Eq.(1.13). So using Eq.(1.14) one gets for the
estimate of the coherent photon scattering amplitude M (the influence of
the multiple scattering manifests itself at the high photon energies such that
m2as/ω � 1)

M ∼ 2Z2α3ω

∆2
s

√
ln

∆2
s

a−2
s + ∆2

, ∆2
s =

√
2πωZ2α2na � ∆2. (1.17)

1.3 Radiation in the presence of an external field
The authors have shown [27] that an external electromagnetic field can also
modify the bremsstrahlung process. We consider the effect of an external field
on the photon emission in electron-electron(positron) collision. This effect is
associated as well with a reduction of the formation length of a photon (either
real or virtual) due to relatively large turn of particle velocity over this length,
and the corresponding increase in the vertex angle of the radiation cone. If a
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photon of energy Ω is emitted by an electron (positron) at an angle ϑ to its
velocity, the formation length of such a photon will be according to Eq.(1.5)
(we neglect the polarization of a medium)

lf (Ω) =
2(ε− Ω)
εΩϑ2

c

=
2

εuΩϑ2
c

, (1.18)

where uΩ ≡ Ω/(ε−Ω), ϑc is defined in Eq.(1.16). The characteristic emission
angle in weak field is ϑc = 1/γ, and we can neglect the influence of the
external field if

|v̇|lf(Ω) =
eHlf(Ω)

ε
� 1

γ
. (1.19)

Substituting Eq.(1.18) into Eq.(1.19), we have the criterion for a field to be
weak

γ
eH

ε

2γ2

εuΩ
=

2χ
uΩ

� 1. (1.20)

Here we introduced the important parameter χ, which characterizes the quan-
tum effects in an external field. When χ � 1 we are in the classical domain
and with χ ≥ 1 we are already well inside the quantum domain

χ =
Fγ
F0

χ = |χ|, F = E⊥ + (v × H), (1.21)

where E(H) is an electric (magnetic) field. Equation (1.21) contains the
component of fields transverse with respect to particle velocity v, F0 is one
of

E0 =
m2

e
=

(
m2c3

e�

)
= 1.32 · 1016V/cm, or

H0 =
m2

e
=

(
m2c3

e�

)
= 4.41 · 1013Oe. (1.22)

In strong fields, where χ/u� 1, with characteristic radiation angles ϑ � 1/γ,
the effective emission angle ϑef is determined by a self-consistency argument:
the deviation angle of the particle in the field over the formation length must
not exceed ϑc, i.e.

|v̇|lf (Ω, ϑc) = ϑc, ϑc =
1
γ

(
χ

uΩ

)1/3

=
(

2eH
ε2uΩ

)1/3

lf (Ω, ϑc) =
γ

muΩ

(
uΩ

2χ

)2/3

=
(

ε

4uΩe2H2

)1/3

. (1.23)
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It can be seen from Eq.(1.23) that when χ/u� 1, neither the characteristic
emission angle nor the photon formation length depends on the mass of the
radiating particle. A parameter characterizing the effect of an external field
on the radiation process was derived in [9].

It follows from Eq.(1.23) that, for χ/uΩ � 1, the characteristic photon
formation length is reduced by factor (χ/uΩ)2/3, and the emission angle is
increased by factor (χ/uΩ)1/3. Since the relevant parameter χ/uΩ depends
on the frequency Ω (via uΩ), this effect is manifested earlier for soft photons.
Because of this a specific situation arises in bremsstrahlung in a collision of an
electron and a positron(an electron) in colliding-beam experiment. The point
is that the external factors act differently on the radiating particle and on the
recoil particle. For the radiating particle the criterion of influence of external
factors is the same in scattering by a nucleus as in collision of particles. For
the recoil particles the effect turns out to be enhanced by γ2 times (in the
laboratory frame). This is due to the fact that the main contribution to
the bremsstrahlung cross section give the virtual photons emitted by recoil
particle with very low energy

Ω � q0 =
ωm2

4εε′
, (1.24)

where ω is the frequency of the real photon. The formation length of the
virtual photon is

lv = lf (q0) =
8ε3(ε− ω)
m4ω

, (1.25)

for example, for ε = 2 GeV and ω = 10 MeV the formation length is enor-
mous: lv � 4 · 103cm. This is the reason why the field has a significant effect
on virtual photon emission in e−e+ collisions even for moderate field and at

relatively low particle energies, when the parameter
χ(ε− ω)

ω
≡ χ

u
is small

while the value
χ(ε− q0)

q0
� 4γ2χ

u
is large. In that event, the picture of emis-

sion of a bremsstrahlung photon (radiation vertex) does not change directly,
but a significant change takes place in the virtual photon spectrum at mo-
mentum transfers |q| ≤ qmin(4γ2χ/u)1/3, increasing the lower bound of the
effective momentum transfer and resulting in a corresponding decrease of the
cross section. The bremsstrahlung cross section under these conditions was
derived to logarithmic accuracy in [27] using the equivalent photon method.
In [28] the problem was solved to relativistic accuracy (terms O(1/γ) were
neglected).
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It follows from Eq.(1.20), and was demonstrated in [9] that in the case
χ/u ≥ 1 there is a change of the radiation vertex describing absorption
of a virtual photon and emission of a real one. Since for χ/u � 1 the
formation length of a real photon lω falls off as (u/χ)2/3 (see Eq.(1.23)), the
bremsstrahlung cross section falls off in just the same extent.

2 The effect of a medium in an infinitely thick
target

2.1 The LPM effect for radiation
We consider first the case where the formation length is much shorter than
the thickness of a target l(lf � l). The derivation of basic formulas for
probability of radiation under influence of multiple scattering is given in
Appendix A. The spectral distribution of the probability of radiation per
unit time in this case is given by Eq.(A.20) and functions ϕµ(ϕ0,ϕ) satisfy
the Eq.(A.22). Introducing new variables

t =
a

2
τ, � =

√
a

b
x =

1
γ
x, (2.1)

where the quantities a and b are defined in Eqs.(A.14),(A.15), we obtain for
the spectral distribution of the probability of radiation per unit time

dW

dω
=

2α
γ2

Re
∫ ∞

0

dte−it [R1ϕ0(0, t) +R2pϕ(0, t)] , (2.2)

where R1 =
ω2

εε′
, R2 =

ε

ε′
+
ε′

ε
, and the functions ϕµ = ϕµ(ϕ0,ϕ) now sat-

isfy the equation

i
∂ϕµ

∂t
= Hϕµ, H = p2 − iV (�), p = −i∇�, V (�) = −Q�2

(
ln γ2ϑ2

1

+ ln
�2

4
+ 2C − 1

)
, Q =

2πnaZ
2α2εε′

m4ω
, C = 0.577216... (2.3)

with the initial conditions ϕ0(�, 0) = δ(�), ϕ(�, 0) = pδ(�). Here ε, ε′, ω
are defined in Eq.(1.2) and Z, na are defined in Eq.(1.13). The functions ϕ0

and ϕ in Eq.(2.2) are rescaled according with the initial conditions (factors
1/γ2 and 1/γ3, correspondingly). Note, that it is implied that in formula
(2.2) a subtraction at V = 0 is made.
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The potential V (�) Eq.(2.3) corresponds to consideration of scattering in
the Born approximation. The difference of exact (as a function of Zα) poten-
tial V (�) and taken in the Born approximation is computed in Appendix A
of [17]. The potential V (�) with the Coulomb corrections taken into account
is

V (�) = −Q�2
(

ln γ2ϑ2
1 + ln

�2

4
+ 2C − 1 + 2f(Zα)

)
= −Q�2

(
ln γ2ϑ2

2 + ln
�2

4
+ 2C

)
, (2.4)

where ϑ2 = ϑ1 exp(f − 1/2), the function f = f(Zα) is

f(ξ) = Re [ψ(1 + iξ) − ψ(1)] = ξ2
∞∑

n=1

1
n(n2 + ξ2)

, (2.5)

where ψ(ξ) is the logarithmic derivative of the gamma function.
In above formulas � is space of the impact parameters measured in the

Compton wavelengths λc, which is conjugate to space of the transverse mo-
mentum transfers measured in the electron mass m.

An operator form of a solution of Eq. (2.3) is

ϕ0(�, t) = exp(−iHt)ϕ0(�, 0) =< �| exp(−iHt)|0 >, H = p2 − iV (�),
ϕ(�, t) = exp(−iHt)pϕ0(�, 0) =< �| exp(−iHt)p|0 >, (2.6)

where we introduce the following Dirac state vectors: |� > is the state vector
of coordinate �, and < �|0 >= δ(�). Substituting Eq.(2.6) into Eq.(2.2) and
taking integral over t we obtain for the spectral distribution of the probability
of radiation

dW

dω
=

2α
γ2

ImT, T =< 0|R1

(
G−1 −G−1

0

)
+R2p

(
G−1 −G−1

0

)
p|0 >,

(2.7)
where

G = p2 + 1 − iV, G0 = p2 + 1. (2.8)

Here and below we consider an expression < 0|...|0 > as a limit: lim x → 0,
lim x′ → 0 of < x|...|x′ >.

Let us estimate the effective impact parameters �c which give the main
contribution into the radiation probability. Since the characteristic values
of �c can be found straightforwardly by calculation of Eq.(2.7), we estimate
characteristic angles ϑc connected with �c by an equality �c = 1/(γϑc). The
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mean square scattering angle of a particle on the formation length of a photon
lf Eq.(1.5) has the form

ϑ2
s =

4πZ2α2

ε2
nalf ln

ζ

γ2ϑ2
1

=
4Q
γ2ζ

ln
ζ

γ2ϑ2
1

, (2.9)

where ζ = 1 + γ2ϑ2, we neglect here the polarization of a medium. When
ϑ2

s � 1/γ2 the contribution to the probability of radiation gives a region
where ζ ∼ 1(ϑc = 1/γ), in this case �c = 1. When ϑs � 1/γ the characteristic
angle of radiation is determined by self-consistency arguments (compare with
Eq.(1.23)):

ϑ2
s � ϑ2

c � ζc
γ2

=
4Q
ζcγ2

ln
ζc
γ2ϑ2

1

,
4Q
ζ2
c

ln
ζc
γ2ϑ2

1

= 1, 4Q�4
c ln

1
γ2ϑ2

1�
2
c

= 1.

(2.10)
It should be noted that when the characteristic impact parameter �c be-
comes smaller than the radius of nucleus Rn, the potential V (�) acquires an
oscillator form (see Appendix B, Eq.(B.3) in [17])

V (�) = Q�2

(
ln
a2

s

R2
n

− 0.041
)
, as = 0.81aBZ

−1/3, (2.11)

here as is the screening radius, aB is the Bohr radius.
Allowing for the estimates Eq.(2.10) we present the potential V (�)

Eq.(2.4) in the following form

V (�) = Vc(�) + v(�), Vc(�) = q�2, q = QLc, Lc ≡ L(�c) = ln
1

γ2ϑ2
2�

2
c

,

L1 ≡ L(1) = ln
1

γ2ϑ2
2

= ln
a2

s2

λ2
c

, v(�) = −q�
2

Lc

(
2C + ln

�2

4�2
c

)
, (2.12)

here as2 = as exp(−f + 1/2). So, one can to redefine the parameters as

and ϑ1 to include the Coulomb corrections. The inclusion of the Coulomb
corrections (f(Zα) and −1/2) into lnϑ2

2 diminishes effectively the correction
v(�) to the potential Vc(�). In accordance with such division of the potential
we present the propagators in Eq. (2.7) as

G−1 −G−1
0 = G−1 −G−1

c +G−1
c −G−1

0 , (2.13)

where
Gc = p2 + 1 − iVc, G = p2 + 1 − iVc − iv .
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This representation of the propagator G−1 permits one to expand it over
the "perturbation" v. Indeed, with an increase of q the relative value of the

perturbation is diminished (
v

Vc
∼ 1
Lc

) since the effective impact parameters

diminishes and, correspondingly, the value of logarithm Lc in Eq.(2.12) in-
creases. The maximal value of Lc is determined by the size of a nucleus
Rn

Lmax = ln
a2

s2

R2
n

� 2 ln
a2

s2

λ2
c

≡ 2L1, L1 = 2(ln(183Z−1/3) − f(Zα)), (2.14)

The value L1 is the important parameter of the radiation theory.
The matrix elements of the operator G−1

c can be calculated explicitly.
The exponential parametrization of the propagator is

G−1
c = i

∫ ∞

0

dte−it exp(−iHct), Hc = p2 − iq�2 (2.15)

The matrix elements of the operator exp(−iHct) has the form (details see in
[17])

< �1| exp(−iHct)|�2 >≡ Kc(�1,�2, t), (2.16)

Kc(�1,�2, t) =
ν

4πi sinh νt
exp

{
iν

4

[
(�2

1 + �2
2) coth νt− 2

sinh νt
�1�2

]}
,

where ν = 2
√
iq (see Eq.(2.12)).

Substituting formulas (2.15) and (2.17) in the expression for the spectral
distribution of the probability of radiation (2.7) we have

dWc

dω
=

α

2πγ2
Im Φ(ν),

Φ(ν) = ν

∫ ∞

0

dte−it

[
R1

(
1

sinh z
− 1
z

)
− iνR2

(
1

sinh2 z
− 1
z2

)]

= R1

(
ln p− ψ

(
p+

1
2

))
+R2

(
ψ (p) − ln p+

1
2p

)
, (2.17)

where z = νt, p = i/(2ν), let us remind that ψ(x) is the logarithmic deriva-
tive of the gamma function (see Eq.(2.5)). If we substitute in Eq.(2.17)
t → t exp(−iπ/4) the probability will be transformed into the form contain-
ing the real functions only. Then it can be written as

dWc

dω
=
α|ν|2
12γ2

[R1G(s) + 2R2φ(s)] , (2.18)
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where

G(s) = 12s2
[
π

4
−

∫ ∞

0

exp(−sx)sin(sx)
sinhx

dx

]
,

φ(s) = 6s2
[∫ ∞

0

exp(−sx) sin(sx) cothxdx − π

4

]
, (2.19)

are the functions introduced by Migdal (see Eqs.(46), (47) in [2]). Note

that parameter s =
1√
2|ν| in Eq.(2.19) is two times larger than that used

by Migdal. If one omits the Coulomb correction in Eqs.(2.18), (2.19), then
the probability (2.18) coincides formally with the probability calculated by
Migdal (see Eq.(49) in [2]).

Expanding the expression G−1 −G−1
c over powers of v we have

G−1 −G−1
c = G−1

c (iv)G−1
c +G−1

c (iv)G−1
c (iv)G−1

c + ... (2.20)

In accordance with Eqs.(2.13) and (2.20) we present the probability of
radiation in the form

dW

dω
=
dWc

dω
+
dW1

dω
+
dW2

dω
+ ... (2.21)

At Q ≥ 1 the expansion (2.20) is a series over powers of
1
L

. It is important
that variation of the parameter �c by a factor order of 1 has an influence

on the dropped terms in (2.20) only. The probability of radiation
dWc

dω
is

defined by Eq.(2.17).

The term
dW1

dω
in Eq.(2.21) corresponds to the term linear in v in

Eq.(2.20). The explicit formula for the first correction to the probability
of radiation [17] is

dW1

dω
= − α

4πγ2Lc
Im F (ν);

−Im F (ν) = D1(ν0)R1 +
1
s
D2(ν0)R2; s =

1√
2ν0

,

D1(ν0) =
∫ ∞

0

dze−sz

sinh2 z

[
d(z) sin sz +

π

4
g(z) cos sz

]
, D2(ν0) =

∫ ∞

0

dze−sz

sinh3 z

×
{[
d(z) − 1

2
g(z)

]
(sin sz + cos sz) +

π

4
g(z) (cos sz − sin sz)

}
,

d(z) = (ln ν0ϑ(1 − ν0) − ln sinh z − C)g(z) − 2G(z) cosh z, (2.22)

17



Figure 1: The functions G(s) (curve 1) and φ(s) (curve 2) in Eq.(2.19).

Figure 2: The functions D1(ν0) (curve 1) and D2(ν0) (curve 2) in Eq.(2.22).
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where

g(z) = z cosh z − sinh z, G(z) =
∫ z

0

(1 − y coth y)dy

= z − z2

2
− π2

12
− z ln

(
1 − e−2z

)
+

1
2
Li2

(
e−2z

)
, (2.23)

here Li2 (x) is the Euler dilogarithm; and

ν2
0 ≡ |ν|2 = 4q = 4QL(�c) =

8πnaZ
2α2εε′

m4ω
L(�c), (2.24)

The functions G(s) and φ(s) are given in Fig.1 and the functions D1(ν0) and
D2(ν0) are shown in Fig.2.

As it was said above (see Eqs.(2.10), (2.14)), �c = 1 at

|ν2| = ν2
1 = 4QL1 ≤ 1. (2.25)

The logarithmic functions Lc ≡ L(�c) and L1 are defined in Eqs.(2.12) and
(2.14). If the parameter |ν| > 1, the value of �c is defined from the Eq.
(2.10), where ϑ1 → ϑ2, up to �c = Rn/λc. So, we have two representation of
|ν| depending on �c: at �c = 1 it is |ν| = ν1 and at �c ≤ 1 it is |ν| = ν0. The
mentioned parameters can be presented in the following form

ν2 = iν2
0 , ν

2
0 = |ν|2 � ν2

1

(
1 +

ln ν1
L1

ϑ(ν1 − 1)
)
, ν2

1 =
ε

εe

1 − x

x
, x =

ω

ε
,

εe = m
(
8πZ2α2naλ

3
cL1

)−1
, Lc � L1

(
1 +

ln ν1
L1

ϑ(ν1 − 1)
)
. (2.26)

It should be noted that in the logarithmic approximation the parameter �c

entering into the parameter ν is defined up to the factor ∼ 1. However, we
calculated the next term of the decomposition over v(�) (an accuracy up
to the "next to leading logarithm") and this permitted to obtain the result
which is independent of the parameter �c (in terms ∝ 1/L). Our definition of
the parameter �c minimizes corrections to Eq.(2.17) practically for all values
of the parameter �c.

The approximate solution of Eq.(2.10) given in Eq.(2.26) has quite good
numerical accuracy:it is ∼ 2 % at ν1 = 100 and ∼ 4.5 % at ν1 = 1000. The
LPM effect manifests itself when

ν1(xc) = 1, xc =
ωc

ε
=

ε

εe + ε
. (2.27)

19



So, the characteristic energy εe is the energy starting from which the multiple
scattering distorts the whole spectrum of radiation including its hard part. If
the radiation length Lrad is taken within the logarithmic approximation the
value εe coincides with εLP Eq.(1.9). The difference between these values is

εe − εLP

εe
=

1
9L1

< 2% .

The formulas derived in [17],[21] and written down above are valid for
any energy. In Fig.3 the spectral radiation intensity in gold (εe = 2.6 TeV) is
shown for different energies of the initial electron. In the case when ε � εe

(ε = 25 GeV and ε = 250 GeV) the LPM suppression is seen in the soft
part of the spectrum only for x ≤ xc � ε/εe � 1 while in the region ε ≥ εe

(ε = 2.5 TeV and ε = 25 TeV) where xc ∼ 1 the LPM effect is significant
for any x. For relatively low energies ε = 25 GeV and ε = 8 GeV used in
famous SLAC experiment [14], [15] we have analyzed the soft part of spec-
trum, including all the accompanying effects: the boundary photon emission,
the multiphoton radiation and influence of the polarization of the medium
(see below). The perfect agreement of the theory and data was achieved in
the whole interval of measured photon energies (200 keV≤ ω ≤500 MeV), see
below and the corresponding figures in [17],[18],[19]. It should be pointed out
that both the correction term with F (ν) and the Coulomb corrections have
to be taken into account for this agreement.

When a scattering is weak (ν1 � 1), the main contribution in Eq.(2.22)
gives a region where z � 1. Then

−Im F (ν) =
1
9
Im ν2 (R2 −R1) , Lc → L1,

Φ(ν) � ν2

6
(R1 + 2R2) , (|ν| � 1). (2.28)

Combining the results obtained in Eq.(2.28) we obtain the spectral distri-
bution of the probability of radiation in the case when scattering is weak
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Figure 3: The spectral intensity of radiation ω
dW

dω
= x

dW

dx
, x =

ω

ε
in gold

in terms of 3Lrad taken with the Coulomb corrections (see Eq.(2.36)): curve
BH is the Bethe-Maximon spectral intensity (see Eq.(2.29)); curve 1 is the
logarithmic approximation ωdWc/dω Eq.(2.17), curve c1 is the first correction
to the spectral intensity ωdW1/dω Eq.(2.22) and curve T1 is the sum of the
previous contributions for the electron energy ε = 25 GeV; curve 2 is the
logarithmic approximation ωdWc/dω Eq.(2.17), curve c2 is the first correction
to the spectral intensity ωdW1/dω Eq.(2.22) and curve T2 is the sum of the
previous contributions for the electron energy ε = 250 GeV; curves 3, c3, T3
are the same for the electron energy ε = 2.5 TeV; curves 4, c4, T4 are the
same for the electron energy ε = 25 TeV.
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(|ν| � 1)

dW

dω
=
dWc

dω
+
dW1

dω
=

α

2πγ2
Im

[
Φ(ν) − 1

2L1
F (ν)

]

=
α

2πγ2

2Q
3

[
R1

(
L1 − 1

3

)
+ 2R2

(
L1 +

1
6

)]

=
4Z2α3na

3m2ω

[
ω2

ε2

(
ln

(
183Z−1/3

)
− 1

6
− f(Zα)

)

+2
(

1 +
ε′2

ε2

)(
ln

(
183Z−1/3

)
+

1
12

− f(Zα)
)]

, (2.29)

where L1 is defined in Eq.(2.14). This expression coincide with the known
Bethe-Maximon formula for the probability of bremsstrahlung from high-
energy electrons in the case of complete screening (if one neglects the con-
tribution of atomic electrons) written down within power accuracy (omitted

terms are of the order of powers of
1
γ

) with the Coulomb corrections, see e.g.

Eq.(18.30) in [8], or Eq.(3.83) in [47].
At ν0 � 1 the function Im F (ν) Eq.(2.22) has the form

−Im F (ν) =
π

4
R1 +

ν0√
2

(
ln 2 − C +

π

4

)
R2. (2.30)

Under the same conditions (ν0 � 1) the function Im Φ(ν) Eq.(2.17) is

Im Φ(ν) =
π

4
R1 +

ν0√
2
R2 → ν0√

2
R2. (2.31)

So, in the region where the LPM effect is strong the probability Eq.(2.17)
can written as

dWc

dω
=
αR2

ε2

(
Z2α2εε′na

πω
L(�c)

)1/2

. (2.32)

This means that in this limit the emission probability is proportional to
the square root of the density. This fact was pointed out by Migdal [2], the
expression (2.32) coincides formally with the probability calculated by Migdal
(see Eq.(52) in [2]) with the same remarks which were made after Eq.(2.19).

Thus, at ν0 � 1 the relative contribution of the first correction
dW1

dω
is

defined by

r =
dW1

dWc
=

1
2L(�c)

(
ln 2 − C +

π

4

)
� 0.451
L(�c)

, (2.33)
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where L(�c) = ln
a2

s2

λ2
c�

2
c

. In this expression the value r with the accuracy up

to terms ∼ 1/L2
c doesn’t depend on the photon energy:Lc � L1 + ln(ε/εe)/2.

Hence we can find the correction to the total probability at ε � εe. The
maximal value of the correction is attained at ε ∼ 10εe, it is ∼ 6% for heavy
elements.

In the above analysis we did not consider an inelastic scattering of a pro-
jectile on atomic electrons. The potential Ve(�) connected with this process
can be found from formula (2.4) by substitution Z2 → Z, ϑ1 → ϑe = 0.153ϑ1

(an analysis of an inelastic scattering on atomic electrons as well as the pa-
rameter ϑe can be found in [47]). The summary potential including both an
elastic and an inelastic scattering is

V (�) + Ve(�) = −Q(1 +
1
Z

)�2
[
ln γ2ϑ2

2 + ln
�2

4
+ 2C +

1
Z + 1

(
ln
ϑ2

e

ϑ2
1

− 2f
)]

= −Qef�2
(

ln γ2ϑ2
ef + ln

�2

4
+ 2C

)
, (2.34)

where

Qef = Q(1 +
1
Z

), ϑef = ϑ1 exp
[

1
1 + Z

(Zf(αZ) − 1.88) − 1
2

]
.

2.2 Integral characteristics of bremsstrahlung
Integrating Eq.(2.17) over x = ω/ε we obtain the total intensity of radiation
in the logarithmic approximation

I

ε
L0

rad = 2
εe

ε
Im

[
−

∫ 1

0

dx

g

√
x

1 − x
(2(1 − x) + x2) (2.35)

+
∫ 1

0

x3dx

1 − x

(
ψ(p+ 1) − ψ

(
p+

1
2

))
+ 2

∫ 1

0

xdx (ψ (p+ 1) − ln p)

]
,

where

p =
gη

2
, η =

√
x

1 − x
, g = exp

(
i
π

4

)√
L1

Lc

εe

ε
,

L0
rad is the radiation length in the logarithmic approximation. The relative

energy losses of electron per unit time in terms of the Bethe-Maximon radia-

tion length L0
rad:

I

ε
L0

rad in gold is given in Fig.4 (curve 1), it reduces by 10%
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Electron (photon) energy (TeV)

Figure 4: The relative energy losses of electron per unit time in terms of the

Bethe-Maximon radiation length L0
rad:

I

ε
L0

rad in gold vs the initial energy
of electron (curve 1) and the total pair creation probability per unit time
W c

p (see Eq.(2.49))in terms of the Bethe-Maximon total probability of pair
creation WBM

p0 (see Eq.(2.47)) in gold vs the initial energy of photon (curve
2).

(15% and 25%) at ε � 700 GeV (ε � 1.4 TeV and ε � 3.8 TeV) respectively,
and it cuts in half at ε � 26 TeV. This increase of effective radiation length
can be important in electromagnetic calorimeters operating in detectors on
colliders in TeV range as well as in analysis of high-energy cosmic rays. The
influence of the correction terms was discussed after Eq.(2.33).

The spectral distribution of bremsstrahlung intensity and the spectral
distribution over energy of created electron (positron) as well as the reduction
of energy loss and the photon conversion cross section was calculated by
Klein [15] using the Migdal [2] formulas. As will be explained below (see
Sec. 3.7) we use more accurate procedure of fine tuning and because of this
our calculation in logarithmic approximation differs from Migdal one. We
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calculated also the correction term and include the Coulomb corrections. For
this reason the results shown here in Figs.3-4 are more precise than given in
[15].

In the case ε � εe the correction term to the total intensity of radiation
(or to the radiation length) can be written as [21]

I

ε
=
αm2

4πεe

(
1 +

1
9L1

− 4π
15

ε

εe

)
� L−1

rad

(
1 − 4π

15
ε

εe

)
,

1
Lrad

=
2Z2α3naL1

m2

(
1 +

1
9L1

)
(2.36)

In the opposite case ε� εe we have [21]

I

εLrad
� 5

2

√
εe

ε

[
1 − 2.37

√
εe

ε
+ 4.57

εe

ε
+

1
4L1

(
ln

ε

εe
− 0.3455

)]
(2.37)

Although the coefficients in the last expression are rather large at two first
terms of the decomposition over

√
εe/ε this formula has the accuracy of the

order of 10% at ε ∼ 10εe.
Analogous expression for the integral probability of radiation has the form

W =
11πZ2α3na

2
√

2m2

√
εe

ε
L1

[
1 − 1.23

√
εe

ε
+ 1.645

εe

ε
+

1
4L1

(
ln

ε

εe
+ 2.53

)]
.

(2.38)
Ratio of the main terms of Eqs.(2.37) and (2.38) gives the mean energy

of radiated photon

ω̄ =
9
22
ε � 0.409ε. (2.39)

2.3 The LPM effect for pair creation
The probability of the pair creation by a photon can be obtained from the
probability of the bremsstrahlung with help of the substitution law:

ω2dω → ε2dε, ω → −ω, ε→ −ε, (2.40)

where ω is the photon energy, ε is the energy of the particle. Making this sub-
stitution in Eq.(2.7) we obtain the spectral distribution of the pair creation
probability [21] (over the energy of the created electron ε)

dWp

dε
=

2αm2

εε′
Im

〈
0|s1

(
G−1 −G−1

0

)
+ s2p

(
G−1 −G−1

0

)
p|0〉 , (2.41)
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where

s1 = 1, s2 =
ε2 + ε′2

ω2
, ε′ = ω − ε, (2.42)

the other notations are given in Eqs.(2.8), (2.3), (2.4), (2.5).
Just as in the analysis of the LPM effect for radiation we present the

potential Eq.(2.4) in the form V (�) = Vc(�) + v(�) and will proceed as we
did in Eqs.(2.12)- (2.17). Substituting the expression (2.17) in the formula
for the spectral distribution of the pair creation probability (2.41) we have

dW c
p

dε
=

αm2

2πεε′
Im Φp(ν),

Φp(ν) = ν

∫ ∞

0

dte−it

[
s1

(
1

sinh z
− 1
z

)
− iνs2

(
1

sinh2 z
− 1
z2

)]

= s1

(
ln p− ψ

(
p+

1
2

))
+ s2

(
ψ(p) − ln p+

1
2p

)
, (2.43)

where we used the same notations as in Eq.(2.17). This formula gives the
spectral distribution of the pair creation probability in the logarithmic ap-
proximation which was used also by Migdal [3]. It should be noted that
the parameter �c entering into the parameter ν (see Eqs.(2.17), (2.12) and
(2.10)) is defined up to the factor ∼ 1, what is inherent in the logarithmic
approximation. However, below we will calculate the next term of the de-
composition over v(�) (an accuracy up to the "next to leading logarithm")
and this permits to obtain the result which is independent of the parameter
�c. It will be shown that the definition of the parameter �c minimizes cor-
rections to Eq.(2.43) practically for all values of the parameter �c. It should
be emphasized also that here the Coulomb corrections are included into the
parameter ν in contrast to [3].

Substituting the expansion (2.20) in Eq.(2.41) we obtain the decomposi-
tion of the probability of the pair creation:

dWp

dε
=
dW c

p

dε
+
dW 1

p

dε
+
dW 2

p

dε
+ ... (2.44)

The probability of pair creation
dW c

p

dε
is defined by Eq.(2.43).The term

dW 1
p

dε
in Eq.(2.44) corresponds to the first term (linear in v) in Eq.(2.20). The
explicit expression for the first correction to the pair creation probability is
[21]
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dW 1
p

dε
= − αm2

4πεε′Lc
Im Fp(ν); Fp(ν) =

∫ ∞

0

dze−it

sinh2 z
[s1f1(z) − 2is2f2(z)] ,

f1(z) =
(
ln �2

c + ln
ν

i
− ln sinh z − C

)
g(z) − 2 cosh zG(z),

f2(z) =
ν

sinh z

(
f1(z) − g(z)

2

)
, t = t1 + t2, (2.45)

where the functions g(z) and G(z) are defined in Eq.(2.23), Lc is defined
in Eq.(2.12). Use of the last representation of function G(z) simplifies the
numerical calculation. As in radiation case the parameter ν has two repre-
sentations: Eqs.(2.24) and (2.25).

When the scattering of created particles is weak (ν1 � 1), the main
contribution in Eqs.(2.43) and (2.45) gives the region where z � 1 and one
can expand the functions of z (compare with Eq.(2.28)). As result we obtain
the spectral distribution of the pair creation probability for |ν| � 1:

dWp

dε
=
dW c

p

dε
+
dW 1

p

dε
=

αm2

2πεε′
Im

[
Φp(ν) − 1

2Lc
Fp(ν)

]

=
4Z2α3na

3m2ω

{(
ln

(
183Z−1/3

)
− f(Zα)

)(
1 − 31ν4

1

21

)
− 1

6

+2
ε2 + ε′2

ω2

[(
ln

(
183Z−1/3

)
− f(Zα)

)(
1 − 16ν4

1

21

)
+

1
12

]}
, (2.46)

where L1 is defined in Eq.(2.12). Integrating Eq.(2.46) over ε we obtain

Wp =
28Z2α3na

9m2

[(
ln(183Z−1/3) − f(Zα)

)(
1 − 3312

2401
ω2

ω2
e

)
− 1

42

]
, (2.47)

where
ωe = m

(
2πZ2α2naλ

3
cL1

)−1 (2.48)

Note that ωe is four times larger than εe Eq.(2.26), in gold it is ωe = 10.5 TeV.
This is just the value of photon energy starting with the LPM effect becomes
essential for the pair creation process in heavy elements. If one omits here
the terms ∝ ν4

1 and ∝ (ω/ωe)2 these expressions coincide with the known
Bethe-Maximon formula for the probability of pair creation by a high-energy
photon in the case of complete screening (if one neglects the contribution of
atomic electrons) written down within power accuracy (omitted terms are of
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the order of powers of
m

ω
) with the Coulomb corrections, see e.g. Eqs.(19.4)

and (19.17) in [8].
The pair creation spectral probability dW/dx vs x = ε/ω in gold is shown

in Fig.5 for different energies. It is seen that for ω = 2.5 TeV which below
ωe the difference with the Bethe-Maximon probability is rather small. When

Figure 5: The pair creation spectral probability
dWp

dx
, x =

ε

ω
in gold in terms

of the exact total Bethe-Maximon probability taken with the Coulomb cor-
rections (see Eq.(2.47)): curve BH is the Bethe-Maximon spectral probability
(see Eq.(2.46)); curve T1 is the total contribution (the sum of the logarith-
mic approximation dW c

p/dε (2.43) and the first correction to the spectral
probability dW 1

p /dε (2.45)) for the photon energy ω = 2.5 TeV; curve 2 is
the logarithmic approximation dW c

p/dε (2.43), curve c2 is the first correction
to the spectral probability dW 1

p /dε (2.45)) and curve T2 is the sum of the
previous contributions for the photon energy ω = 25 TeV; curves 3, c3, T3
are the same for the photon energy ω = 250 TeV; curves 4, c4, T4 are the
same for the photon energy ω = 2500 TeV.
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ω > ωe there is significant difference with the Bethe-Maximon spectrum
increasing with ω growth. In Fig.5 are shown the curves (thin lines 2,3,4)
obtained in logarithmic approximation dW c

p/dε Eq.(2.43), the first correction
to the spectral probability dW 1

p /dε Eq.(2.45), curves c2, c3, c4 and the sum
of these two contributions: curves T 1, T 2, T 3, T 4. It should be noted that for
our definition of the parameter �c Eq.(2.10) the corrections are not exceed
6% of the main term. The corrections are maximal for ν0 ∼ 3.

Integrating Eq.(2.43) over y = ε/ω we obtain the total probability of pair
creation in the logarithmic approximation

W c
p

WBM
p0

=
9
14
ωe

ω
Im

∫ 1

0

dy

y(1 − y)

[(
ln p− ψ

(
p+

1
2

))

+
(
1 − 2y + 2y2

)(
ψ (p) − ln p+

1
2p

)]
, (2.49)

where

p =
bs

4
, s =

1√
y(1 − y)

, b = exp
(
i
π

4

)√
L1

Lc

ωe

ω
,

WBM
p0 is the Bethe-Maximon probability of pair photoproduction in the log-

arithmic approximation. The total probability of pair creation W c
p in gold is

given in Fig.4 (curve 2),it reduced by 10% at ω � 9 TeV and it cuts in half
at ω � 130 TeV.

At ν0 � 1 the function Fp(ν) (see Eq.(2.45)) has the form

−Im Fp(ν) =
π

4
(s1 − s2) +

ν0√
2

(
ln 2 − C +

π

4

)
s2, (2.50)

Under the same conditions (ν0 � 1) the function Im Φp(ν) Eq.(2.43) is

Im Φp(ν) =
π

4
(s1 − s2) +

ν0√
2
s2 → ν0√

2
s2. (2.51)

So, in the region where the LPM effect is strong the probability Eq.(2.43)
can written as

dW c
p

dε
=
α(ε2 + ε′2)

ω2

(
Z2α2na

πωεε′
L(�c)

)1/2

. (2.52)

This means that in this limit the spectral probability of pair creation is
proportional to the square root of the density just as the emission probability
Eq.(2.32).
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At ν0 � 1 the relative contribution of the first correction
dW 1

p

dε
is defined

by

r =
dW 1

p

dW c
p

=
1

2Lc

(
ln 2 − C +

π

4

)
� 0.451

Lc
. (2.53)

In this expression the value r with the accuracy up to terms ∼ 1/L2
c doesn’t

depend on the electron energy: Lc � L1 + ln(ω/ωe)/2. Hence we can find
the correction to the total probability at ω � ωe. The maximal value of the
correction is attained at ω ∼ 10ωe, it is ∼ 6% for heavy elements. In this
region ν0 � 1 or ω � ωe the total probability of pair creation in terms of
the Bethe-Maximon total probability can be presented as

Wp

WBM
p

� 2.14
√
ωe

ω

[
1 − 0.836

√
ωe

ω
− 0.548

ωe

ω
+

1
4L1

(
ln

ω

ωe
+ 0.274

)]
.

(2.54)

2.4 Anomalous magnetic moment of the electron in a
medium

The contributions of higher orders of the perturbation theory over the inter-
action with an electromagnetic field give the electromagnetic radiative correc-
tions to the electron mass and lead to appearance of the anomalous magnetic
moment (AMM) of the electron [29]. It is known that under influence of an
external electromagnetic field these effects in particular the AMM of electron
are changed essentially [30], [8]. Here we consider how the mentioned effects
modify in a medium [31].

The total probability of radiation W is connected with imaginary part of
the radiative correction to the electron mass according to

m∆m = ε∆ε, −2Im∆ε = W, Im ∆m = − ε

2m
W. (2.55)

Since T in Eq.(2.7) is the analytic function of the potential V we have that

∆m = −αm
∫ ε

0

dω

ε
T. (2.56)

One can derive this formula considering the self-energy diagram and the
corresponding amplitude of forward scattering of electron (see Eqs.(12.18)
and (12.39) in [8]).
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In the presence of a homogeneous external field the Hamiltonian H
(2.3),(2.6) acquires the linear over coordinate term. One can find the ex-
plicit form of this term using the Eqs.(A.18) and (A.22) of Appendix A and
carrying out the scale transformation of variables according to Eq.(2.1):

∆H =
2
u

χ�, (2.57)

where χ is the known parameter characterizing quantum effects in the radi-
ation process (see Eq.(1.21)), u = ω/ε′.

For polarized initial electron (see (A.4) in Appendix A) have for the ad-
dition to T in Eq.(2.7) depending on the spin vector ζ:

T → T + Tζ , Tζ = i
ω

ε

(
< 0|(G−1p− pG−1)|0 > ×v

)
ζ. (2.58)

For the radiative correction to the electron mass we have, respectively

∆m→ ∆M = ∆m+ ∆mζ . (2.59)

It should be noted that expressions for T (2.7) and (2.58) have universal form
while the specific of the particle motion is contained in the propagator G−1

through the effective potential

VF (�) = −iVc(�) +
2
u

χ�, HF = p2 + VF , GF = HF + 1, (2.60)

where we restrict ourselves to the main term in the decomposition over v, see
Eqs.(2.12), (2.20). This means that result has the logarithmic accuracy over
the scattering (but not over an external field). With regard for an external
field the parameter �c in Eq.(2.24) is defined by a set of equations:

�c = 1 for 4
χ2

u2
+ 4QL1 ≤ 1;

�4
c

[
4
χ2

u2
�2

c + |ν(�c)|2
]

= 1 for 4
χ2

u2
+ 4QL1 ≥ 1, (2.61)

where ν = 2
√
iq, q = QLc, L1, Q and Lc are defined in Eqs.(2.25) and (2.24).

Substituting into the depending on the spin term in (2.58) we find

〈
0|(G−1

F p− pG−1
F )|0〉 =

χ

2πu

∫ ∞

0

exp(−it) ϕ

cosh2 νt
2

dt,

ϕ ≡ ϕ(χ, ν, t) = exp
[
−4iχ2t

ν2u2

(
1 − 2

νt
tanh

νt

2

)]
. (2.62)
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Thus, in the used approximation (G = GF ) we have for Tζ Eq.(2.58)

Tζ =
i

2πu
ω

ε

∫ ∞

0

exp(−it) ϕ

cosh2 νt
2

dt(ζχv), (2.63)

where (ζχv) = (ζ · (χ × v)). Within relativistic accuracy (up to terms of
higher order over 1/γ) the combination of vectors entering in Eq.(2.63) can
be written as (see Eq.(12.19) in [8] and [33])

(ζχv) = 2µ0
ζHR

m
, (2.64)

where µ0 = e/2m = (e�/2mc) is the Bohr magneton, HR = γ(H⊥ + E × v)
is the magnetic field in the electron rest frame. Here we use that χ = χs,
where s is the unit vector in the direction of acceleration (this vector is used
in [8]).

In the electron rest frame one can consider the value Re ∆mζ depending
on the electron spin as the energy of interaction of the AMM of electron µ′

with the magnetic field HR (see Eq.(12.23) in [8] and [33])

Re ∆mζ = −µ′ζHR, (2.65)

Taking into account Eqs.(2.56), (2.58), (2.59), (2.63), (2.64), (2.65) we
obtain the following general expression for the AMM of electron moving in a
medium in the presence of an external electromagnetic field [31]:

µ′

µ0
= −α

π
Im

∫ ∞

0

du

(1 + u)3

∫ ∞

0

exp(−it) ϕ

cosh2 νt
2

dt (2.66)

In the absence of scattering (ν → 0) the expression (2.66) gets over into
the formula for the AMM of electron in external field (see Eq.(12.24) in [8]
and [34], [33])

µ′

µ0
= −α

π
Im

∫ ∞

0

du

(1 + u)3

∫ ∞

0

exp
[
−it

(
1 +

χ2t2

3u2

)]
dt (2.67)

In the weak external field (χ � 1, ϕ � 1) we obtain the formula for the
AMM of electron under influence of multiple scattering

µ′

µ0
= −α

π
Im

∫ ∞

0

du

(1 + u)3

∫ ∞

0

exp(−it) 1
cosh2 νt

2

dt =
α

2π
r, (2.68)
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where
r = ReJ, J = 2i

∫ ∞

0

du

(1 + u)3

∫ ∞

0

exp(−it) 1
cosh2 νt

2

dt

= 4i
∫ ∞

0

du

(1 + u)3
1
ν

[
2i
ν
β

(
i

ν

)
− 1

]
,

β =
1
2

[
ψ

(
1 + x

2

)
− ψ

(x
2

)]
, (2.69)

where ψ(x) is defined in Eq.(2.5).

Figure 6: Anomalous magnetic moment(AMM) of electron in units α/2π (r
in Eq.(2.69)) in gold vs electron energy in TeV.

The dependence of the AMM of electron on its energy ε in gold is shown
in Fig.6. It is seen that at energy ε = 500 GeV value of AMM is 0.85 part of
standard quantity (SQ) of AMM (r = 1) , at energy ε = 1 TeV it is 0.77 part
of SQ and at energy ε = 5.5 TeV it is 0.5 part of SQ. Actually in all heavy
elements the behavior of AMM of electron will be quite similar, i.e. the scale
of energy where the AMM of electron deviates from SQ is of order of TeV.

In the case of weak effect of multiple scattering when ε� εe, where εe is
defined in Eq.(2.26) we obtain for AMM of electron

µ′

µ0
=

α

2π

(
1 − π

2
ε

εe

)
. (2.70)
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At very high energy ε � εe the effect of multiple scattering becomes
strong. In this case the asymptotic expression for AMM of electron is

r =
2π
α

µ′

µ0
=

π

2
√

2

√
εc

ε

(
1 − π2

2
εc

ε

)
, εc = εe

L1

L0
, L0 = L1 +

1
2

ln
ε

εe
.

(2.71)
Redefinition of the characteristic energy εe → εc is connected with enlarge-
ment of the radiation cone (in comparison with 1/γ) or in another terms
with increasing of the characteristic transverse momentum transfers due to
the multiple scattering.

Let us discuss one of possibilities of experimental observation of influence
of medium on the AMM of electron. At a very high energy where the ob-
servation becomes feasible the rotation angle ϕ of the spin vector ζ in the
transverse to the particle velocity v magnetic field H depends only on the
value of AMM and doesn’t depend on the particle energy:

ϕ =
(
m

ε
+
µ′

µ0

)
eH

m
l � r

α

2π
H

H0

l

λc
, (2.72)

where l is the path of electron in the field, H0 = m2/e = 4.41 · 1013 Oe (see
Eq.(1.22)). The dependence of r on energy ε is found above and shown in
Fig.6.

Since at radiation of hard photons in a medium the picture is quite com-
plicated:energy losses, cascade processes, spin flip and depolarization, it is
desirable to measure the particles which don’t radiate photons on the path
l. The number of such particles N is determined by the total probability of
radiation in a medium found in [21], Eqs.(3.12)-(3.14) (see Eqs.(2.38) and
(2.39) in Sec.2.2 above):

N = N0 exp(−ψ(ε)), ψ(ε) = W (ε)l =
k(ε)ϕSQ

2χ(εe)
; k(ε) = W (ε)L0

rad,

(L0
rad)

−1 =
α

4π
m2

εe
, χ(εe) =

εe

m

H

H0
, (2.73)

where ϕSQ is the rotation angle for standard value of AMM in QED (r = 1),
N0 is the number of initial electrons. With energy increase the function k(ε)
decreases (see Eqs.(3.12), (3.13) in [21])

k(ε� εe) � 4
3

(
ln
εe

ε
+ 1.96

)
, k(ε = εe) � 3.56, k(ε� εe) � 11π

4
√

2

√
εe

ε
.

(2.74)
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The crucial part of the experiment is an accuracy of measurement of electron
polarization before target and after target. If one supposes that spin rotation
angle can be measured with accuracy noticeably better than 1/10 then we
can put that (1− r)ϕSQ = 1/10. In the gold we find for the energy ε = εe =
2.61 TeV and the magnetic field H = 4 · 105Oe that 1 − r = 0.371, the path
of electron in the target is l � 1 cm and number of electron traversing the
target without energy loss is N � 3.2 ·10−5N0. This estimates show that the
measurement of the effect found in this paper will be feasible in the not very
distant future.

2.5 Propagation of high-energy photon in a medium in
presence of an external field

As known, the propagation of electromagnetic wave in a medium is defined by
its dielectric tensor Eik(ω). For relatively low frequency ω (e.g. visible light)
the dielectric tensor is defined by atomic phenomena. When the frequency of
wave is much higher the atomic frequencies, the dielectric tensor has a form

Eik(ω) = δikE(ω), E(ω) = 1 − ω2
0

ω2
, ω2

0 =
4πnee

2

m
, (2.75)

where ω0 is the plasma frequency, in any medium ω0 < 100 eV. So that for
ω � ω0 an influence of atomic phenomena on propagation of electromagnetic
wave in a medium becomes small.

At very high energy the nonlinear effects of QED enter into game. One
of them is the polarization of the vacuum by a photon. In the presence of
an external electromagnetic field the polarization of vacuum was considered
first in the pioneer papers [35]. In the strong field this effect can be essential
for propagation of high-energy photons [36], [8].

To evaluate the polarization tensor one has to consider the amplitude of
photon scattering which included the polarization operator [32]. As above we
use the quasiclassical operator method [7], [8], [10]. In this method the men-
tioned amplitude is described by diagram where the virtual electron-positron
pair is first created by the initial photon with 4-momentum k(ω,k) and po-
larization e1 and then annihilate into final photon with 4-momentum k and
polarization e2. This corresponds to use of the non-covariant perturbation
theory where at high energies (ω � m) the contribution of this diagram sur-
vives only. For this energy of photon this process occurs in a rather long time
(or at a rather long distance) known as the lifetime of the virtual state

lf =
ω

2q2c
, (2.76)
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where qc ≥ m is the characteristic transverse momentum of the process.
When the virtual electron (or positron) is moving in a medium it scatters by
atoms and changes the velocity under influence of external electromagnetic
field. The mean square of momentum transfer to the electron from a medium
and an external field on the distance lf is

q2f = q2s + q2
F , q2s = 4πZ2α2naLlf , L ≡ L(q2c ) = ln(q2ca

2
s),

qF = eFlf , F = E⊥ + v × H, (2.77)

here the notations see Eqs.(1.13), (1.21).
In the case of small momentum transfer qf ≡

√
q2f � m the influence of a

medium and an external field is weak, in this case qc = m. At high energy it is
possible that qf ≥ m. In this case the characteristic value of the momentum
transfer (giving the main contribution into the spectral probability) is defined
by the value of qf . The self-consistency condition is

q2c = q2f =
2πωZ2α2naL(qf )

q2f
+
m6κ2

4q4f
≥ m2, κ =

ω

m3
eFγ ,

Fγ = E − n(nE) + n × H, (2.78)

here κ = |κ| is known parameter characterizing the pair production process
in a homogeneous external field Fγ . With qc increase the lifetime of the
virtual state Eq.(2.76) decreases.

We will use the following normalization condition for the amplitude under
consideration

M = 2ω∆ω. (2.79)

The amplitude M is the contraction of the tensor e(i)∗j e
(f)
k (e(i) and e(f)

are the polarization vectors of the initial and the final photons) and the
polarization tensor Mjk. We select the basic vectors as

e1 =
Fγ

|Fγ | , e2 = n × e1. (2.80)

Since the tensorMjk is invariant under the space inversion then in the selected
basic vectors it has the diagonal form

Mjk =
1
2

[δjk(M11 +M22) + (e1je1k − e2je2k)(M11 −M22)] (2.81)

In absence of external field it is convenient to describe the process of photon
scattering using the helicity polarization vector eλ (λ = ±1) connected with
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momentum transfer ∆ (see Eq.(2.97) in the next subsection). In presence
of external field and for ∆ = 0 we choose the polarization vectors in the
following way:

eλ =
1√
2

(e1 + iλe2) , (eλe∗λ) = 1, (eλe∗−λ) = 0, eλ×n = iλeλ. (2.82)

In terms of helicity amplitudes M++ and M+− the tensor Mjk and the
corresponding dielectric tensor Ejk has a form

Mjk = δjkk
2
++ + (e1je1k − e2je2k)k2

+−,

Ejk = δjk − 1
ω2
Mjk, k2

++ ≡M++, k2
+− ≡M+− (2.83)

The polarization tensor k2
jk is diagonal in the basic vectors e1 and e2

Eq.(2.80). The corresponding mass squared are

k2
1 ≡ k2

11 = k2
++ + k2

+−, k2
2 ≡ k2

22 = k2
++ − k2

+− (2.84)

The probability of pair creation by a photon with polarization e is

WF
p (e) = − 1

ω
Im

[
(ee1)2k2

1 + (ee2)2k2
2

]
= − 1

ω
Im

[
k2
++ + ξ3k

2
+−

]
, (2.85)

where ξ3 is the Stokes’ parameter. For unpolarized photon one has

WF
p = − 1

ω
Im k2

++. (2.86)

The method of calculation of the functions k2
++ and k2

+− which define the
tensor Mjk is similar to used in previous subsection (see details in [32]). The
general expressions for photon masses squared under simultaneous influence
of multiple scattering in a medium and an external electromagnetic field has
a form

k2
++ =

αm2

2π

∫ ω

0

ωdε

εε′

∫ ∞

0

e−it

×
[
s2νϕp tanh

νt

2

(
4κ′2

ν2
+ 1

)
− s3

(
ν

sinh νt
ϕp − 1

t

)]
dt. (2.87)

For k2
+− we found respectively

k2
+− = −2αm2

π

∫ ω

0

ωdε

εε′
s3κ

′2
∫ ∞

0

e−it ϕp

ν sinh νt
tanh2 νt

2
dt. (2.88)

37



Here the coefficients s1 and s2 are defined in Eq.(2.42),

s3 =
2εε′

ω2
, κ′ =

εε′

ω2
κ, ν = 2

√
iq, q = QLc, Lc ≡ L(�c) = ln

a2
s2

λ2
c�

2
c

,

ϕp ≡ ϕ(κ′, ν, t) = exp
[
−4iκ′2t

ν2

(
1 − 2

νt
tanh

νt

2

)]
, (2.89)

where κ is defined in Eq.(2.78), Q is defined in Eq.(2.3), the parameter �c is
defined by the set of equations (compare with Eq.(2.61)):

�c = 1 for 4(κ′2 +QL1) ≤ 1;

4�4
c

(
κ′2�2

c +QLc

)
= 1 for 4(κ′2 +QL1) ≥ 1, (2.90)

In the absence of external field (κ′ = 0, ϕp = 1) we have

k2
++ =

αm2

2π

∫ ω

0

ωdε

εε′

∫ ∞

0

e−it

[
s2ν tanh

νt

2
− s3

2t

(
ν

sinh νt
− 1
t

)]
dt

= −αm
2

2π

∫ ω

0

ωdε

εε′

[
s1

(
ln p− ψ

(
p+

1
2

))
+ s2

(
ψ(p) − ln p+

1
2p

)]
,

k2
+− = 0, (2.91)

where p = i/2ν, ψ(p) as above is the logarithmic derivative of the gamma
function. Subsisting the result obtained into formula (2.86) we have the
probability of pair creation which agrees with Eq.(2.43).

In the absence of multiple scattering (ν → 0) we get

k2
++ =

αm2

π

∫ ω

0

ωdε

εε′

∫ ∞

0

e−it
[
s2κ

′2tϕF − s3
2t

(ϕF − 1)
]
dt,

k2
+− = −αm

2

2π

∫ ω

0

ωdε

εε′
s3κ

′2
∫ ∞

0

e−itϕF tdt, (2.92)

where

ϕF = exp
(
−iκ

′2t3

3

)
(2.93)

For this case the expressions for k2
1,2 (2.10) after substitution results of

Eq.(2.92) agree with masses squared of photon calculated in an external elec-
tromagnetic field (see [8] and references therein).

In the case when the both characteristic parameters are small
(ν2

1 = 4QL1 � 1, κ � 1), the main terms of decomposition of the func-
tions k2 are the sum of independent corrections to the photon mass squared
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both on account of the multiple scattering and an external field

k2
++ =

αm2

π

[
− i

7
9
ω

ωe

(
1 − 1

21L1

)
+

59
225

(
ω

ωe

)2

−i3
√

3π
16

√
2
ω

ωF
exp

(
−8ωF

3ω

)
− 11

90

(
ω

ωF

)2
]
,

k2
+− =

αm2

π

[
i

√
3π

16
√

2
ω

ωF
exp

(
−8ωF

3ω

)
+

1
30

(
ω

ωF

)2
]
;

ω � ωe, ωF = m
H0

|F| , ω � ωF , (2.94)

where ωe is defined in Eq.(2.48) and H0 in Eq.(1.22). The correction ∝ 1/L1

follows from the first term of decomposition of the type Eq.(2.20). Let us
remind that in gold the value ωe is ωe = 10.5 TeV, this is the typical value
for the heavy elements.

In Fig.7 the functions Re k2
++(curve 2) and Im k2

++ (curve 1) are given
for the case when the influence of a medium is taken into account only (Eq.
(2.91)). The both curves are normalized to the asymptotics given by Eq.
(2.94) in the limit ωF → ∞.

It should be noted that beginning with some photon energy ω = ωb the
radiative correction to the value Re Ejk in the absence of a field (κ = 0)
becomes larger than ω2

0/ω
2 (see Eq.(2.75)). The estimate of ωb is following

ωb ∼
√
α

π

Lrad

λc
ω0. (2.95)

For gold one obtains ωb ∼ 40 GeV.
A propagation of high-energy photons in oriented single crystals is one

of interesting applications of the result obtained in this subsection. In this
case we have both the dense matter with strong effect of multiple scattering
and high fields of crystal axes or planes. As we saw, the LPM effect is most
pronounced in the heavy elements. The same is valid for the process under
consideration. Let the high-energy photon incident on crystal. The angle of
incidence is small and such that the distance from axis � (or the distance
from plane x) can be considered as a constant on the formation length of
process (the constant field approximation is applicable, see Sections 12,15 in
[10]).

For the case of orientation of a crystal along an axis the ratio of density
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Figure 7: The functions Re k2
++(curve 2) and Im k2

++ (curve 1) versus the
photon energy taken in units ωe (because of this the curves are universal)
for the case when the influence of a medium is taken into account only
(Eq.(2.91)). The both curves are normalized to the asymptotics given by
Eq.(2.94) in the limit ωF → ∞.

of atoms in the vicinity of axis n(�) to the mean density na is

ξax(�) =
n(�)
na

=
exp(−�2/2u2

1)
2πu2

1dna
, (2.96)

where u1 is the amplitude of thermal vibrations of atoms, d is the mean
distance between atoms which form the axis. This ratio is maximal at � = 0.
For numerical estimates we use for definiteness the tungsten single crystal.
For the axis < 111 > in W the ratio ξax(0)=370 at the room temperature
(T = 293 K) and ξax(0)=1020 at T = 77 K. The effect of multiple scattering
becomes strong at characteristic photon energy ωe(na) � 11 TeV and this
value is inversely proportional to the density. So we have that ωe(� = 0) �
30 GeV at T = 293 K and ωe(� = 0) � 11 GeV at T = 77 K. It should
be noted that within logarithmic accuracy we neglect by relatively small
variation of L1 due to substitution the screening radius a2

s by the value 2u2
1.

It is useful to compare these estimates with known threshold energies ωt

at which the probability of pair creation in the field of axis is equal to the
probability of the Bethe-Heitler mechanism, see Table 12.1 in [10]. For photon
energy ω ≥ ωt the process of pair creation in the field of axis dominates. In
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W crystal for < 111 > axis ωt = 22 GeV at T=293 K and ωt = 13 GeV at
T=77 K. It is seen that for these energies the ratio ω/ωe which characterize
the strength the LPM effect is of the order of unity. At ω ∼ ωt the maximal
value of the parameter κ(�) which determines the probability of pair creation
by a photon in a field is also of the order of unity (at � � u1, see the
mentioned Table). So we reach the conclusion that at some energy (for axial
orientation of crystal) all the discussed effects are essential simultaneously.
For example, to calculate the influence of the field of axis on the polarization
tensor one have to average the general formula (2.87) over all values of � (this
is integration over d2� with the weight n⊥, where n⊥ = nad is the density of
axis in the perpendicular to them plane).

2.6 An influence of multiple scattering on coherent
scattering of photon

Investigation of the coherent photon scattering (the Delbrück scattering) has
rather long history which can be found in review (see e.g.[37]). There is a
special interest to study the process for heavy elements (the cross section
∝ Z4). However, in this case the contributions of higher orders of Zα into
the amplitude of photon scattering are very important. This means that
one needs the theory which is exact with respect to the parameter Zα. The
amplitudes of the coherent photon scattering valid for any Zα for high photon
energy ω � m and small scattering angle (or small momentum transfer ∆)
were calculated by several group of authors (see [38], [39], [40], [41], [42]). In
the last paper the process of the coherent photon scattering was considered
in frame of the quasiclassical operator method which appears to be very
adequate for consideration of this problem.

As in the previous section the amplitude M of the coherent photon scat-
tering in the quasiclassical approximation is described by diagram where
the electron-positron pair is created by the initial photon with 4-momentum
k1 (ω,k1) and then annihilate into the final photon with 4-momentum
k2 (ω,k2), so that the photon momentum transfer is ∆ = |k2 − k1|. For
high energy photon ω � m this process occurs over a rather long distance
(see Eq.(1.12)).

It is convenient to describe the process of photon scattering in terms of
helicity amplitudes. We choose the polarization vectors with helicity λ

eλ =
1√
2

(e1 + iλe2) , e1 = ν =
∆
|∆| , e2 = n× ν, n =

k1

ω
,

λ = ±1, eλe∗λ = 1, eλe∗−λ = 0, eλ × n = iλeλ. (2.97)
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There are two independent helicity amplitudes:

M++ = M−−, M+− = M−+, (2.98)

where the first subscript is the helicity of the initial photon and the second is
the helicity of the final photon. When the initial photons are unpolarized the
differential cross section of scattering summed over final photons polarization
contains the combination

2[|M++|2 + |M+−|2]. (2.99)

The calculation of the amplitudes of photon scattering on the separate atom
appears to be most simple in the case when the screening radius of atom as is
much smaller than the formation length of process (as � λcω/2m = lp,max

Eq.(1.11)). The imaginary part of helicity amplitudes in this case can be
written in the form [43]

Im Mλλ′ =
4Z2α3ω

m2

∫ 1

0

dx

∫ 1

0

dy µλλ′fλλ′ , (2.100)

where

µ++ = 1 − 2x(1 − x) + 4x(1 − x)y(1 − y), µ+− = x(1 − x)y2;

f++ = ln(mas) − 2s2 + 1
2s
√

1 + s2
ln

(
s+

√
1 + s2

)
− f(Zα) +

41
42
,

f+− = 1 − 1
s
√

1 + s2
ln

(
s+

√
1 + s2

)
, s =

∆as

2
, (2.101)

where the function f(ξ) is defined in Eq.(2.5). The important property of
Eq.(2.100) is that the dependence on the screening radius as originates in it
from the Born approximation. In this approximation in the case of arbitrary
screening the radius as enters only in the combination

1
a2

s

+ q2‖, q‖ =
qm

x(1 − x)y
, qm =

m2

2ω
. (2.102)

Because of this we can extend Eq.(2.101) on the case of arbitrary screening
making the substitution

1
as

→
√
q2‖ + a−2

s ≡ qef , s =
∆

2qef
(2.103)
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In the case as � ω/m2 (the screening radius is very large, or in other
words we consider the photon scattering in the Coulomb field) we have to
substitute in Eq.(2.101)

as → 1
q‖
, s→ sc =

∆
2q‖

=
∆ω
m2

x(1 − x)y. (2.104)

In the case of the complete screening (as � ω/m2) the functions fλλ′ are
independent of x and y and the corresponding integrals are∫ 1

0

dx

∫ 1

0

dy µ++ =
7
9
,

∫ 1

0

dx

∫ 1

0

dy µ+− =
1
18
. (2.105)

For the scattering amplitudes we have

Im M++ =
28Z2α3ω

9m2
f++, Im M+− =

2Z2α3ω

9m2
f+−,

Re M++ = 0, Re M+− = 0. (2.106)

The real part of amplitudes are calculated using dispersion relations. The
photon scattering amplitude in this case for arbitrary value of parameter
asm

2/2ω for ∆ = 0 was found recently in [41] and for arbitrary ∆ in [42].
When a photon is propagating in a medium it also dissociates with prob-

ability ∝ α into an electron-positron pair. The virtual electron and positron
interact with a medium and can scatter on atoms. In this scattering the
electron and positron interaction with the Coulomb field in the course of the
coherent scattering of photon is involved also. So there is a direct analogue
with the LPM effect considered above. However there is the difference: in
the LPM effect the particles of electron-positron pair created by a photon are
on the mass shell while in the process of the coherent scattering of photon
this particles are off the mass shell, but in the high energy region (this is the
only region where the influence of the multiple scattering is pronounced) the
shift from the mass shell is relatively small. To include this scattering into
consideration the amplitude of the coherent scattering of photon should be
averaged over all possible trajectories of electron and positron. This opera-
tion can be performed with the aid of the distribution function averaged over
the atomic positions of scatterer in the medium in the same manner as it is
done in Appendix A [43].

The photon scattering amplitudes can be written in the form

M++ = M c
++ +M

(1)
++, M+− = M c

+− +M
(1)
+−, (2.107)
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where M c
++ is the main (logarithmic) term and M

(1)
++ is the first correction

to the scattering amplitude. The main terms are [43]

M c
++ =

αm2ω

2πna

∫
dε

εε′
Φs(νs), M c

+− = 0,

Φs(νs) = s1

(
ln p− ψ

(
p+

1
2

))
+ s2

(
ψ(p) − ln p+

1
2p

)
,

νs = 2
√
iqs, qs = QLs, p = i/(2νs),

Q =
2πZ2α2εε′na

m4ω
,Ls ≡ Ls(�c) = ln

a2
s2

λ2
c�

2
c

− F2

(
β

2

)
,

F2(v) =
2v2 + 1
v
√

1 + v2
ln

(
v +

√
1 + v2

)
− 1, β = a∆ , (2.108)

where as2 is defined in Eq.(2.12) and the coefficients s1 and s2 are defined in
Eq.(2.42). The structure of the amplitude M c

++ is quite similar to the struc-
ture of the pair creation probability Eq.(2.43) under influence of the multiple
scattering (the fact that the amplitude is expressed in terms of the proba-
bility is the common feature of the coherent photon scattering description).
This result is not occasional and connected with origin of coherent scattering
of photon as a process which is going through dissosiation of a photon into
electron-positron pair. However the expression for the basic parameter νs

differs from corresponding expression in Eq.(2.43).
The first corrections to the amplitudes are defined by

M
(1)
++ = − αm2ω

4πnaLs

∫
dε

εε′
Fs(νs), M

(1)
+− =

αm2ω

4πnaLs
F1

(
β

2

)∫
dε

εε′
F3(νs),

Fs(νs) =
∫ ∞

0

dze−it

sinh2 z
[s1f1(z) − 2is2f2(z)] , F1(v) = 1 − ln(v +

√
1 + v2)

v
√

1 + v2
,

F3(νs) = iνss3

∫ ∞

0

dze−it

sinh3 z
g(z) =

s3
2

[
1 +

1
2p

− p ζ(2, p)
]

(2.109)

here the functions f1(z) and f2(z) are defined in Eq.(2.45), the coefficient s3
is defined in Eq.(2.89), ζ(s, a) is the generalized Riemann zeta function. Use
of the given representations of functions F3(νs) and G(z) in f1(z) simplifies
the numerical calculation. The functions F1(z) and F2(z) in Eqs.(2.108),
(2.109) encountered in the radiation theory.

In the region of the weak effect of scattering (|νs| � 1, �c = 1) we obtain
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M++ = M c
++ +M

(1)
++ = i

14Z2α3ω

9m2

[
Ls1

(
1 + i

59ω
175ωe

Ls1

L1

−3312
2401

(
ω

ωe

Ls1

L1

)2
)

− 1
21

]
, (2.110)

M+− = M
(1)
+− = i

2Z2α3ω

9m2
F1

(
β

2

)(
1 + i

16ω
25ωe

Ls1

L1
− 384

245

(
ω

ωe

Ls1

L1

)2
)
,

here

Ls1 − 1
21

= 2
[
ln
as

λc
− 1

2

(
F2

(
∆as

2

)
+ 1

)
− f(Zα) +

41
42

]
, (2.111)

ωe is defined in Eq.(2.48) and L1 is defined in Eq.(2.12). The characteristic
energy ωe encountered in analysis of influence of the multiple scattering on
the probability of pair photoproduction [21], in gold ωe=10.5 TeV. The ampli-
tudes Eq.(2.111) coincide with the formulas in absence of multiple scattering
if we neglect the terms ∝ ω/ωe and (ω/ωe)2. The terms ∝ ω/ωe define the
appearing real part of the scattering amplitudes while the terms ∝ (ω/ωe)2

are the corrections to the imaginary part.
In the region where the effect of scattering is strong (|νs| � 1) we obtain

M++ = (i− 1)
3πZ2α3ω

2
√

2∆2
s

√
Ls3

[
1 − 1

4Ls3

(
2C +

1
3

+ i
π

2

)]
,

M+− � (i− 1)
πZ2α3ω

8
√

2∆2
s

1√
Ls3

F1

(
β

2

)
, Ls3 = Ls2 +

1
2

lnLs2,

Ls2 = Ls1 +
1
2

ln
ω

ωe
= 2 ln(as∆s) + 1 − F2

(
∆as

2

)
− 2f(Zα),

∆4
s = 2πZ2α2ωna, ν2

s = i
ω

ωe

4εε′

ω2

(
Ls3 +

1
2

ln
4εε′

ω2

)
. (2.112)

the real and imaginary parts of the amplitudes are equal (if we neglect the
term ∝ 1/Ls3 in M++). Moreover the amplitudes Eq.(2.112) don’t depend
on the electron mass m. In place of it we have the value ∆s.

The influence of a medium on the process of the coherent photon scat-
tering illustrated in Fig.8a and b, where Im M++ and Re M++ as well as
Im M+− and Re M+− are given as a function of photon energy ω in gold.
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Figure 8: (a) The amplitude M++

of the coherent photon scattering in
gold under influence of the multiple
scattering at the different momentum
transfer to the photon ∆ in terms of
the amplitude ImM++ (2.106) calcu-
lated for the screened Coulomb po-
tential.
Curve 1 is ImM++ for ∆ =0.4435 m.
Curve 2 is ReM++ for ∆ =0.4435 m.
Curve 3 is ImM++ for ∆ =0.0387 m.
Curve 4 is ReM++ for ∆ =0.0387 m.

Figure 8: (b) The same as in Fig.1
but for the amplitude M+− in terms
of the amplitude ImM+− (2.106)
calculated for the screened Coulomb
potential.

This influence is due to the multiple scattering of electron and positron of
the virtual pair on the formation length of the process (see Eqs.(1.12) and
(1.13))

lf =
ω

2(q2s +m2 + ∆2)
. (2.113)

In the region ∆2 � q2s + m2 this formation length is independent of ∆ and
it value is coincide practically with the formation length of pair creation
by a photon lc considered in previous subsection. There is some difference
connected with the logarithmic dependence of ν2

s value on ∆2:

|ν2
s | =

q2s
m2

=
4πZ2α2

m2
nalf

∫ q2
max

q2
min

dq2

q2
(2.114)
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where q2max = m2+q2s and q2min = ∆2+a−2
s , as is the screening radius of atom

(1.13). This defines the weak (logarithmic) dependence of ImM++ on ∆ in the
region ∆ <

√
q2s +m2. This can be seen in Fig.8a where the curves 1 and 3

represent behavior of ImM++ for ∆=0.4435m and ∆=0.0387m respectively.
For lower value of ∆ the minimal momentum transfer qmin (1.13) diminishes
thereby the interval of contributing the multiple scattering angles increases,
so the multiple scattering affects the photon scattering amplitude at a lower
energy (and smaller formation length). Because of this the curve 3 is shifted
to the left respect the curve 1. Note that the curve 3 (∆−1 ∼ as2) is very
similar to the curve 2 in Fig.4 which represents the behavior of the probability
of pair photoproduction in gold vs photon energy.

The new property of influence of a medium is the appearance of the real
part of the coherent photon scattering amplitudes at high energy ω. In the
region ω � ωe the value of ReM is small accordingly Eq.(2.111). In the
asymptotic region ω � ωe we have −Re M = Im M according to Eq.(2.112).
This property is seen clearly in Figs.8a and b. So the value of −Re M is
small at low and very high energies of photon. At intermediate energies the
value of −Re M have the maximum at ω � 220 TeV for ∆ = 0.4435 m and
at ω � 80 TeV for ∆ = 0.0387 m. In Fig.8b the same curves are shown
for amplitude M+−. These curves are very similar to curves in Fig.8a. The
curves in both figures are normalized to imaginary part of the corresponding
amplitude in the absence of the multiple scattering. The ratio these imaginary
parts r = ImM+−/ImM++ is very small: it is r = 0.04435 for ∆ = 0.4435 m
and r = 0.003018 for ∆ = 0.0387 m.

2.7 The polarization of a medium and
the bremsstrahlung process

When one considers bremsstrahlung of enough soft photons ω ≤ ω0γ (see
Eq.(1.4)), one has to take into account the effect of a polarization of the
medium. This effect diminishes the formation length (see Eq.(1.5)) as well
as the probability of radiation (see [4], the qualitative discussion may be
found in [6]). For analysis we use the general expression for the probability
of radiation, see Eq.(A.1), Appendix A. The factor in front of exponent in
this expression (see Eq.(A.2)) contains two terms A and B, the term A is not
changed and the term B contains combination

v − k
ω

� ϑ + n
κ2

0

2γ2
, κ0 =

ωp

ω
, ωp = ω0γ, (2.115)
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and its dependence on κ0 (term of the order 1/γ2) may be neglected also.
So, the dependence on ω0 manifests itself in the exponent of Eq.(A.1), and
respectively in the exponent of (A.20) only:

a→ 2
ωε

ε− ω

(
1 − k

ω
v − ω2

0

2εω

)
� aκ ≡ ã, κ ≡ 1 + κ

′2
0 , κ

′2
0 =

ε′

ε
κ2

0.

(2.116)
where the term with ω2

0 arises in the case of virtual photon: k2 ≡ kµk
µ = 0.

Performing the substitution a → ã in Eq.(2.1) we obtain for the potential
(see Eqs.(2.1) (2.3), (2.4), (2.12))

V (�) → Ṽ (�̃) = Q̃�̃2

(
L

(
�̃

2
√
κ

)
− 2C

)
= Ṽc(�̃) + ṽ(�̃), �̃ = |�̃| = �

√
κ,

Ṽc(�̃) = q̃�̃2, q̃ = Q̃L̃(�̃c), Q̃ =
Q

κ2
, L̃(�̃c) = ln

κ

γ2ϑ2
2�̃c

2 ,

ṽ(�̃) = − q̃�̃
2

L̃

(
2C + ln

�̃2

4�̃c
2

)
. (2.117)

The substitution Eq.(2.116) in the expression for the probability of radiation
Eq.(2.2) gives

R1 → R1, R2 → R2κ ≡ R̃2. (2.118)

The value of the parameter �̃c in (2.117) is determined by equation (compare
with Eqs.(2.10), (2.25) )

4�̃c
4Q̃L̃(�̃c) = 1, for 4Q̃L̃(1) ≥ 1. (2.119)

In the opposite case �̃c = 1 and this is possible in two intervals of the photon
energy ω:

1. for κ0 � 1 when the multiple scattering and effects of the polarization
of a medium are weak;

2. for κ0 � 1 when effects of the polarization of a medium become stronger
then effects of the multiple scattering (ν0 < κ).

In an intermediate region we substitute �̃c
2 → �2

cκ in Eq.(2.119). After it we
obtain the equation for �c which coincides with Eq.(2.10), see also Eq.(2.25):

1
�4

c

= ν2
0(�c), ν2

0 (�c) = 4QL(�c). (2.120)
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Thus, for �̃c < 1 we have

ν̃0 =
√

4Q̃L̃(�̃c) =
1
�̃c

2 =
1
�2

cκ
=
ν0
κ
, L̃(�̃c) = L(�c), (2.121)

while for ν̃0 < 1 we have

ν̃0 =
√

4Q̃L̃(1) =
2
κ

√
Q ln

(
a2

s2κ

λ2
c

)
. (2.122)

The spectral distribution of the probability of radiation Eq.(2.29) with al-
lowance for the polarization of a medium have the form

dW

dω
=

α

2πγ2
Im

[
Φ̃(ν̃) − 1

2L̃(�̃c)
F̃ (ν̃)

]
, (2.123)

where
Φ̃(R1, R2) = Φ(R1, R̃2), F̃ (R1, R2) = F (R1, R̃2),

In the case ν0 � κ2
0, the characteristic momentum transfer in the used

units (ζc) are defined by value κ2
0(�̃

2
c = 1), one can use asymptotic expan-

sion Eq.(2.28) and we have for the spectral distribution of the probability of
radiation

dW

dω
=

16
3
Z2α3na

m2ωκ2
0

(
Lp +

1
12

− f(Zα)
)

=
4
3π

Zα2ω

mγ2

(
Lp +

1
12

− f(Zα)
)
,

(2.124)
where f(Zα) is defined in (2.5), Lp = ln

(
183Z−1/3κ0

)
. The results obtained

agree with given in [4] where calculations are fulfilled within a logarithmic
accuracy and without Coulomb corrections. It is seen that the dependence
of spectral distribution on photon energy (ωdω) differs essentially from the
Bethe-Maximon one (dω/ω), and the probability is independent on the den-
sity n.

3 Impact of a medium for a target of finite
thickness

3.1 General consideration
In the case under consideration probability of radiation is defined not only
by the relative time τ = t2 − t1 as in Sec. 2.1. The used radiation theory
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is formulated in terms of two times (see Eqs.(A.1) - (A.3) of Appendix A).
Proceeding from this formulation we can obtain more general expression for
the radiation probability. With allowance for the polarization of a medium
we have for the spectral distribution of the probability of radiation (compare
with Eq.(2.2))

dw

dω
=

4α
ω

Re
∫ ∞

−∞
dt2

∫ t2

−∞
dt1 exp

(
−i

∫ t2

t1

µ(t)dt
)

× [r1ϕ0(0, t2, t1) − ir2∇ϕ(0, t2, t1)], (3.1)

where

µ(t) = 1 + κ
′2
0 g(t), κ

′2
0 =

ε′

ε
κ2

0, r1 =
ω2

ε2
, r2 = 1 +

ε′2

ε2
, (3.2)

here the function g(t) describes the density of atoms on the projectile trajec-
tory, κ0 is defined in Eq.(2.115). The functions ϕµ(�, t2, t1), (ϕµ = (ϕ0,ϕ))
satisfy the equation (2.3), but now the potential V depends on time

i
∂ϕµ

∂t
= H(t)ϕµ, H(t) = p2 − iV (�)g(t);

ϕ0(�, t1, t1) = δ(�), ϕ(�, t1, t1) = pδ(�). (3.3)

So, the functions κ
′2
0 and V (�) in Eqs.(3.2) and (3.3) depend now on mean

density of atoms on the projectile trajectory while the function g(t) describes
the modulation of the density as a function of time

g(t) =
na(t)
n

Using an operator form of a solution of Eq.(3.3) (compare with Eq.(2.6)) we
can present the probability Eq.(3.1) in the form

dw

dω
=

4α
ω

Re
∫ ∞

−∞
dt2

∫ t2

−∞
dt1 exp

(
−i

∫ t2

t1

µ(t)dt
)

(3.4)

×〈0|r1S(t2, t1) + r2pS(t2, t1)p|0〉 , S(t2, t1) = T exp
[
−i

∫ t2

t1

H(t)dt
]
,

where the symbol T means the chronological product. Note, that in Eqs.(3.1)
and (3.4) it is implied that a subtraction is made at V = 0, µ(t) = 1.
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3.2 Boundary effects for a thick target
For the homogeneous target of finite thickness l the radiation process in a
medium depends on interrelation between l and formation length lf Eq.(1.5).
In the case when l � lf we have the thick target where radiation on the
boundary should be incorporated. In the case when l � lf we have the
thin target where the mechanism of radiation is changed essentially and in
the case when l ∼ lf we have intermediate thickness. Integrals over time in
Eq.(3.5) we present as integrals over four domains:

1. t1 ≤ 0, 0 ≤ t2 ≤ T ;

2. 0 ≤ t1 ≤ T, 0 ≤ t2 ≤ T ;

3. 0 ≤ t1 ≤ T, t2 ≥ T ;

4. t1 ≤ 0, t2 ≥ T ;

where

µ(t) = ϑ(−t) + ϑ(t− T ) + κϑ(t)ϑ(T − t), T =
l

lf0
=
lωm2

2εε′
, κ = 1 + κ

′2
0 .

(3.5)
In two more domains t1,2 ≤ 0 and t1,2 ≥ T an electron is moving entirely free
and there is no radiation. We consider in this subsection the case, when the
thickness of a target l is much larger than formation length lf Eq.(1.5) or
(ν0 + κ)T � 1. In this case domain 4. doesn’t contribute. The contributions
of other domains are

I1 �
∫ 0

−∞
dt1

∫ ∞

0

dt2 exp (i(t1 − κt2)) exp (−iHt2) exp (iH0t1)

= − 1
H + κ

1
H0 + 1

,

I2 =
∫ T

0

dt2

∫ t2

0

dt1 exp (−i(H + κ)(t2 − t1))

� T

∫ ∞

0

dτ exp (−i(H + κ)τ) −
∫ ∞

0

τdτ exp (−i(H + κ)τ)

= −i T

H + κ
+

1
(H + κ)2

, I3 � − 1
H0 + 1

1
H + κ

, (3.6)

where H0 = p2. The term in I2: −iT/(H + κ) describes the probability
of radiation considered in previous subsections. All other terms define the
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probability of radiation of boundary photons 1. So, making the mentioned
subtraction we have for the spectral distribution of the probability of radia-
tion of boundary photons

dwb

dω
=

4α
ω

Re 〈0|r1M + r2pMp|0〉,

M =
(

1
H + κ

− 1
p2 + 1

)2

(3.7)

In the case when both the LPM effect and effect of polarization of a
medium are weak one can decompose combination in M in Eq.(3.7)

1
H + κ

− 1
p2 + 1

� 1
p2 + 1

(iV − κ
′2
0 )

1
p2 + 1

. (3.8)

Using this decomposition one can find an estimate for probability of radiation

dwb

dω
� α

π

(
−c1ν4

1 + c2κ
′4
0

)
, (3.9)

where c1 and c2 are some positive coefficients. So, in the case under consid-
eration the probability of boundary photon radiation is negligible small.

In the case when ν1 � κ
′2
0 ≥ 1 one can omit the potential V in Eq.(3.8),

so that the effect of polarization of a medium is essential, then

dwb

dω
=

4α
ω(2π)2

∫
〈0|r1M + r2pMp|0〉 d2p (3.10)

=
α

πω

{
r1

(
1 +

1
κ
− 2
κ− 1

lnκ
)

+ r2

[(
1 +

2
κ− 1

)
lnκ− 2

]}
.

This result is the quantum generalization of the transition radiation proba-
bility [58].

Let us estimate the probability of radiation Eq.(3.7) in the case when both
the LPM effect and effect of polarization of a medium are strong (ν0+κ� 1).
In this case we can neglect the term 1/(H+κ) in the term ∝ r1 in M Eq.(3.7).
In the term ∝ r2 one can put V (�) � ν2

0�2 ∼ ν2
0/p

2 so that

∫
p2

(
1

H + κ
− 1

p2 + 1

)2

d2p � π ln(ν0 + κ). (3.11)

1Radiation of boundary photons in an inhomogeneous electromagnetic field was con-
sidered in [48].
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Substituting these results into Eq.(3.7) we have up to logarithmic accuracy

dwb

dω
=

α

ωπ
[r1 + r2 ln(ν0 + κ)] . (3.12)

In the case ν0 � κ this result agrees with Eq.(3.11). The case ν0 ≥ κ will be
considered below (see Eqs.(3.36) and (3.37)).

3.3 A thin target
We consider now a situation when the formation length of radiation is much
larger than the thickness l of a target [17]

l � lf =
lf0

ζ
, ζ = 1 + γ2ϑ2, T =

l

lf0
� 1

ζ
, (3.13)

where lf , lf0 are defined in Eqs.(1.5), (1.6). In the case κT � 1 the radiated
photon is propagating in the vacuum and one can neglect the polarization of
a medium. The spectral distribution of the probability of radiation from a
thin target is

dwth

dω
=

α

π2ω

∫
d2�

[
r1K

2
0(�) + r2K

2
1 (�)

]
(1 − exp(−V (�)T )), (3.14)

where V (�) is defined in Eqs.(2.3), (2.4), Kn is the modified Bessel function.
If V (� = 1)T � 1 one can expand the exponent (the contribution of the
region � � 1 is exponentially damped because in this region K0,1(�) ∝
exp(−�)). In the first order over V T using the explicit expression for the
potential Eq.(2.4) one obtains in this case the Bethe-Maximon formula (with
the Coulomb corrections) Eq.(2.29).

In the opposite case when the multiple scattering of a particle traversing
a target is strong (V (� = 1)T � 1, the mean square of multiple scattering
angle ϑ2

s � 1/γ2). We present the function V (�)T (see Eqs.(2.3), (2.4) and
(2.14) as

V (�)T =
πZ2α2nal

m2
�2

(
ln

4a2
s2

λ2
c�

2
− 2C

)

= A�2 ln
χt

�2
= A�2

(
ln
χt

�2
t

− ln
�2

�2
t

)
= k�2

(
1 − 1

Lt
ln
�2

�2
t

)
;

A�2
t ln

χt

�2
t

= 1, Lt = ln
χt

�2
t

= ln
4a2

s2

λ2
c�

2
t

− 2C, (3.15)
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where �t is the lower boundary of values contributing into the integral over
�. Substituting this expression into (3.14) we have the integral

2π
∫ ∞

0

�d�K2
1(�)

{
1 − exp

[
−k�2

(
1 − 1

Lt
ln
�2

�2
t

)]}
≡ πJ. (3.16)

In this integral we expand the exponent in the integrand over 1/Lt keeping
the first term of the expansion. It is convenient to substitute z = k�2. We
find

J1 =
1
k

∫ ∞

0

[
K0

(√
z

k

)
K2

(√
z

k

)
−K2

1

(√
z

k

)]
exp(−z)zdz,

J2 = − 1
kLt

∫ ∞

0

K2
1

(√
z

k

)
exp(−z) ln zzdz, J = J1 + J2. (3.17)

Expanding the modified Bessel functions Kn(x) at x � 1 and taking the
integrals in the last expression we have

J = J1 + J2 =
(

1 +
1
2k

)
(ln 4k − C) +

1
2k

− 1 +
C

Lt
,

k =
πZ2α2

m2
nalLt. (3.18)

In the term with K2
0 in Eq.(3.14) the region � ∼ 1 contributes. So we have

J3 = 2
∫ ∞

0

K2
0 (�) (1 − exp(−V T ))�d� � 2

∫ ∞

0

K2
0(�)�d� = 1. (3.19)

Substituting found J and J3 into Eq.(3.14) we obtain for the spectral dis-
tribution of the probability of radiation in a thin target at conditions of the
strong multiple scattering

dwth

dω
=

α

πω
(r1 + r2J) . (3.20)

The logarithmic term in this formula is well known in theory of the collinear
photons radiation at scattering of a radiating particle on angle much larger
than characteristic angles of radiation ∼ 1/γ. It is described with logarithmic
accuracy in a quasi-real electron approximation (see [50], Appendix B2).

The formula (3.14) presents the probability of radiation in the case when
the formation length lf � l. It is known,see e.g. [8], that in this case a
process of scattering of a particle is independent of a radiation process and a
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differential probability of radiation at scattering with the momentum transfer
q can be presented in the form

dWγ = dws(q)dwr(q,k), (3.21)

where dws(q) is the differential probability of scattering with the momentum
transfer q which depends on properties of a target. The function dwr(q,k)
is the probability of radiation of a photon with a momentum k when an
emitting electron acquires the momentum transfer q. This probability has a
universal form which is independent of properties of a target. For an electron
traversing an amorphous medium this fact is reflected in Eq.(3.14). Indeed,
passing on to a momentum space we have

dwr(q,k) =
αdω

π2ω

∫
d2�

[
r1K

2
0(�) + r2K

2
1 (�)

]
(1 − exp(−iq�))

=
αdω

πω

[
r1F1

(q
2

)
+ r2F2

(q
2

)]
, (3.22)

where the functions F1(z) and F2(z) are defined in Eqs.(2.109) and (2.108).
Remind that q is measured in electron mass. The probability of radiation in
this form was found in [52]. For a differential probability of scattering (here
we consider the multiple scattering) there is a known formula (cf. Eqs.(A.13),
(A.18), (2.3) and (2.4))

dws(q) = Fs(q)d2q, Fs(q) =
1

(2π)2

∫
d2� exp (−iq�) exp (−Vs(�)l) ,

Vs(�) = na

∫
d2q (1 − exp(−iq�)) σ(q), (3.23)

where σ(q) is the cross section of single scattering.
The formula (3.23) is the exact solution of the kinetic equation for the

pure scattering problem (without radiation). Let us consider scattering of
relativistic electrons in the case when scattering angles ϑs � 1 and the

condition ϑs � ϑ1 =
1
asε

is fulfilled (the angle ϑ1 is defined in Appendix

A, Eq.(A.13)). For combination Vs(�)l in Eq.(3.23) one can use Eq.(3.15).
Let us remind that the impact parameters � measured in the Compton wave-
lengths λc, which is conjugate to space of the transverse momentum transfers
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q measured in the electron mass m.

Vs(�)l � V (�)T =
�2

�2
t

− 1
Lt

�2

�2
t

ln
�2

�2
t

,

Lt = lt + ln(Lt),
1
�2

t

= ALt

lt = ln(Aχt) = ln(4πZ2α2nala
2
s) + 1 − 2C − 2f(Zα). (3.24)

Substituting Eq.(3.24) into Eq.(3.23) and passing to the variable ν = q�t/2
we obtain

dws(ν) = f(ν)νdν,

f(ν) =
∫ ∞

0

uJ0(νu) exp
(
−u

2

4
+

u2

4Lt
ln
u2

4

)
du. (3.25)

Solution of scattering problem in angular variables is given in the end of
Appendix A (see Eq.(A.24)).

On the adopted assumptions (ϑ2
s/ϑ

2
1 = Aχt � 1, lt � 1, Lt � 1) one

can expands in Eq.(3.25) over powers of 1/Lt:

f(ν) =
∞∑

n=0

1
n!

∫ ∞

0

uJ0(νu) exp
(
−u

2

4

)(
u2

4Lt
ln
u2

4

)n

du

= f (0)(ν) +
1
Lt
f (1)(ν) +

1
L2

t

f (2)(ν) + . . . (3.26)

It is instructive to compare these results with the classical paper Bethe on
multiple scattering [44]. The obtained formula Eq.(3.26) is consistent with
Eq.(25) of [44], However there is difference in evaluation of the Coulomb
corrections entering into the expression for the function lt Eq.(3.24) (see eb

in Eq.(22) in [44]). In the last formula in [44] the Coulomb correction is
contained in the form − ln(1 + 3.34Z2α2) (it should be noted that a) Bethe
was referring to the numerical coefficient at (Zα)2 calculated by Molière
[45] as "only approximate"; b) the Coulomb corrections to the cross sections
of bremsstrahlung and pair creation by photon which contain the famous
function f(Zα) defined in Eq.(2.5) were found after publication of [44]) while
in Eq.(3.24) enters different correction: −2f(Zα). To compare these results
numerically let us consider case Zα � 1. In this case the correction in
[44] is -3.34Z2α2 while for Eq.(3.24) we have the correction −2ζ(3)Z2α2 =
−2.404Z2α2. Besides, for accounting the inelastic scattering on electrons the
use of Eq.(2.34) for the potential Vs(�) gives more accurate results than the
simple substitution Z2 → Z(Z + 1) done in [44].
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The main term of the expansion in Eq.(3.26) has the Gaussian form

f (0)(ν) = 2e−ν2
(3.27)

The next terms contains the corrections to the Gaussian form. They were
analyzed in detail in [44].

Using the formula (3.22) one can easily obtain to within logarithmic ac-
curacy expressions (3.20),(3.12). Both a radiation of boundary photons and
a radiation in a thin target may be considered as a radiation of collinear
photons (see e.g. [50]) in the case when an emitting particle deviates at large
angle (ϑs � 1/γ, q � 1). Using Eq.(3.22) at x� 1 we find

dwr(q) � αdω

πω

[
r1 + r2

(
ln q2 − 1

)]
;∫

d2qdwr(q)Fs(q) � αdω

πω

[
r1 + r2

(
ln q2 − 1

)]
. (3.28)

For a thin target value of q2 is defined by mean square of multiple scattering
angle on a thickness of a target l, and for boundary photons is the same but
on the formation length lf . However, if one intends to perform computation
beyond a logarithmic accuracy, the method given in this subsection has ad-
vantage since there is no necessity to calculate Fs(q). Radiation from a thin
target using the path integral method was considered in [54] and [55].

3.4 A target of intermediate thickness
In the case when a target has intermediate thickness (l ∼ lf ) the separation of
contributions on photon emission inside target and boundary photon emission
becomes senseless. We consider this case [18] neglecting by the correction
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term v(�). We present the spectral probability of radiation as

dw

dω
=

α

πω

5∑
k=1

[
−r1Im J

(1)
k + r2Re J (2)

k

]
;

J
(m)
1 = J

(m)
3 =

∫ ∞

0

dt1

∫ T

0

dt2e−i(t1+κt2)
[
(t1 + t2)

−m −Nm
1

]
,

J
(m)
2 =

∫ T

0

dt(T − t)e−iκt
[
t−m −Nm

2

]
,

J
(m)
4 =

∫ ∞

0

dt1

∫ ∞

0

dt2e−i(t1+t2+κT )
[
(t1 + t2 + T )−m −Nm

4

]
,

J
(m)
5 (T ) = 2

∫ ∞

0

dt1

∫ T

0

dt2
e−it1

(t1 + t2)
m

(
e−it2 − e−iκt2

)
+

∫ T

0

dt
(T − t)

(t− i0)m

(
e−it − e−iκt

)
+

∫ ∞

0

dt1

∫ ∞

0

dt2
e−i(t1+t2)

(t1 + t2 + T )m

(
e−iT − e−iκT

)
. (3.29)

where T is defined in Eq.(3.5), the functions Nk are

N1 =
ν

sinh νt2 + νt1 cosh νt2
, N2 =

ν

sinh ν(t− i0)
,

N4 =
ν

(1 + ν2t1t2) sinh νT + ν (t1 + t2) cosh νT
, ν =

1 + i√
2
ν0, (3.30)

here κ and ν0 are defined in Eq.(2.116) and in Eq.(2.26).
We confine ourselves to the case ε � εe when the LPM effect manifests

itself for soft emitted photons (ω � ε). So we can neglect the terms with r1
in (3.29).

Let us consider first the case when LPM effect is weak (ν1 � 1). We
assume here that condition ν1(ωp) ≥ 1 (definition of ωp see in Eq.(1.5)) is ful-
filled. This means that in the region where ν1 � 1 one has ω � ωp and effects
of the polarization of a medium are negligible. This is true for high energies
(ε ≥ 10 GeV). Then for thickness T � 1/ν1 the transverse shift of the projec-
tile due to the multiple scattering in a target as a whole have no influence on
coherent effects defined by the phase φ = ωl(1− nv) in the factor exp(−iφ).
Indeed, for the projectile traversing a target in the case ν1T � 1 an increment
of the phase φ is small

∆φ ∼ ωlϑ2
s ∼ ωl

ν2
1T

γ2
∼ ν2

1T
2 � 1. (3.31)
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The angle of multiple scattering ϑs is small also comparing with an char-
acteristic angle of radiation 1/γ (γ2ϑ2

s = ν2
1T � 1). So, in the case

ν1 � 1, ν1T � 1 the radiation originates on separate atoms of a target and
an interference on target boundaries is defined by the value ωl(1 − v) = T .
At T � 1 this interference is weak, while at T � 1 there is a damping of the
interference terms due to integration over photon emission angles. Expanding
over ν1 in Eq.(3.29) we obtain (κ = 1):

J (2)(T ) ≡ Re
4∑

k=1

J
(2)
k (T ) � ν2

1T

3

[
1 − 3T

∫ ∞

1

(x− 1)2

x3
sin(xT )dx

]
(3.32)

=
ν2
1T

3

[
1 + 3T

((
1 − T 2

2

)
si(T ) − 2T ci(T ) +

3
2

sinT − T

2
cosT

)]
,

where si(T ) (ci(T )) is the integral sine (cosine). For case T � 1

J (2)(T ) � ν2
1T

3

[
1 − 3π

2
T + 6T 2

(
ln

1
T

+ 1 − C

)]
, (3.33)

and for case T � 1

J (2)(T ) � ν2
1T

3

(
1 + 6

cosT
T 2

)
. (3.34)

Thus, in the case ν1 � 1, ν1T � 1 the probability of radiation is defined by
Bethe-Maximon formula both for T � 1 and for T � 1. However, for T ∼ 1
the interference on the target boundaries is essential. If we present as above
J (2) as product of ν2

1T/3 (Bethe-Maximon formula) and some interference
factor, then this factor attains 0.53 at T = 0.32 (minimum of the interference
factor) and 1.33 at T = 1.84 (maximum of the interference factor).

When the parameter ν1T is large (ν1 � 1, ν1T � 1) the radiation is
formed inside a target and the interference terms are damped exponentially.
In this case formulae derived for thick target in Sec.2.1 are applicable. Taking
into account the contribution of boundary photons (see Sec.3.2) we have

J (2)(∞) =
ν2
1T

3

(
1 +

1
6L1

− 16ν4
1

21

)
− 2ν4

1

21
, (3.35)

where L1 and ν1 are defined in Eqs.(2.12) and (2.25).
We consider now the case when the LPM effect is strong (ν0 � 1) and

the parameter T � 1 while the value which characterize the thickness of a
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target ν0T ∼ 1. We find for κT � 1 (r2 � 2)

dw

dω
=

2α
πω

(
J (2) + J

(2)
5

)
, J

(2)
5 � (κ− 1)2

2

(
ln

1
T

+
1
2
− C

)
,

J (2) � Re

{
ln(ν sinh νT ) − 1 − C − κ

πT

4

+
2i

ν tanh νT

[
ln(ν tanh νT ) + 1 − C − iπ

2

]
+ iκT

(
ln

cosh νT
tanh νT

− νT

tanh νT

)

+
iκ

ν

∫ νT

0

dt

(
4t

sinh 2t
− t2

sinh2 t

)}
, ν = exp

(
i
π

4

)
ν0. (3.36)

For a relatively thick target (ν0T � 1) we have from Eq.(3.36)

J (2) � ln ν0 − 1 − C − ln 2 +
√

2
ν0

(
κ
π2

24
+ ln ν0 + 1 − C +

π

4

)

+
ν0T√

2

(
1 − πκ

2
√

2ν0

)
(3.37)

Here the terms without T are the contribution of boundary photons (see
Eq.(4.14) in [17]) while the term ∝ T gives the probability of radiation inside
target (with correction ∼ κ/ν0 but without corrections ∼ 1/L). The relative
value of the last corrections at ν0 � 1 is given by Eq.(2.33).

In the limiting case when a target is very thin and ν0T � 1 but when
ν2
0T � 1 we have from Eq.(3.36)

J (2) �
(

1 +
2
ν2
0T

)[
ln(ν2

0T ) + 1 − C
]− 2 + δ,

δ =
(ν0T )4

180
+

2(ν0T )2

45
T
(
ln ν2

0T − C
)− κT

6
(ν0T )2. (3.38)

The terms without δ in this expression coincide with Eq.(3.20) (up to terms
∝ C/Lt).

In the photon energy region where ν0T � 1 the contribution of the terms
J

(m)
k (k=1,2,3) is very small (∼ δ) and decreases with photon energy reduc-

tion (∝ ω), so that in the spectral distribution of radiation only the terms
J

(m)
4 , J

(m)
5 contribute. We obtain for the function J

(2)
4 in the case when

(1 + ν0)T � 1 and when the parameter ν2
0T , which characterizes the mean

square angle of the multiple scattering in a target as a whole, has an arbitrary
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value

J
(2)
4 eiκT =

∫ ∞

0

dxx

∫ ∞

0

dt1
t21

∫ ∞

0

dt2
t22

exp
(
−

(
1 +

x

t1t2

)
(t1 + t2)

)

× [
1 − exp

(−xν2
0T

)]
= 4

∫ ∞

0

dxK2
1

(
2
√
x
) [

1 − exp
(−xν2

0T
)]

= 2
∫ ∞

0

d��K2
1 (�)

[
1 − exp

(−k�2
)]
, 4k = ν2

0T, (3.39)

where K1(�) is the modified Bessel function. Formula (3.39) corresponds at
κ = 1 to result for a thin target obtained above (see Eq.(3.14)) without terms
∝ 1/L. Since the dependence on the parameter κ is contained in Eq.(3.39)
as a common phase multiplier exp(−iκT ), one can write more accurate ex-
pression for J (2)

4 (with terms ∝ 1/L) using the found results (see Eq.(3.15)):

J
(2)
4 = 2e−iκT

∫ ∞

0

d��K2
1 (�) [1 − exp (−V (�)T )] , (3.40)

where V (�)T is defined in Eq.(3.15). For the case ν2
0T � 1 it has the form

eiκT J
(2)
4 =

(
1 +

1
2k

)
[ln 4k + 1 − C] − 2 +

C

Lt
, (3.41)

where k and Lt are defined in Eq.(3.18) and Eq.(3.15). In the case when
parameter k is not very high one has to use an exact expression Eq.(3.14).
For k � 1 one can expand the exponent in the integrand of Eq.(3.40). Then
we find

eiκTJ
(2)
4 =

ν2
1T

3

(
1 +

1
6L1

)
, ν2

1T =
4πZ2α2nal

m2
L1. (3.42)

At κT � 1 the spectral distribution of probability is

dw

dω
=

2α
3πω

ν2
1T

(
1 +

1
6L1

)(
1 − ω

ε

)
. (3.43)

This is the Bethe-Maximon formula for not very hard photons (terms ∝
(ω
ε

)2

are omitted).
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When a photon energy decreases, the parameter κ increases as well as
the combination κT ∝ 1/ω, while the value (ν0T )2 decreases ∝ ω. Just this
value defines an accuracy of Eq.(3.40). Using Eq.(3.29) at T � 1, κT ≥ 1 we
find for the probability of transition radiation (J (2)

5 ) the following expression

dwtr

dω
� 2α

π

{(
1 +

2
κ− 1

)[
lnκ− ci(κT ) + cos(κT )(lnT + C)

+
π

2
sin(κT )

]
+ κT si(κT ) − 4 sin2 κT

2

}
. (3.44)

In the limiting case κT � 1 the probability Eq.(3.44) turns into standard
probability of the transition radiation (3.11) with oscillating additions

dwtr

dω
=

2α
π

[
Jtr + cos(κT ) (lnT + C + 1) +

π

2
sin(κT )

]
,

Jtr =
(

1 +
2

κ− 1

)
lnκ− 2. (3.45)

Note, that there is a qualitative difference in a behaviors of interference terms
in Eqs.(3.34) and (3.45). In the former an amplitude of oscillation with ω
increase decreases as 1/ω2 while in the latter the corresponding amplitude
weakly (logarithmically) increases with ω decrease.

From the above analysis follows that in the case when ν0T � 1 (ν0 � 1)
the spectral distribution of probability of radiation with the polarization of
a medium taken into account has the form

dw

dω
=
dwtr

dω
+ cos(κT )

dwth

dω
, (3.46)

where dwth/dω is the spectral distribution of probability of radiation in a
thin target without regard for the polarization of a medium. In the case
4k = ν2

0T � 1 the probability dwth/dω is defined by Eqs.(3.18), (3.20) and
for the case k � 1 it is defined by Eq.(3.35). More accurate representation
of the probability of radiation dwth/dω may be obtained using Eq.(3.40).
It follows from Eqs.(3.45) and (3.46) that if we make allowance for multiple
scattering at κT � 1 this results in decreasing of oscillations of the transition
radiation probability by magnitude of the bremsstrahlung probability in a
thin target.

The radiation of the boundary photons with regard for the multiple scat-
tering was considered in [51] (for ω � ε), the effect of polarization of a
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medium was included into consideration of the problem in [52] and [53]. In
these papers the probability of radiation of boundary photons (under condi-
tion of applicability of Eqs.(3.37) and (3.38)) was analyzed also to within the
logarithmic accuracy (see Eq.(20) in [52] and Eq.(15) in [53]). This accuracy
is insufficient for parameters connected with experiment [14]-[18]. For exam-
ple, for ε = 25 GeV and in heavy elements the value ν0 equates κ for ν0 ∼ 20.
One can see from Eqs.(3.37) and (3.38)) that in this case ln ν0 is nearly com-
pletely compensated by constant terms. Our results, which are consistent
with obtained [52], are more accurate and presented in more convenient for
application form and the Coulomb corrections are included.

3.5 Multiphoton effects in energy loss spectra
It should be noted that in the experiments [12]-[14] the summary energy of all
photons radiated by a single electron is measured. This means that besides
mentioned above effects there is an additional "calorimetric" effect due to the
multiple photon radiation. This effect is especially important in relatively
thick used targets. Since the energy loss spectrum of an electron is actually
measured, which is not coincide in this case with the spectrum of photons
radiated in a single interaction, one have to consider the distribution function
of electrons over energy after passage of a target [19]. As it is known, this
distribution function is the solution of the corresponding kinetic equation.
However, the problem can be simplified essentially if one is interested in
the soft part of the energy loss spectrum. Just this situation was in the
experiments [12]-[14], since the measurements were performed in the region
of the photon energies of one to five orders of magnitude lower than the
electron energy.

We consider first the spectral distribution of the energy loss. The proba-
bility of the successive radiation of n soft photons with energies
ω1, ω2, . . . ωn by a particle with energy ε (ωk � ε, k = 1, 2 . . . n) on the length
l in the energy intervals dω1dω2 . . . dωn is given by expression

dw(ω1, ω2, . . . ωn) = A

∫ l

0

dW (ω1)dl1
∫ l1

0

dW (ω2)dl2 . . .
∫ ln−1

0

dW (ωn)dln

=
A

n!
dw(ω1)dw(ω2) . . . dw(ωn), (3.47)

where A is the normalization constant, dW (ω)/dω is the differential proba-
bility of the photon radiation per unit length, dw(ω)/dω = ldW (ω)/dω is the
differential probability of the photon radiation per length l. If the probabil-
ity dw/dω doesn’t depend on the particle energy ε then integrating Eq.(3.47)
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over all photon energies we obtain

wn =
A

n!
wn, w =

∫
dw

dω
dω. (3.48)

The value A is defined by the condition that probability of all the possible
events with radiation of any number of photons or without photon radiation
is equal to unit.

∞∑
n=0

wn = A

∞∑
n=0

1
n!
wn = A expw = 1, A = exp(−w). (3.49)

Using Eqs.(3.47),(3.49) we can write the expression for the differential distri-
bution of the energy loss in the form

1
ω

dε

dω
=

∞∑
n=1

1
n!

exp(−w)
∫

dw

dω1

dw

dω2
· · · dw

dωn
δ

(
n∑

k=1

ωk − ω

)
dω1 . . . dωn.

(3.50)
Here on the right-hand side we have the sum of the probabilities of radiation
of n photons with summary energy ω.

Using standard parametrization of δ-function

δ

(
n∑

k=1

ωk − ω

)
=

1
2π

∫ ∞

−∞
exp

(
is

(
ω −

n∑
k=1

ωk

))
ds

we obtain

dε

dω
=

ω

2π

∫ ∞

−∞
exp (isω − w)

∞∑
1

1
n!

(∫
dw

dω1
exp(−isω1)dω1

)n

ds

=
ω

2π

∫ ∞

−∞
exp (isω) exp

{
−

∫ ∞

0

dw

dω1
[1 − exp(−isω1)] dω1

}
ds (3.51)

=
1
π

Re
∫ ∞

0

exp (ix) exp
{
−

∫ ∞

0

dw

dω1

[
1 − exp

(
−ixω1

ω

)]
dω1

}
dx.

The formula (3.51) was derived by Landau [60] (see also [1]) as solution of
the kinetic equation under assumption that energy loss are much smaller
than particle’s energy (the paper [60] was devoted to the ionization energy
loss). Let us notice the following. The energy loss are defined by the hard
part of the radiation spectrum. In the soft part of the energy loss spectrum
Eq.(3.51) the probability of radiation of one hard photon only is taken into
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account accurately. To calculate the probability of the emission of two and
more hard photons one has to take into account step by step the recoil in
previous acts of the photon emission. The probability of radiation of two and
more hard photons is of the order (l/Lrad)2 and so on. Thus, the formula
(3.51) is applicable for the thin targets and has accuracy l/Lrad. If we want
to improve accuracy of Eq.(3.51) and for the case of thick targets l ≥ Lrad

one has to consider radiation of an arbitrary number of hard photons. This
problem is solved in Appendix of [19] for the case when hard part of the radi-
ation spectrum is described by the Bethe-Maximon formula. In this case the
Eq.(3.51) acquires the additional factor. As a result we extend this formula
on the case of thick targets.

We will analyze first the interval of photon energies where the Bethe-
Maximon formula is valid. We write it in the form (within the logarithmic
accuracy)

ω
dw

dω
=

l

Lrad

[
4
3

(
1 − ω

ε

)
+
ω2

ε2

]
ϑ(ε− ω) = β

(
1 − x1 +

3
4
x2

1

)
ϑ(1 − x1),

(3.52)
where l is the thickness of the target, Lrad is the radiation length,

β =
4l

3Lrad
, x1 =

ω

ε
.

The integral in the curly brackets in Eq.(3.51) is

J � β
(
lnx+ µ+ i

π

2

)
, µ = ln

ε

ω
− 5

8
+ C (3.53)

Substituting this result into Eq.(3.51) we have

dε

dω
= β

exp(−βµ)
Γ(1 + β)

= β fBH , (3.54)

where Γ(z) is the Euler gamma function. If we consider radiation of the one
soft photon, we have from Eq.(3.51) dε/dω = β. Thus, the formula (3.54)
gives additional "reduction factor" fBH which characterizes the distortion of
the soft Bethe-Maximon spectrum due to multiple photons radiation. The
derivation of Eq.(3.54) is based on expression (3.51) in which the statistical
independence of photon radiation acts is assumed (the Poisson distribution).
This statistical independence is broken when two or more hard photons (ener-
gies of which are of the order of the energy of the initial electron) are emitted.
Since the probability of hard photon radiation is of the order of β, Eq.(3.54)
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is applicable, strictly speaking, at β � 1 and it has the accuracy up to factor
(1 +O(β2)). However, the contribution of arbitrary number of hard photons
radiated in the Beth-Maximon region is exactly calculated. This contribution
is contained in the factor g(β) (see Appendix of [19], Eqs.(A.15), (A.16)). So
we obtain the reduction factor valid for β ≥ 1

fBH = g(β)
exp(−βµ)
Γ(1 + β)

=
(ω
ε

)β

(1 + β)1/4

(
1 +

β

2

)3/4

. (3.55)

In Fig.9 the function fBH(ω) is given for electron with the energy ε = 25 GeV.
One can see that for ω = 100 MeV the difference between the value fBH(ω)
and unit is 5-6 times greater than value β. Let us discuss this circumstance.

Figure 9: The reduction factor fBH for the energy of the initial electron
ε = 25 GeV. The curves 1,2 and 3 are respectively for β =0.01, 0.03 and 0.06.

The emission of accompanying photons with energy much less or of the order
of ω (we consider in this figure the situation connected with SLAC experiment
[12]-[14] where ω � ε, β � 1) changes the spectral distribution on quantity
order of β. However, if one photon with energy ωr > ω is emitted, at least,
then photon with energy ω is not registered at all in the corresponding channel
of the calorimeter. Since mean number of photons with energy larger than ω
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is determined by the expression (see Eqs.(3.47)-(3.52))

∞∑
n=0

nwn = wω =
∫ ε

ω

dw

dω
dω, (3.56)

the probability of the event when no photon with energy ωr > ω is radiated
is defined by exp (−wω). This is just the main factor in the expression for
the reduction factor fBH (3.55). In the case, when radiation is described by
the Bethe-Maximon formula the value wω increases as a logarithm with ω
decrease (wω � β ln ε/ω) and for large ratio ε/ω the value wω is much larger
than β. Thus, amplification of the effect is connected with a large interval of
the integration (ω − ε) at evaluation of the radiation probability.

The Bethe-Maximon formula becomes inapplicable for the photon energies
ω ≤ ωc, (ωc is defined in Eq. (2.27)), where LPM effect starts to manifest
itself (see Eqs.(2.17), (2.18)). Calculating the integral in Eq.(3.51) we find
for the distribution of the spectral energy loss

dε

dω
= 3β

√
ω

2ωc
fLPM , fLPM = g(β)

(
1 +

3π
2
√

2
β

√
ω

ωc

)
exp(−wc), (3.57)

where fLPM is the reduction factor in the photon energy range where the
LPM effect is essential,

wc = β

(
ln

ε

ωc
+ C2

)
, C2 � 1.959. (3.58)

In this expression the terms ∼ 1/L (see Sec.2.1) are not taken into account.
In Fig.10 the function fLPM (ω) is shown for ω <100 MeV (ε = 25 GeV, ωc

= 228 MeV). It is seen in Fig.10 that the reduction factor fLPM changes
appreciably in the region of high photon energies solely. This is due to the
fact that here the total probability of photon radiation is finite (in contract to
the Bethe-Maximon formula) and the integral which defines this probability
converges at ω → 0.

In the above analysis we neglected an influence of the polarization of a
medium on the bremsstrahlung. This is correct if κ � ν0 (see Eqs.(2.115),
(2.116),(2.26), Sec. 2.6) where

κ = 1 +
ω2

p

ω2
≡ 1 + κ2

0, ωp = γω0, ν2
0 =

ωc

ω
. (3.59)

We assume, for definiteness, that ωp � ωc. This is true in any case for a
dense matter if electron energy ε ≥ 10 GeV . In the opposite case when
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Figure 10: The reduction factor fLPM for energy of the initial electron
ε=25 GeV in tungsten (ωc=228 MeV). The curves 1, 2 and 3 are respec-
tively for β=0.01, 0.03 and 0.06.

κ � ν0 � 1 there is an additional suppression of the bremsstrahlung (see
Sec. 2.6):

ω
dw

dω
� 3l

4κLrad
=
β

κ
(3.60)

and this contribution into reduction factor (3.57) can be neglected.
The main contribution into effect considered for the photon energies such

that ω � ωp gives the transition radiation Eqs.(3.10), (3.45). Let us note,
that for the transition radiation the given above derivation of the formula
(3.51) is directly inapplicable. However, for application of formula (3.51) it
is enough that acts of radiation of soft photons are statistically independent.
Taking integrals in Eq.(3.51) and taking into account that η � 1 (but it may
be that ησ ∼ 1) we obtain

dε

dω
=
g(β)
π

exp(−wc) exp
[
−η

(
σ2 − 3π2

4
+ ψ2(1 − 2ησ) + ψ′(1 − 2ησ)

)]
× sin [2πη (σ + ψ(1 − 2ησ))] Γ(1 − 2ησ), (3.61)

68



where ψ(z) = d ln Γ(z)/dz, g(β) is defined in Eq.(3.55),

η =
2α
π
, σ = ln

ωp

ω
+ C − 1. (3.62)

In the case ησ � 1 we have

dε

dω
= 2η

(
ln
ωp

ω
− 1

)
g(β) exp(−wc)ftr,

ftr = exp
[
−η

(
ln
ωp

ω
− 1

)2
(

1 +
ηπ2

3

)
+
ηπ2

4

]
. (3.63)

The case of a thin target, with thickness l where the photon formation
length is

lf =
2γ2

ω
(κ+ ν0) ≥ l (3.64)

should be analyzed separately. We consider situation when effects of the
polarization of a medium are weak (κ2

0 < ν0) In this case the scattering takes
place on a target as a whole during the radiation process and the spectral
probability dw/dω in Eqs.(3.48)-(3.52) depends on the momentum transfer
q = γϑ (see Eq.(3.22))

dwr

dω
=

2α
π

dω

ω
F2

(q
2

)
≡ β1(q)

dω

ω
, (3.65)

where F2(x) is defined in Eq.(2.108). On the final step one have to average
dεr/dω over q with the distribution function Fs(q) Eq.(3.23).

Since the expression for the spectral distribution (3.65) has the same form
as in the Bethe-Maximon case, one can use Eq. (3.54) for calculation of the
reduction factor. As a result we have for the contribution of the thin target
region

fth =
1

〈β1(q)〉
〈
β1(q) exp

[
−β1(q) ln

ωth

ω

]〉
� 1− 2α

π

〈
F 2

2

(
q
2

)〉〈
F2

(
q
2

)〉 ln
ωth

ω
, (3.66)

where ωth is the boundary energy starting from which the target becomes
thin. The lower limit of the applicability of Eq.(3.66) is determined from
the condition lf = l. The expression (3.66) depends essentially on the mean
square of the momentum transfer q2s associated with the target thickness.
In the case q2s � 1 when an influence of the multiple scattering is weak
(ϑ2

s � 1/γ2)

Fs(q) =
4Z2α2

(q2 + α2
s)

2

nal

m2
, αs =

λc

as2
, (3.67)
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where as2 is the effective screening radius Eq.(2.12). When the multiple scat-
tering is strong (q2s � 1, ϑ2

s � 1/γ2), the reduction factor can be calculated
using the Gaussian distribution for Fs(q)

Fs(q) =
1
πq2s

exp
(
−q

2

q2s

)
,

q2s =
4πZ2α2

m2
nal

∫ q2
s+1

0

q2dq2

(q2 + α2
s)

2 � 4πZ2α2

m2
nal ln

q2s + 1
α2

s

. (3.68)

In the first case (q2s � 1) one has
〈
F 2

2

〉 � 〈F2〉 and one can neglect the
correction to unit in Eq.(3.66). In the opposite case (q2s � 1) the main
contribution into entering mean values of F2 gives values q � 1 where

F2(q) � ln q2 − 1 +
2
q2
. (3.69)

In this case the effect under consideration may be noticeable.
From the above analysis one can find an approximate expression for the

reduction factor in the general form. One can present the integral over ω1 in
Eq.(3.51) as ∫ ∞

0

dw

dω1

[
exp

(
−ixω1

ω

)
− 1

]
dω1

� −
∫ ∞

ω

dw

dω1
dω1 +

∫ ω

0

dw

dω1

[
exp

(
−ixω1

ω

)
− 1

]
dω1. (3.70)

The second integral on the right-hand side of Eq.(3.70) (as well as terms
omitted in the first integral) has an order ωdw/dω. For the case β � 1 this
value is small

ω
dw

dω
≤ 4l

3Lrad
≡ β (ω ≥ ωp);

ω
dw

dω
� 4α

π

(
ln
ωp

ω
− 1

)
= 2η(σ − C), (ω � ωp). (3.71)

Let us note that a contribution of the transition radiation can be enlarged
n times if one makes a target as a collection of n plates conserving the total
thickness l provided that definite conditions are fulfilled for the plate thick-
nesses and gaps between plates. In that case η → nη and above formulae are
valid if nη ≤ 1.
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Expanding the exponential in Eq.(3.51) with the second integral of
Eq.(3.70) and integrating over x we have

1
2π

∫ ∞

−∞
exp(ix)dx

∫ ω

0

dw

dω1

[
exp

(
−ixω1

ω

)
− 1

]
dω1

=
∫ ω

0

dw

dω1
δ
(
1 − ω1

ω

)
dω1 = ω

dw

dω
. (3.72)

Thus, the spectral distribution of the energy loss and reduction factor f have
the following general form

dε

dω
= ω

dw

dω
f, f = exp

[
−

∫ ∞

ω

dw

dω1
dω1

](
1 +O

(
ω
dw

dω

))
(3.73)

3.6 Radiation from structured target
The radiation from several plates for the relatively hard part of the spectrum
in which the bremsstrahlung in the condition of the strong LPM effect domi-
nates was investigated recently in [61]. A rather curious interference pattern
in the spectrum of the radiation was found which depends on a number (and
a thickness) of plates and the distance between plates (the polarization of
a medium was neglected). In the present section the probability of radia-
tion in a radiator consisting of N plates is considered [20]. The transition
radiation dominates in the soft part of the considered spectrum, while the
bremsstrahlung under influence of the strong LPM effect dominates in the
hard part. The intermediate region of the photon energies where contribu-
tions of the both mentioned mechanisms are of the same order is of evident
interest. We analyze this region in detail. In this region effects of the polar-
ization of the medium are essential.

Here we consider the case when the target consists of N identical plates
of thickness l1 with the equal gaps l2 between them. The case l1 � lf will
be analyzed where lf is the characteristic formation length of radiation in
absence of a matter (ω0 = 0), see Eqs.(1.4)-(1.6)

lf =
lf0

1 + γ2ϑ2
c

=
lf0

1 + p2
c

, T1,2 =
l1,2

lf0
,

l1
lf

= (1+p2
c)T1 � 1, T1+T2 = T,

(3.74)
where ϑc is the characteristic angle of radiation.

One can split the spectral distribution of the probability of radiation into
two parts

dw

dω
=
dwbr

dω
+
dwtr

dω
, (3.75)
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where dwbr/dω is the spectral distribution of the probability of
bremsstrahlung with allowance for the multiple scattering and polarization
of a medium and dwtr/dω is the probability of the transition radiation for
the N -plate target. For dw(N)

br /dω one has:

dw
(N)
br

dω
=

α

πω
Re

N−1∑
n1,n2=0

∫
dτ2

∫
dτ1 exp [−i (τ1 + τ2 + κT1 + (n− 1)κT )]

× [
r1 (Gn −Gn(0)) + r2

(
G2

n −G2
n(0)

)]
, (3.76)

where the coefficient r1 and r2 are defined in Eq.(3.2),

G−1
n = βn

[
(dn − dn−1)

2 − 1
]

+ i (dn − dn−1) (τ1 + τ2) − β−1
n τ1τ2;

N ≥ n = n2 − n1 + 1 ≥ 1; n1 = 0, 0 ≤ τ1 <∞; n2 = N − 1, 0 ≤ τ2 <∞;
n1 ≥ 1, 0 ≤ τ1 ≤ T ; n2 ≤ N − 2, 0 ≤ τ2 ≤ T,

κ = 1 + κ2
0, κ

2
0 = κ2

0

l1
l1 + l2

(3.77)

The function dn can be presented in the form

dn =
sinhnη
sinh η

, sinh η = 2
√
iqT1T (1 + iqT1T ). (3.78)

For the case η � 1 one has

η � 2
√
iqT1T ≡ 2T

√
iq, q = q

T1

T
= q

l1
l1 + l2

. (3.79)

In above formulas

T = T1 + T2, b =
1

4qT1
, βn =

b

dn
, Gn(0) = Gn(q = 0) (3.80)

Note for the subtraction procedure one has that when q → 0, the function
b, βn → ∞.

For one plate (N = 1) we have n1 = n2 = 0, n = 1 and

G−1
1 = i(τ1 + τ2) − 1

b
τ1τ2, G−1

1 (0) = i(τ1 + τ2). (3.81)

In the integral (3.76) we rotate the integration contours over τ1, τ2 on the
angle −π/2 and substitute variables τ1,2 → −ix1,2. Then we carry out change
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of variables x = x1 + x2, x2 = zx. We have

dw
(1)
br

dω
=

α

πω
cosκT1

∫ ∞

0

exp(−x)dx
∫ 1

0

[
r1

(
1 − 1

g(x, z)

)

+r2

(
1 − 1

g2(x, z)

)]
dz

=
αb

πω
cos(κT1)

∫ ∞

0

exp(−bx)
[
r1F1

(√
x

4

)
+ r2F2

(√
x

4

)]
,

g(x, z) = 1 +
x

b
z(1 − z), (3.82)

where the functions F1(x) and F2(x) are defined in (2.109) and (2.108).
The special case is when a target consists of two plates (N = 2). Since

the formation length is enough long for the soft photons (ω � ε) only, we
consider the term with r2 in Eq.(3.76) as far as r1 = ω2/ε2 � 1. For the
case (N = 2) the sum in Eq.(3.76) consists of three terms: 1)n1 = n2 = 0;
2)n1 = n2 = 1; 3)n1 = 0, n2 = 1. For the two first n = 1 and we have from
Eq.(3.81)

dw
(2)
br1

dω
=
dw

(2)
br2

dω
=
αr2
πω

Re

[
exp(−iκT1)

∫ ∞

0

dτ2

∫ T

0

exp(−i(τ1 + τ2))

×
[

1
(τ1 + τ2)2

− 1
(τ1 + τ2 + iτ1τ2/b)2

]
dτ1

]
. (3.83)

For the third term n = 2, d2 = 2 coshη = 2(1 + 2iqT1T ) (see Eq.(3.78)) and
we have

G−1
2 = iT + i

(
1 +

iT

b

)
(τ1 + τ2) − 2

b

(
1 +

iT

2b

)
τ1τ2

= i(T + τ1 + τ2) − 2
b
τ1τ2 +

iT

b

[
i(τ1 + τ2) − τ1τ2

b

]
, (3.84)

so that

dw
(2)
br3

dω
=
αr2
πω

Re

[
exp(−i(κT + κT1))

∫ ∞

0

dx1

∫ ∞

0

exp(−(x1 + x2)) × (3.85)

[
1

(iT + x1 + x2)2
− 1[

iT + x1 + x2 + 2
bx1x2 + iT

b

(
x1 + x2 + x1x2

b

)]2
]
dx2

]
.
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Here we rotate the integration contours over τ1, τ2 on the angle −π/2 and
substitute variables τ1,2 → −ix1,2.

In the case of the weak multiple scattering (b � 1) neglecting the effect
of the polarization of a medium (κ = 1) and expanding the integrand in
Eqs.(3.83) and (3.86) over 1/b we have for the probability of radiation

dw
(2)
br

dω
= 2

dw
(2)
br1

dω
+
dw

(2)
br3

dω
� 2αr2

3πωb

[
1 − 3

10b
+

1
b
G(T )

]
,

G(T ) = T 2

∫ ∞

0

x3 exp(−x)
(x2 + T 2)2

[(
1 − 3x2

10T 2

)
cos

(
T − 4 arctan

x

T

)

+
2x
T

sin
(
T − 4 arctan

x

T

)]
. (3.86)

Note that the main term of the decomposition in Eq.(3.86) is the Bethe-
Maximon probability of radiation from two plates which is independent of
the distance between plates. This means that in the case considered we have
independent radiation from each plate without interference in the main order
over 1/b. The interference effects appear only in the next orders over 1/b.

In the case of the strong multiple scattering we have b � 1, p2
c � 1.

When the formation length is much longer than the target thickness as a
whole (T � b) we find for the probability of radiation

dw
(2)
br

dω
� αr2

πω

[
(1 + b)

(
ln

2
b

+ 1 − C

)
− 2

]
cos(2κT1). (3.87)

In the opposite case b� T � 1 neglecting the effect of the polarization of a
medium (κT1 � 1) we have

dw
(2)
br

dω
� αr2

πω

[
(1 + 2b)

(
ln
T

b2
+ 1 − C

)
− 2

]
. (3.88)

The case of the strong multiple scattering (b� 1) for the photon energies
where the value T ≥ 1 is of the special interest. In this case we can neglect
the polarization of a medium κ = κ = 1, and disregard the terms ∝ κT1 in
the exponent of the expressions (3.83) and (3.85) since T1 � 1. We obtain
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as a result

dw
(2)
br

dω
= 2

dw
(2)
br1

dω
+
dw

(2)
br3

dω
� 2

dw
(2)
br

dω
− dw

(2)
br3

dω
,

dw
(2)
br3

dω
=
αr2
πω

F (T ),

Re F (T ) =
∫ ∞

0

dτ2

∫ ∞

T

dτ1
1

(τ1 + τ2)2
exp(−i(τ1 + τ2))

=
∫ ∞

T

dτ

τ2
exp(−iτ)(τ − T ) = −(ci(T ) + T si(T ) + cosT ), (3.89)

where si(z) is the integral sine and ci(z) is the integral cosine. At T � 1 we
have

F (T ) = −cosT
T 2

. (3.90)

Let us turn to the case of large N (N ≥ 3). If the formation length of
the bremsstrahlung is shorter than the distance between plates (T > 1) the
interference of the radiation from neighboring plates takes place. Using the
probability of radiation from two plates (3.86) we obtain in the case of weak
multiple scattering (b� 1)

dw
(N)
br

dω
� Nαr2

3πωb

[
1 − 3

10b
+ 2

N − 1
Nb

G(T )
]
, (3.91)

where for T � 1 the function G(T ) is defined in Eq.(3.86). In the case
of strong multiple scattering (b � 1) and large T we have (compare with
Eqs.(3.89) and (3.90))

dw
(N)
br

dω
� N

(
dw

(1)
br

dω
+
αr2
πωb

N − 1
Nb

cosT
T 2

)
. (3.92)

The behavior of the spectral distribution ω
dw

dω
can be discussed using as

an example the case of two plates with the thickness l1 and the distance
between plates l2 ≥ l1 which was analyzed in detail above. For plates with
the thickness l1 ≥ 0.2%Lrad and in the energy interval ω > ωp, in which the
effects of the polarization of a medium can be discarded, the condition (3.74)
is fulfilled only for enough high energy ε so that ωp � ωc (see Eqs.(1.5),
(2.27)). We study the situation when the LPM suppression of the intensity
of radiation takes place for relatively soft energies of photons: ω ≤ ωc � ε.

For the hard photons ωc � ω < ε the formation length lf0 Eq.(1.6) is
much shorter than the plate thickness l1 (T1 � 1), the radiation intensity
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is the incoherent sum of radiation from two plates and it is independent of
the distance between plates. In this interval the Bethe-Maximon formula is
valid.

For ω ≤ ωc the LPM effect turns on, but when ω = ωc the thickness of
plate is still larger than the formation length lf0

l1
lf0(ωc)

= T1(ωc) ≡ Tc � 2π
α

l1
Lrad

> 1, (3.93)

so that the formation of radiation takes place mainly inside each of plates.
With ω decreasing we get over to the region where the formation length
lf0(ωc) > l1, but effects of the polarization of a medium are still weak
(ω > ωp). Within this interval (for ω < ωth) the main condition (3.74) is
fulfilled. To estimate the value ωth we have to take into account the charac-
teristic radiation angles (p2

c in Eq.(3.74)), connected with mean square angle
of the multiple scattering. Using the definition of the parameter b = 1/(4qT1)
in Eq.(3.80)) we have

p2
c ≤ 1

b
=

2π
α

l1
Lrad

(
1 − ln �b

ln(as2/λc)

)
� Tc

(
1 +

ln Tc

2 ln(as2/λc)

)
;

ωth =
ωc

Tc (1 + p2
c)

≥ ωb =
ωc

Tc(1 + Tc)
, (3.94)

where the parameter �b is defined by a set of equations (we rearranged terms
in (3.15)):

�b = 1, Lb = L1 for 4QL1T1 =
2π
α

l1
Lrad

≤ 1, q = QL1;

4QL(�b)T1�
2
b =

2π
α

l1
Lrad

�2
b

(
1 − ln �2

b

L1

)
= 1, for 4QL1T1 > 1, (3.95)

here L1 = ln(as2/λc)2. One can show (see discussion after Eq.(3.6) in [18])
that ωth � 4ωb. Naturally, ωth < ωc/Tc, and when ω = ωc/Tc one has
T1 = 1, l1 = l0. It is seen from Eq.(3.94) that when the value l1 decreases,
the region of applicability of results of this subsection grows.

So, when ω < ωth the formation length is longer than the thickness of the
plate l1 and the coherent effects depending on the distance between plates l2
turn on. For the description of these effects for T = (1 + l2/l1)T1 ≥ 1 one
can use Eq.(3.89). For T ≥ π � 1 one can use the asymptotic expansion
(3.90) and it is seen that at T = π the spectral curve has minimum. Let us
note an accuracy of formulas is better when ω decreases, and the description
is more accurate for T � T1 (l2 � l1).
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With further decreasing of the photon energy ω the value T diminishes
and the spectral curve grows until T ∼ 1. When T < 1 the spectral curve de-
creases ∝ lnT according with Eq.(3.88). So, the spectral curve has maximum
for T ∼ 1. The mentioned decreasing continues until the photon energy ω
for which (1 + 2/b)T ∼ 1. For smaller ω the thickness of the target is shorter
than the formation length.

The results of numerical calculations are given in Fig.11. The formulas
(3.83), (3.85) were used. The spectral curves of energy loss were obtained for
the case of two gold plates with the thickness l1 = 11.5 µm with different gaps
l2 between plates. The initial energy of electrons is 25 GeV. The characteristic
parameters for this case are:

ωc � 240 MeV, Tc � 2.9, b−1 � 3.3, ωth � 80 MeV,

ωp � 3.9 MeV, ω1 � 30 keV,
T

T1
≡ k =

l1 + l2
l1

= 3, 5, 7, 9, 11. (3.96)

At ω > 80 MeV the radiation process occurs independently from each plate
according with theory of the LPM effect given above. The interference pat-
tern appears at ω < 80 MeV where the formation length is longer than the
thickness of one plate and the radiation process depends on the distance be-
tween plates T . According to Eqs.(3.90), (3.91) the curves 1-5 have minimums
at ω � πωth/k (T = π) which are outside of Fig.11 and will be discussed be-
low. In accord with the above analysis the spectral curves in Fig. 11 have the
maximums at photon energies ω � ωth/k (T = 1). These values (in MeV)
are ω � 27, 16, 11, 9, 7 for curves 1, 2, 3, 4, 5 respectively. At further decrease
of ω(T ) the spectral curves diminish according to Eq.((3.88)) and attain the
minimum at ωmin = ωth/(k(1 + 2/b)) (T (1 + 2/b) = 1). The corresponding
values (in MeV) are ω � 3.5, 2, 1.4, 1.2 for curves 1, 2, 3, 4. The least value
of ωmin � 1 MeV has the curve 5. However, one has to take into account
that at ω ≤ 1.5 MeV (κ2

0 = p2
c � 2/b) the contribution of the transition

radiation becomes significant. Starting from ω ≤ 0.6 MeV the contribution
of the transition radiation dominates.

The approach presented in this subsection is applicable in the interval of
photon energies where effects of the polarization of a medium are essential.
It includes also the soft part of the LPM effect. For the case given in Fig.11
our results are given up to ωmax ∼ 20 MeV. On the other hand, in [61] the
hard part of the LPM effect spectrum was analyzed where one can neglect
the effects of the polarization of a medium (ω > 5 MeV for the mentioned
case). Although here (as in [20]) in and in [61] the different methods are
used, the results obtained in overlapping regions are in a quite reasonable
agreement among themselves.
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Figure 11: The energy losses spectrum
dε

dω
in units

2α
π

, in the target consist-
ing of two gold plates with thickness l1 = 11.5 µm for the initial electrons
energy ε=25 GeV.

Curve 1 is for distance between plates l2 = 2l1;
Curve 2 is for distance between plates l2 = 4l1;
Curve 3 is for distance between plates l2 = 6l1;
Curve 4 is for distance between plates l2 = 8l1;

Curve 5 is for distance between plates l2 = 10l1.

It is interesting to discuss behavior of the spectral curves obtained in [61]
from the point of view of our results. We consider the low value l1 (Tc is
not very large) and a situation when corrections to the value b in Eq.(3.94)
which neglected in [61] are less than 20%. This leads to the difference in
results less than 10%. We concentrate on the case of gold target with
the total thickness Nl1 = 0.7% Lrad. The case N = 1 where Tc = 5.8,
b−1 = 7.3, ωc � 240 Mev, ωth = 4ωc/(Tc(1 + Tc)) � 24 MeV was considered
in detail in [61] (see Sec. 2). The curves in figures in [61] are normalized
on the Bethe-Heitler probability of radiation (no the Coulomb corrections),
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i.e. they measured in units αr2Tc/(3π). In the region where our results are
applicable ω < ωth � 24 MeV in Fig.2 of [61] (G = 0) one can see plateau the
ordinate of which is 10% less than calculated according with Eq.(3.82). The
case of two plates (Tc � b−1 � 3, ωc � 240 MeV, ωth � ωc/Tc = 80 MeV)
is given in Fig.3 of [61]. The lengths of the gaps are the same as in our
Fig.11, except k = 9. The positions and ordinates of the minimums and
the maximums in the characteristic points (ω � πωth/k for minimums and
ω � ωth/k (T = 1) for maximums, see above) as well as behavior of the spec-
tral curves is described quite satisfactory by our formulas (see e.g. asymptotic
Eqs.(3.87)-(3.90)).

3.7 Comparison of the results obtained in different
papers

As it was said above, Migdal have calculated the probability of the
bremsstrahlung and pair creation in the logarithmic approximation [2].This
result, now considered as classic one, was confirmed in the most of subsequent
calculation.

We developed the method of calculation [17, 18, 19, 20] which goes be-
yond the logarithmic approximation. The formula (2.17) gives the spectral
distribution of the probability of radiation which coincides formally with the
probability calculated by Migdal (Eq.(49) in [2]). However, here Coulomb
corrections are included into parameter ν in contrast to [2], [3]. As it was
noted, the parameter �c entering into the parameter ν (see Eqs.(2.17), (2.12)
and (2.10)) is defined up to the factor ∼ 1, what is inherent in the logarithmic
approximation. However, we calculated also the next term of the decomposi-
tion over v(�) (an accuracy up to the "next to leading logarithm") and this
permits to obtain the result which is independent of the parameter �c. It
was shown that the definition of the parameter �c minimizes corrections to
Eqs.(2.17) and (2.43) practically for all values of the parameter �c. It should
be emphasized also that here the Coulomb corrections are included into the
parameter ν in contrast to [3]. Moreover, the procedure of fine tuning pre-
sented above (see [17]) permits one (after adding the term dW1/dω (2.22))
to obtain more accurate expression for the probability of radiation, which
has power accuracy in the limit of weak multiple scattering, see (2.29), while
the probability calculated by Migdal [2] has logarithmic accuracy only in the
mentioned limit. The interrelation between the main term dWc/dω and the
first correction dW1/dω depends essentially on fine tuning procedure which
was chosen, as it was just said, in a such way that minimize the value of the
first correction. For example, one can see that the maximal value of dW1/dω
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is of the order 7 % of the main term for all four spectral curves shown in the
Fig.3. This means that in our case there are more rigid requirements on fine
tuning procedure than used by Migdal.

In the approach used by Blankenbecler and Drell (BD) [22] the scattering
process was considered in the second approximation of the eikonal formalism
and an analysis of scattering in medium was based on the model of a random
medium. The radiation was calculated for all possible paths and averaged.
One advantage of this approach is that it treats naturally finite thickness
targets. There are a few short-comings in the BD approach. The Gaussian
distribution of scattered electrons was obtained by Migdal [2] as a solution of
the Fokker-Planck equation, while in BD approach this is an input. Actually
there are deviations from the Gaussian distribution, see end of Sec.3.3. The
calculation of the probability dW/dω is quite unwieldy in BD approach and
general formula for dW/dω (Eq.(5.32) in [22])is written down in an implicit
form only, and the functions η(z2, z1, l) and λ(z2, z1, l) in the mentioned for-
mula have to be calculated in the each case separately. This means that
comparison of BD probability with that calculated by Migdal can be done in
limiting cases only. In the case of weak multiple scattering the probability
in [22] coincides with the Bethe-Heitler probability taken with logarithmic
accuracy (just as in Migdal paper [2]). However, in the limit of the strong
LPM effect, where the probability of radiation is given by Eqs.(2.17) and
(2.31) above and which coincides with obtained by Migdal Eq.(52) in [2]
(if one omits the Coulomb corrections included into the parameter ν0), the
probability calculated by BD (the term with R2) differs from (2.31) by factor√

3π/8=1.0854. The origin of this discrepancy was not analyzed in [22].
In the paper of R.Baier, Dokshitzer, Mueller, Peigne, and Schiff (BDMPS)

[25] the multiple scattering of high-energy electrons off a large number of scat-
terers (presented as a screened Coulomb potential) is analyzed within eikonal
formalism. Radiation of soft photons only is included using the classical cur-
rent approach, although this approach gives no significant simplification for
the problem under consideration. All the results are obtained within log-
arithmic accuracy. No general formula of the type of Eq.(2.18) is written
down. In the "Bethe-Heitler limit" the result of [25] does not completely
match the standard Bethe-Heitler formula. Since the method used consists
in direct summation over scatterers it naturally included the consideration
of a target of finite thickness. For thin target (T ≤ lf0) the result of [25]
is similar to logarithmic term in Eq.(3.18) where r2 = 2 for soft photons.
The explicit formula for radiation spectrum is given in [25] in the limit of
strong LPM effect where it is similar to Eq.(2.32) if ω � ε and the Coulomb
corrections are omitted.
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Note that in Migdal papers [2], [3] and in our papers the kinetic equation
is the basic element of the used methods while in the both papers [25] and [22]
the consideration does not included the kinetic equation. Due to this feature
the calculations in the both papers [25] and [22] are more cumbersome and
no general formulas for radiation spectra are obtained.

A path integral method is applied successfully for analysis of multiple
scattering (see e.g. [63]). Zakharov [23], [24] is used this method to study of
the LPM effect. Using a transverse Green function based on a path integral
he succeeded in reduction of the problem to the two dimensional Schrödinger
equation, i.e. he rederived equation a la Eq.(2.3), which was obtained earlier
in [9]. The probability of radiation was calculated (see Eq.(19) in [23]) within
logarithmic accuracy (as in Migdal papers [2] and [3]) although it is written
down in a more cumbersome form. The procedure of fine tuning so important
for Migdal calculation [2] is oversimplified in [23]. For earlier attempt to do
study of the LPM effect in a such way see [63]. The formalism used in
[23] has the same region of validity as in Migdal’s papers [2], [3] and in
our papers [9], [17] and [18] in spite of claims about "rigorous treatment of
the LPM effect". The developed formalism allows naturally to consider the
LPM effect in finite thickness targets [24]. As an example the calculation
of spectral intensity of radiation is given for electron energy ε = 25 GeV
and gold target with thickness l = 0.7%Lrad. This calculation was carried
out numerically with the complete potential (see Eq.(2.3)) outside of scope
of logarithmic approximation. The Coulomb corrections were discarded as
well as a multiple photon radiation. After arbitrary diminishing of calculated
value by 7% it was found very good agreement with a portion of data (in the
region of the LPM drop up to beginning of plateau). Actually this diminishing
should be attributed to Coulomb corrections found in [17] (for details see [18]
and below in Sec. 3.10). More late results of Zakharov see in [64].

3.8 Qualitative behavior of the spectral intensity
of radiation

We consider the spectral intensity of radiation for the energy of the initial
electrons when the LPM suppression of the intensity of radiation takes place
for relatively soft energies of photons: ω ≤ ωc � ε:

ν0(ωc) = 1, ωc =
16πZ2α2

m2
γ2na ln

as2

λc
, (3.97)

see Eqs.(2.3), (2.12), (2.24)-(2.27). This situation corresponds to the
experimental conditions [12, 13, 14, 15].
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The ratio of the thickness of the target l and the formation length of ra-
diation lf (ω) (1.5) is an important characteristics of the process. In Eq.(1.5)
both the multiple scattering and the polarization of a medium are taken into
account. This ratio may be written as

β(ω) ≡ l

lf (ω)
= T (ν0 + κ) � Tc

[
ω

ωc
+

√
ω

ωc
+

ω2
p

ωωc

]
,

T =
lω

2γ2
, ωp = ω0γ, Tc ≡ T (ωc) � 2π

α

l

Lrad
, (3.98)

where we put that ν0 �
√
ωc

ω
. Below we assume that ωc � ωp which is true

under the experimental conditions.
If β(ωc) � 1 (Tc � 1) then at ω ≥ ωc a target is thick and one has the

LPM suppression for ω ≤ ωc. There are two opportunities depending on the
minimal value of the parameter β:

βm � 3
2
Tc

√
ω1

ωc
, ω1 = ωp

(
4ωp

ωc

)1/3

, βm � 2Tc

(
ωp

ωc

)2/3

. (3.99)

If βm � 1 then for photon energies ω > ω1 it will be ωb such that

β(ωb) = 1, ωb � ωc

T 2
c

(3.100)

and for ω < ωb the thickness of a target becomes smaller than the formation
length of radiation so that for ω � ωb the spectral distribution of the radia-
tion intensity is described by Eqs. (3.36), (3.40). Under these conditions for
4k = ν2

0T = Tc � 1 the spectral curve has a plateau

dI

dω
=

2αJ
π

= const (3.101)

in accordance with Eq.(3.20). Under conditions κT � 1, ω < ωb the spectral
intensity of radiation is independent of photon energy ω. It should be noted
that due to smallness of the coefficients in expression for δ Eq.(3.38), such
behaviors of the spectral curve begins at ω < ωth = 4ωb � 4ωc/T

2
c . It will

continue until photon energies where one has to take into account the polar-
ization of a medium and connected with it a contribution of the transition
radiation.

At βm � 1 a target remains thick for all photon energies and radiation is
described by formulae of Sections 2.2 and 2.6. In this case at ω � ωc (ν0 � 1)

82



and ω � (ωp/ωc)
1/3

ωp (ν0 � κ) the spectral intensity of radiation formed
inside a target is given by Eqs.(2.17) and (2.22) and the contribution of the
boundary photons is given by Eq.(3.12).

It is important to include also the contribution of boundary photons.
Since the contribution into the spectral intensity of radiation from a passage
of the electron inside the target (∝ T ) is diminishing and a contribution of
the boundary photons is increasing with ω decrease, the spectral curve has
a minimum at ω = ωm. The value of ωm may be estimated from equations
(see (2.31), (3.36)-(3.37)))

d

dω

(
ν0T√

2
+ ln ν0 +

π2
√

2
24

κ

ν0

)
= 0,

ν0T√
2

� 1 +
π2(κ− 1)

4
√

2ν0
,

Tc �
(

2ωc

ωp

)1/2 √
x+

π2

4
x2, x =

ωp

ω
. (3.102)

When the value of Tc is high enough, the solution of Eq.(3.102) does not
satisfy the condition ν0 � κ and in this case the equation (3.102) ceases to
be valid. For determination of ωm in this case we use the behavior of the
spectral intensity of radiation at κ � ν0. In this case the contribution into
radiation from inside passage of the target is described by Eq.(2.124) while
the radiation of the boundary photons reduces to the transition radiation and
its contribution is given by Eq.(3.10). Leaving the dominant terms (ν2

0T is
ω independent) we have

d

dω

(
ν2
0T

3κ
+ lnκ

)
= 0,

ν2
0T

3κ
= 1, κm =

Tc

3
, ωm �

√
3
Tc
ωp. (3.103)

Since the value π2/12 � 0.8 is of the order of unity, the solution of (3.102)
at κm � ν0 differs only slightly from ωm. Because of this, if the condition
2Tc(ωp/ωc)2/3 � 1 is fulfilled, the position of the minimum is defined by
Eq.(3.102). The formulas (3.102) and (3.103) show the position of a minimum
of the spectral intensity curve which is the sum of contributions of radiation
inside a target and boundary radiation. Due to the LPM effect the intensity
of radiation inside a target diminishes with ω decreasing. However at low
ω the contribution of the boundary radiation is sharply increasing and this
results in appearance of a minimum of spectral curve. Eq.(3.102) gives its
position at small Tc while Eq.(3.103) gives minimum position at large Tc.

If β(ωc) = 2Tc � 1 then at ω = ωc a target is thin and the Bethe-

Maximon spectrum of radiation which is valid at ω � ωc

(
dI(ω)
dω

= const
)
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will be also valid at ω ≤ ωc in accordance with Eq.(3.40) since 4k = ν2
0T =

Tc � 1. This behavior of the spectral curve will continue with ω decrease
until photon energies where a contribution of the transition radiation become
essential. In this case the spectral distribution of radiation has the form (3.46)
for all ω

dw

dω
=
dwtr

dω
+ cos(κT )

dwBM

dω
, (3.104)

Since for soft photons (ω � ε)

dI

dω
=

2α
π

[
J

(2)
5 +

Tc

3

(
1 +

1
6L1

)
cos(κT )

]
(3.105)

and Tc/3 � 1 a contribution of the transition radiation become visible al-
ready at κT � 1. For ω > ωc (Tc � 1) the probability of radiation is
defined by Eqs.(3.33)-(3.34). In this case a considerable distinction from
Bethe-Maximon formula will be in the region ω ∼ ωc/Tc.

As well known, for soft photons (ω � ε) the Bethe-Maximon formula for
the spectral intensity of radiation doesn’t depend on a photon energy as well.
So, the ratio of these spectral intensities (see Eqs. (3.40) and (3.43)) is an
important characteristics of the phenomenon under consideration:

R =
dIth
dω

/
dIBM

dω
=

6
Tc

(
1 +

1
6L1

)−1 ∫ ∞

0

d��K2
1 (�) [1 − exp (−V (�)T )] .

(3.106)
For Tc � 1 one has R = 1 and for Tc � 1 one has using expression (3.18)

R � 3
Tc

(
1 +

1
2k

)
[ln 4k + 1 − C] − 2 +

C

Lt
. (3.107)

For estimates one can put with a good accuracy 4k � Tc and Lt � L1.
There is, in principle, an opportunity to measure the electron energy (in

region of high energies) using the LPM effect. For this one can measure the
spectral curve on a target with thickness a few percent of Lrad and compare
the result with the theory prediction.

Existence of the plateau of the spectral curve in a region of photon energies
where a target is thin was first found in [52] within Migdal approach (quantum
theory). Recently this item was discussed in [59] (in classical theory), [22]
and [24].

3.9 Experimental investigation of the LPM effect
Bremsstrahlung or pair creation suppression can be studied with high energy
electron or photon beams. Because pair creation suppression requires photons
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with ω > ωe (see Eq.(2.48)), beyond the reach of current accelerators, pair
creation has been studied only with cosmic rays, with consequently very
limited statistics. The best suppression studies have used electron beams at
accelerators. Besides the LPM effect, these beams have been used to study
dielectric suppression.

3.9.1 Early experiments

The first tests of LPM suppression came shortly after Migdal’s appeared.
These were cosmic rays experiments with high energy photons (ω > 1 TeV)
and studied the depth of pair conversion in a dence target [65]-[68], see also
more recent [69]. All of the air shower experiments suffered from some com-
mon problems, by far the largest being the poor statistics (high energy pho-
tons are not common). Uncertainties in the photon spectrum complicated
the analysis. So, these experiments are at best qualitative verification of the
LPM effect.

The first accelerator based study of LPM effect was done in Serpukhov
[70]. Bremsstrahlung photons from 40 GeV electrons hitting dense target
were detected in an sodium iodide calorimeter. Photons with energy 20 MeV
< ω < 70 MeV emitted from carbon, aluminium, lead and tungsten targets
were analized. It were several limitations: because the electron beamline was
in air, and included a few scintillation counters used as triggers, there was a
significant light element bremsstrahlung background, it was also background
due to muon contamination in used beam. The results agreed with Migdal’s
predictions.

3.9.2 SLAC E-146

In 1992, the E-146 collaboration at Stanford Linear Accelerator Center
(SLAC) proposed the experiment to perform a precision measurement of
LPM suppression, and study dielectric suppression. The experimental setup
was conceptually similar to the Serpukhov experiment, but heavily optimized
to minimize background. The experimenters collected a very large data set.
The experiment was approved in December, 1992, and took data in March-
April, 1993.

Fig.12 shows a diagram of the experiment. An 8 or 25 GeV electron beam
entered SLAC End Station A and passed through a thin target. The target
used are listed in Table 1. The beam was then bent downward by a 3.25 T-
m dipole magnet, through six wire chamber planes which measured electron
momenta and into an array of lead glass blocks which accurately counted
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Figure 12: Diagram of the SLAC E-146 apparatus, from [15].

electrons. Produced photons continued downstream 50 meters into a BGO
calorimeter array. To minimize backgrounds, the electron path visible to the
calorimeter and the photon flight path were kept in vacuum.

The calorimeter comprised 45 BGO crystals in a 7 by 7 array with missing
corners; each crystal was 2 cm square by 20 cm (18Lrad) deep. This segmen-
tation provided excellent spatial resolution for separating synchrotron radia-
tion from bremsstrahlung photons. Scintillation light from each crystal was
measured separately by a photomultipler tube (PMT). The light yield was
about 1 detected photoelectron per 30 keV, providing good statistics down
to 200 keV. The calorimeter resolution was about 8% (FWHM) at 100 MeV,
with a nonlinearity of about 3%. The calorimeter temperature was moni-
tored throughout the experiment, and the data corrected using the measured
drifts.

The collaboration used several methods to calibrate the calorimeter, to
obtain both an absolute energy calibration and a crystal to crystal inter-
calibration. The primary tools for measuring the relative gain were nearly
vertical cosmic-ray muons, selected by a plastic scintillator paddle trigger;
the gain in each crystal channel was adjusted to produce equal signals.

The absolute energy scale of the calorimeter was primarily determined
using a 500 MeV electron beam. This calibration was checked with data
by comparing the electron energy loss, measured by the wire chamber, with
the calorimeter energy measurement. Because of the steeply falling photon
spectrum and the non-Gaussian errors in the momentum measurement, this
was useful only as a cross-check.

Because of the large bremsstrahlung cross section, the experiment re-
quired a beam intensity of about 1 electron per pulse. Because it would have
been very uneconomical to use the SLAC linac to produce a single electron
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Table 1. The characteristics of the LPM effect.
Listed are the charge of nucleus Z, the density �, the radiation length Lrad,
εe (see Eq.(2.26)), ωe (see Eq.(2.48)), ωc Eq.(2.27)), ωp Eq.(2.115)), l is the
target thickness in percent of the radiation length Lrad (all photon energies
ωc and ωp are for the electron energy ε = 25 GeV).

Material Z �(g/cm3) Lrad(cm) εe(TeV) ωe (TeV) ωc(MeV) ωp(MeV) l

C 6 2.2 18.8 144 580 4.3 1.5 2.1, 6
Al 13 2.7 8.9 68 270 9.2 1.6 3.5, 6
Fe 26 7.87 1.76 14 56 46 2.7 2.8, 6.1
Pb 82 11.35 0.56 4.3 17.2 150 3.0 2.7
W 74 19.3 0.35 2.7 10.8 230 3.9 2.7, 6.4
U 92 18.95 0.32 2.5 10 250 3.8 2.2, 4.2
Au 79 19.32 0.33 2.6 10 240 3.9 0.1, 0.7

Water - 1 36.1 277 1100 2.6 - -
Std.rock 11 2.65 10.0 77 300 8.1 - -

per pulse, the collaboration developed a method to run parasitically during
SLAC linear collider (SLC) operations, by using the off-axis electrons and
positrons that are removed from the beam by scrapers in the beam switch-
yard.

Normally, about 10% of the SLC beam is scraped away by collimators
in the last 200 meters of the linac. The collimators are only 2.2Lrad thick,
so a usable flux of high energy photons emerged from their back and sides.
Some of these photons travel down the beampipe, past the magnets that bend
the electrons and positrons into the SLC arcs, and into the beam switchyard,
where a 0.7Lrad target converted them into e+e− pairs. Some of the produced
electrons were captured by the transport line optics, collimated, selected for
energy, and transported into the end station.

The beam worked well, with the size, divergence and yield matching sim-
ulations. At 8 and 25 GeV, the beam intensity was adjustable up to about
100 electrons/pulse. At 1 electron/pulse, the beam emittance was limited by
the optics, with a typical momentum bite of ∆p/p < 0.5%.The beam optics
were adjusted to minimize the photon spot size at the calorimeter; spot sizes
there were typically a few mm in diameter. The beam spot was stable enough
and small enough that beam motion was not a major source of error.

Data was collected and written to tape on every beam pulse (120 Hz).
With the beam intensity averaging 1 electron/pulse, over 500,000 single elec-
tron events could be collected per eight hour shift. The experiment ran for a
month, and good statistics were obtained with a variety of targets.
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3.9.3 Data Analysis and Results

The E-146 analysis selected events containing a single electron, as counted by
the lead glass blocks. The photon energy was found by summing the energies
of hit BGO crystals using a cluster-finding algorithm. The cluster finding
reduced the noise level by eliminating random noise hits.

The experiment studied the photon energy range from 200 keV to 500
MeV, a 2500:1 dynamic range. This exceeded the linear dynamic range of
the PMTs and electronics, so data was taken with two different PMT gains,
varied by changing the PMT high voltage. The high-ω running corresponded
to 1 count per 100 keV and the low-ω running was 1 count per 13 keV, with
the relative gains calibrated with the cosmic ray data. The high-ω data
was used for 5 MeV < ω < 500 MeV while the low-ω data covered 200 keV
< ω < 20 MeV, with a weighted average used in the overlap region.

These two sets of data differed in several significant ways. There were
large differences in calorimeter behavior and background levels, as well as
the physics topics. For ω > 10 MeV, photons largely interacted by pair con-
version, producing an electromagnetic shower. Showers typically deposited
energy in 3-20 crystals in the calorimeter. For ω < 2 MeV, the photons inter-
acted by single or multiple Compton scattering. Usually, Compton scatter-
ing deposited energy in a single calorimeter crystal. Sometimes, the photon
Compton scattered once and then escaped from the calorimeter, taking some
energy with it. This added a low energy tail to the energy deposition curve.
While the high-ω data had very low backgrounds, the low-ω data had sig-
nificant backgrounds due to synchrotron radiation, at least for the 25 GeV
beams. Finally, the two data sets emphasize different physics, with the high-
ω data most relevant for the LPM effect, with the low-ω data more useful for
studying dielectric suppression. For these reasons, the two sets of data were
analyzed quite independently, and combined in the final histograms.

3.9.4 Backgrounds and Monte Carlo

One advance introduced by E-146 was the use of a detailed, high statistics
Monte Carlo. The main purpose of the Monte Carlo was to understand
multi-photon pileup. This occurred when a single electron passing through
the target interacted twice, radiating two photons. The Monte Carlo also
simulated photon absorption in the target [14] and modelled the detector.
Transition radiation was treated as an integral part of the physics, rather
than a background.

The Monte Carlo tracked electrons through the material in small steps,
allowing for the possibility of bremsstrahlung in the material and transition
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radiation at each edge. LPM suppression was implemented using simple for-
mulae with dielectric suppression incorporated using results of Migdal [2],[3].
For consistency, the Bethe-Heitler cross sections were included by turning
LPM suppression off from Migdal’s formulae, rather than using a more mod-
ern formula.

The expected and measured backgrounds were both small. The major
background was synchrotron radiation from the spectrometer magnet. Syn-
chrotron radiation was significant for ω < 1 MeV in the 25 GeV data.

Non-target related backgrounds were measured with target empty runs.
The backgrounds were typically 0.001 photons with ω > 200 keV per electron,
much less than the number of bremsstrahlung photons with ω > 200 keV per
electron. Target related backgrounds were expected to be small; photonuclear
interaction rates are small, and the events are unlikely to appear in the E-146
analysis.

3.9.5 Results

Because of the high statistics and low background, the E-146 data allowed
for detailed tests of the theory; photon spectra could be easily compared with
different predictions.

Figures 13-16 show a sampling of E-146 results. Photon energies were his-
togrammed logarithmically, using 25 bins per decade of energy, so that each
bin had a fractional width ∆ω ∼ 10%ω. The logarithmic scale is needed to
cover the 2500:1 energy range. The logarithmic binning dN/d lnω = ωdN/dω
was chosen so that a 1/ω Bethe-Heitler (BH) spectrum will have an equal
number of events in each bin, simplifying the presentation and statistical
analysis.

Fig.13 shows the photon spectrum (points with error bars) from 8 and 25
GeV electrons passing through 2% and 6% Lrad carbon targets. Also shown
are 3 Monte Carlo (MC) histograms. The top histogram (dashed line) is
a simulation of BH bremsstrahlung plus conventional transition radiation;
the transition radiation is substantial below ωp � 1.4 (0.4) MeV at 25 (8)
GeV (see (2.115)). Above ωp, the spectrum is sloped because there is a
finite probability of a single electron interacting twice while passing through
the target. Because the calorimeter cannot separate single photons from
multiple hits, but instead measures total energy deposition, this depletes the
low energy end of the spectrum (shown here), while increasing the number
of calorimeter overflows. In the absence of multiple interactions, the Bethe-
Heitler spectrum would be flat at (1/Lrad)dN/d lnω = 4/3 ln (ωmax/ωmin) =
0.129 for bins with logarithmic widths ωmax/ωmin = 101/25 = 1.096. The
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Figure 13: Comparison of data from SLAC-E-146 with MC predictions for
200 keV to 500 MeV photons from 8 and 25 GeV electrons passing through 2%
and 6% Lrad carbon targets. The cross sections are given as dN/d(lnω)/Lrad

where N is the number of events per photon energy bin per incident electron,
for (a) 2% Lrad carbon and (b) 6% Lrad carbon targets in 25 GeV electron
beams, while (c) shows the 2% Lrad carbon and (d) the 6% Lrad carbon tar-
get in an 8 GeV beam. Three Monte Carlo curves are shown. The solid line
includes LPM and dielectric suppression of bremsstrahlung, plus conventional
transition radiation. Also shown are the Bethe-Heitler plus transition radi-
ation MC (dashed line) and LPM suppression only plus transition radiation
(dotted line). Adapted from [15].

bin heights directly scale with the bin fractional width ∆ω/ω.
To understand the qualitative features of data in Fig.13 it is helpful to use

analysis made in previous subsection. For photon energy ω = ωc, which is
thickness independent,(see Eq.(3.97) and Table 1) the LPM effect is well de-
veloped. The effect becomes visible for photon energy ωvis ∼ (2 ÷ 3)ωc.
At electron energy ε = 25 GeV for carbon one has ωc = 4.3 MeV and
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ωvis ∼ (9 ÷ 13) MeV, while for ε = 8 GeV one has ωvis ∼ (0.9 ÷ 1.3) MeV.
The minimum of the spectral curve is situated (see Eq.(3.102))at ω = ωm ∼√

3/Tcωp. For target thickness l = 2%Lrad one has Tc = 17.2 and for
ε = 25 GeV one has ωp = 1.5 MeV and ωm ∼ 0.4ωp ∼ 0.6 MeV while
for l = 6%Lrad the value of ωm is

√
3 times smaller: ωm ∼ 0.4 MeV. For

ε = 8 GeV one has for l = 2%Lrad: ωm ∼ 0.2 Mev (on the edge of figure)
while for l = 6%Lrad the value ωm ∼ 0.12 MeV is outside of figure. These
estimates are in a reasonable agreement with data in Fig.13.

The dotted histogram is a simulation that includes LPM suppression,
but not dielectric suppression, plus conventional transition radiation. The
solid line includes LPM and dielectric suppression, along with conventional
transition radiation. This was the ’standard’ E-146 choice for simulation.

Both suppression mechanisms are required to approach the data. How-
ever, there are still significant discrepancies between the LPM plus dielectric
MC and the data. Below 800 keV (350 keV) for 25 (8) GeV beams, the
upturn in the data may be residual background, especially synchrotron radi-
ation. The difference at higher photon energies is more complex, and will be
discussed in the following subsection.

Fig.14 shows the spectrum from 8 and 25 GeV electrons passing through
3% and 6% Lrad aluminum targets. The same three simulations are shown.
Because aluminum has twice the Z of carbon, LPM suppression is consider-
ably enhanced, with ωc (see Table 1) 9 MeV and 900 keV at 25 and 8 GeV
respectively. Because the density is similar to carbon, dielectric suppression
is similar. The agreement between the data and the standard curve is better
than with carbon.

To understand the qualitative features of data in Fig.14 it is helpful to use
analysis made in previous subsection just as it was done for carbon. The LPM
effect becomes visible for photon energy ωvis ∼ (2÷3)ωc. At electron energy
ε = 25 GeV for aluminum one has ωc = 9.2 MeV and ωvis ∼ (20 ÷ 30) MeV,
while for ε = 8 GeV one has ωvis ∼ (2÷3) MeV. The minimum of the spectral
curve is situated (see Eq.(3.102))at ω = ωm ∼ √

3/Tcωp. For target thickness
l = 3%Lrad one has Tc = 25.8 and for ε = 25 GeV one has ωp = 1.6 MeV and
ωm ∼ 0.6 MeV while for l = 6%Lrad the value of ωm is

√
2 times smaller:

ωm ∼ 0.4 MeV. For ε = 8 GeV one has for l = 3%Lrad: ωm ∼ 0.2 Mev which
is on the edge of the figure. These estimates are in a reasonable agreement
with data in Fig.14.

Fig.15 shows the spectrum from 8 and 25 GeV electrons passing through
3% and 6% Lrad iron targets, with just the ’standard’ MC. The general slope
of the data matches the simulation, but the behavior at higher ω for 25 GeV
beams is quite different.
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Figure 14: Comparison of data from SLAC-E-146 with Monte Carlo predic-
tions for 200 keV to 500 MeV photons from 8 and 25 GeV electrons passing
through 3% and 6% Lrad aluminum targets. The format and Monte Carlo
curves are the same as in Fig.12. Adapted from [15].

To understand the qualitative features of data in Fig.15 we perform an
analysis just as it was done for carbon and aluminum. At electron energy
ε = 25 GeV for iron one has ωc = 46 MeV and ωvis ∼ (90÷ 140) MeV, while
for ε = 8 GeV one has ωvis ∼ (9 ÷ 14) MeV. The minimum of the spectral
curve is situated (see Eq.(3.102))at ω = ωm ∼ √

3/Tcωp. For target thickness
l = 3%Lrad one has Tc = 25.8 and for ε = 25 GeV one has ωp = 2.7 MeV and
ωm ∼ 0.9 MeV while for l = 6%Lrad the value of ωm is

√
2 times smaller:

ωm ∼ 0.7 MeV. For ε = 8 GeV one has for l = 3%Lrad: ωm ∼ 0.3 MeV.
These estimates are in a reasonable agreement with data in Fig. 15.

Fig.16 shows the bremsstrahlung spectra in uranium targets. Uranium is
dense enough that LPM suppression is dominant, and the E-146 collaboration
compared simulations with dielectric and LPM suppression, plus conventional
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Figure 15: SLAC-E-146 measurements and Monte Carlo predictions for 8 and
25 GeV electrons passing through a 3% and 6% Lrad iron targets. The Monte
Carlo curve is based on LPM and dielectric suppression, plus conventional
transition radiation. Adapted from [15].

transition radiation (TR), or the calculations of the boundary radiation in [52]
and [53] where the effect of multiple scattering is taken into account. It should
be noted that the conclusions of these papers differ from each other. Our
results [17] (given in Sec.3.1), which are consistent generally with obtained in
[52], but more elaborated. In simulation the asymptotic formulae from [53]
were used. Because of this the curve jumps at ω = ωcr, around 800 keV (400
keV) at 25 (8) GeV. The curve which obtained using [52] also jumps at about
500 keV (below 200 keV) for the 25 (8) GeV data. Actually, to obtain the
boundary photon contribution in the whole interval of photon energies one
has to use general formulas (see Eq.(4.12) in [17] and for particular choice
of parameters Eqs.(3.10), (3.36)-(3.37)) and corresponding curves have no
jumps.
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Figure 16: SLAC E-146 measurements and Monte Carlo for 3% Lrad and 5%
Lrad uranium targets in 8 and 25 GeV electron beams. The solid line shows
the LPM and dielectric suppression, conventional transition radiation Monte
Carlo prediction. The other lines include simulations based on calculations
of transition radiation due to [53] (dashed line) and [52] (dotted line). The
flat solid line in panel (a) is a calculation based on [59]. Adapted from [15].

To understand the qualitative features of data in Fig.16 we perform an
analysis just as it was done for carbon, aluminum and iron. At electron
energy ε = 25 GeV for uranium one has ωc = 250 MeV and ωvis ∼ (500 ÷
750) MeV, while for ε = 8 GeV one has ωvis ∼ (50÷ 80) MeV. The minimum
of the spectral curve is situated (see Eq.(3.102))at ω = ωm ∼ √

3/Tcωp. For
target thickness l = 3%Lrad one has Tc = 25.8 and for ε = 25 GeV one has
ωp = 3.8 MeV and ωm ∼ 1.3 MeV while for l = 5%Lrad the value of ωm is√

5/3 times smaller: ωm ∼ 1 MeV. For ε = 8 GeV one has for l = 3%Lrad:
ωm ∼ 0.4 MeV and for l = 5%Lrad one has ωm ∼ 0.3 MeV. These estimates
are in a reasonable agreement with data in Fig.16.
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In all of these plots, the Monte Carlo curves were normalized to the data
by multiplication by a constant adjustment, chosen so the MC best matches
the data above 20 MeV (2 MeV) at 25 (8) GeV. The thresholds were chosen
to avoid thin target corrections for l < lf0, backgrounds and transition ra-
diation; for the 0.7% Lrad target discussed below, higher limits were chosen,
30 (10) MeV at 25 (8) GeV. Overall, the standard Monte Carlo curves had
to be scaled up by an average of 5% (2σ) to match the data. This discrep-
ancy would likely disappear with an input cross section where the onset of
suppression was more gradual around ω ∼ ωLP (ωLP is defined in Eq.(1.10)).

The errors shown on the plots are statistical only. The E-146 collabora-
tion has carefully studied the systematic errors on these measurements. The
point-to-point systematic errors vary slowly with ω and correspond to a 4.6%
uncertainty for ω > 5 MeV. Below 5 MeV, the systematic errors rise to 9%,
because of increased uncertainties in photon energy cluster finding as Comp-
ton scattering takes over from showering as the dominant energy loss. The
±3.5% systematic error on the normalization was determined separately.

3.10 Discussion of theory and experiment
Here we consider the experimental data (see [12]-[14],[15] and previous sub-
section) from the point of view of the above analysis. It was shown that
the mechanism of radiation depends strongly on the thickness 0f the target.
First, we estimate the thickness of used target in terms of the formation
length. From Eq.(3.98) we have that

Tc =
2πl
αLrad

≥ 20 at
l

Lrad
≥ 2 %. (3.108)

The minimal value of the ratio of the thickness of a target to the forma-
tion length is given by Eq.(3.99)(βm � 2Tc(ωp/ωc)2/3). For defined value
of Tc this ratio is least of all for the heavy elements. Indeed, the value of
ωp = ω0γ depends weakly on nucleus charge Z (ω0 = 30 ÷ 80) eV, while

ωc
4πγ2

αLrad
∝ Z2. Furthermore, the ratio ωp/ωc decreases with the energy in-

crease. Thus, among all the targets with thickness l ≥ 2 %Lrad the minimal
value of βm is attained for the heavy elements (Au, W, U) at the initial en-
ergy ε = 25 GeV. In this case one has ωc � 250 MeV, ωp � 4 MeV, βm ≥ 2.5.
Since the parameter Tc is energy independent and the ratio ωp/ωc ∝ 1/ε, the
minimal value βm ≥ 5 is attained at the initial energy ε = 8 GeV for all the
targets with thickness l ≥ 2 %Lrad. So, all such targets can be considered as
thick targets at both energies.
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As an example we calculated the spectrum of the energy losses in the
tungsten target with the thickness l = 0.088 mm (=2.7 %Lrad) for both
initial energies shown in Fig.17(a) and (b). The characteristic parameters
for this case are given in Table 2. We calculated the main (Migdal type)

Table 2. Characteristic parameters of the radiation process in tungsten with
the thickness l = 2.7%Lrad.

ε (GeV) ωc (MeV) ωp (MeV) Tc ω1 (MeV ) βm ωm (MeV )
25 230 3.9 21.3 1.6 2.7 2
8 23 1.3 21.3 0.76 5.7 0.5

term Eq.(2.17), the first correction term Eq.(2.22) taking into account an
influence of the polarization of a medium according to Eq.(2.123), as well
as the Coulomb corrections entering into parameter ν0 Eq.(2.24) and value
L(�c) Eq.(2.12). The contribution of an inelastic scattering of a projectile on
atomic electrons was not included into the numerical calculation (it is ∼ 1%),
although it can be done using Eq.(2.34). We calculated also the contribution
of boundary photons (see Eq.(4.12) in [17]). Here in the soft part of the
spectrum ω < ωd (ωd � 2 MeV for ε = 25 GeV) the transition radiation
term Eq.(3.11) dominates, while in the harder part of the boundary photon
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Figure 17: The energy losses
dε

dω
in tungsten with thickness l = 0.088 mm

in units
2α
π

, ((a) is for the initial electrons energy ε = 25 GeV and (b) is
for ε = 8 GeV). The Coulomb corrections and the polarization of a medium
are included: curve 1 is the contribution of the main term describing LPM
effect; curve 2 is the correction term; curve 3 is the sum of the previous
contributions; curve 4 is the contribution of the boundary photons; curve 5 is
the sum of the previous contributions; curve T is the final theory prediction
with regard for the reduction factor (the multiphoton effects). Experimental
data from Fig.9 of [14].

spectrum ω > ωd the terms depending on both the multiple scattering and
the polarization of a medium give the contribution; for ε = 8 GeV one has
ωd � 700 keV. All the mentioned contribution presented separately in Fig.17.
Under conditions of the experiment the multiphoton reduction of the spectral
curve is very essential. The curve "T" in the Fig.17 involves the reduction
factor which was constructed as the interpolation of Eqs.(3.55), (3.57) and
(3.63) with the accuracy up to 1%. The curves "T" in Fig.17 (a) and (b) are
the final theory prediction in units 2α/π.

Experimental data are taken from [14] and recalculated according with
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given in mentioned paper procedure:(
dε

dω

)
exp

=
1

Lrad

Nexp

k
(3.109)

In the recent review [15] (see also the previous subsection) it is definitely
indicated that k = 0.096 according with it definition: photon energies were
histogrammed logarithmically, using 25 bins per decade of energy. In more
earlier paper [14] the value k = 0.09 was given and we used it in our paper
[17] and [18]. The date recalculated with k = 0.096 are also given in Fig.17.
It is seen that there is a perfect agreement of the curves T with data for both
energies.

The gold targets with thickness l = 0.7% Lrad and l = 0.1% Lrad are an
exception and cannot’t be considered as thick targets. We calculated energy
losses spectra in these targets for both the initial electron energies ε = 25 GeV
and ε = 8 GeV. The characteristic parameters of radiation for these cases are
given in Table 3.

In Fig.18(a) results of calculations are given for target with a thick-
ness l = 0.7%Lrad at ε = 25 GeV. The curves 1,2,3,4 present correspond-
ingly the functions J (2)

1 , J
(2)
2 , J

(2)
3 , J

(2)
4 (3.29). At ω = 500 MeV the value

ν1T =
√

ω

ωc
Tc = 8.4 � 1, the interference terms are exponentially small

a
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b

Figure 18: The energy losses ω
dW

dω
in gold with thickness l = 0.023 mm in

units
2α
π

, ((a) is for the initial electrons energy ε = 25 GeV and (b) is for
ε = 8 GeV). The Coulomb corrections and the polarization of a medium are
included: curve 1 is the contribution of the term Re J (2)

1 = Re J (2)
3 ; curve 2 is

the contribution of the term Re J (2)
2 ; curve 4 is the contribution of the term

Re J (2)
4 , all (3.29); curve S is the sum of the previous contributions Re J (2);

curve 5 is the contribution of the boundary photons, see Eq.(2.20), [18]; curve
T is the total prediction for the radiation energy losses. Experimental data
from Fig.12 of [14].

Table 3. Characteristic parameters of the radiation process in gold with the
thickness l = 0.7% Lrad and l = 0.1% Lrad (all photon energies ω are in
MeV).

ε (GeV) ωc ωp Tc(0.7) Tc(0.1) ω1(0.7) βm(0.7) βm(0.1) ωth

25 240 3.9 5.82 0.96 1.6 0.75 0.12 28
8 25 1.3 5.82 0.96 0.76 1.6 0.25 3.0
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and one can use formulae for a thick target. In this case the parameter
ν1 = 0.69 and contribution of boundary photons (Jb = J

(2)
1 + J

(2)
3 + J

(2)
4 )

is small (Jb � −2ν4
1

21
, see [9], Eq.(4.16)) and distinction Bethe-Maximon for-

mula (JBM = Tc/3 = 1.94) from Re J (2) = Re (J (2)
1 + J

(2)
2 + J

(2)
3 + J

(2)
4 )

is of the order 10% according with asymptotic damping factor
(

1 − 16ν4
1

21

)
.

At ω < ωth � 30 MeV for the case Tc � 1 and βm < 1 the spectral curve
turns into plateau according with discussion in previous subsection. In this
photon energy region the parameter ν0 > 3 and Eq.(3.36) for a target with
intermediate thickness describes the spectral probability of radiation with a
good accuracy. With the further photon energy decrease one can use limiting
formula (3.38) where ν2

0T = 4k � 7.4. For this case the ratio of ordinate of
the plateau to ordinate of the Bethe-Maximon intensity (see Eq.(3.107)) is
R � 0.57. Note, that in formulae for J (2)

1 ÷J (2)
4 the potential Vc(�) Eq.(2.12)

is used which doesn’t include corrections ∼ 1/L (v(�)). These corrections
were given above for both thin and thick targets (see Eq.(2.33)). In our case
(ν0 � 1, ν0T � 1) the expressions with corrections ∼ 1/L are given in
Eqs.(2.33) and (3.41) for a thick target and a thin target respectively. Tak-
ing into account behaviors of correction in the region ν0 ≤ 1 (see curve 2 in
Fig.17(a)) we construct an interpolation factor (taking into account the term
∼ 1/L) with accuracy of order 1%. The summary curve (T ) in Fig.18(a)
contains this factor.

The transition radiation contributes in the region ω ≤ ωp (function
Re J (2)

5 , curve 5 in Fig.18(a)). When κT � 1 this curve is described by
asymptotic of Re J

(2)
5 Eq.(3.36). The contribution of the transition radi-

ation increases with ω decrease and for κT ∼ 1 it describes by Eq.(3.44).
The contribution of the multiple scattering diminishes due to interference
factor cos(κT ) in Eq.(3.46) (at ω = 0.2 MeV, κT = 1.9). The curve T
in Fig.18(a) gives the summary contribution of the multiple scattering (the
curve S, where factor (1−ω/ε) is included) and the transition radiation (the
curve 5).

In Fig.18(b) results of calculations are given for target with a thickness
l = 0.7%Lrad at ε = 8 GeV. The notations are the same as in Fig.18(a). In
this case the characteristic photon energy ωc is one order of magnitude lower
than for ε = 25 GeV, so that at ω = 500 MeV the parameter ν1 is small
(ν2

1 � 1/20). Because of this the right part of the curve S coincides with a
good accuracy with the Bethe-Maximon formula (the Coulomb corrections
are included). Note, that for this electron energy the effect of recoil (factor
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(1 − ω/ε)) is more essential. Strictly speaking, a target with a thickness
0.7%Lrad at ε = 8 GeV is not thin target for any photon energy (βm = 1.6).
However, for bremsstrahlung this target can be considered as a thin one for
ω < ωth = 3 MeV. Since the polarization of a medium becomes essential in
the same region (ωp = 1.25 MeV), the interference factor cos(κT ) in Eq.(3.46)
causes an inflection of the spectral curve S at ω ∼ 1 MeV. The transition
radiation grows from the same photon energy ω and because of this the total
spectral curve T has a minimum at ω � 1 MeV. As far as there is some interval
of energies between ωp and ωth (ωth −ωp ∼ 3 MeV), this minimum is enough
wide. Moreover, the value of its ordinate coincide with a good accuracy
with ordinate of the plateau of the spectral curve S in Fig.18(a) because
bremsstrahlung on a thin target is independent of electron energy (3.41).It
should be mentioned also that for this thickness the reduction factor due to
multiple photon emission (see Eq.(3.57)) fLPM � 0.94 (so this is the effect
of the same scale) but this reduction is compensated nearly exactly because
of more precise definition of data (change of a bin width ∆k/k = 0.09 in [12]
(used in [24]) to a bin width ∆k/k = 0.096 in [14], [15], see discussion in
Sec.3 of [19]).

In Fig.19(a) results of calculations are given for target with a thickness
0.1% Lrad at ε = 25 GeV. The notations are the same as in Fig.18(a). For
this thickness Tc = 0.96 and one has a thin target starting from ω ≤ ωc.
So, we have here very wide plateau. The left edge of the plateau is defined
by the contribution of transition radiation (ω ∼ ωp). Since in this case
4k = ν2

1T = Tc � 1 (see Eqs.(3.40)-(3.43)), one has to calculate the ordinate
of the plateau using the exact formula for a thin target (3.40). For this
case the ratio of ordinate of the plateau to ordinate of the Bethe-Maximon
intensity (see Eq.(3.107)) is R � 0.85. The same ordinate has the plateau for
electron energy ε = 8 GeV (Fig.18(b)). However, a width of the plateau for
this electron energy is more narrow (1 MeV÷20 MeV) due to diminishing of
the interval between ωp and ωc. For ω > ωc the formation length of radiation
becomes shorter than target thickness (T = Tcω/ωc > 1) and the parameter
ν1 decreases. The value ν1T = Tc

√
ω/ωc increases with ω growth. A target

becomes thick and the spectral curves is described by the Bethe-Maximon
formula in Fig.19(b) starting from photon energy ω ∼ 100 MeV. In Fig.19(b)
the contributions of separate terms into Re J (2) are shown as well. Their
behavior at ω > ωc is described quite satisfactory by Eqs. (3.33)-(3.35) (see
also discussion at their derivation).

We compared our calculations with experimental data [14]. The curves T
in Figs.18,19 give theory prediction (no fitting parameters !) in units 2α/π. It
should be mentioned that in our papers [17] and [18] we put k=0.09 according
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with the instruction given in paper [14]. But the multiphoton effects were
not included. However, as was stated above one has to use k=0.096. So, from
the one side for the gold target with the thickness l = 0.7%Lrad and energy
ε = 25 GeV the reduction factor f � 0.94 for photons with energy ω < 10
MeV (plateau region). From the other side, use of the coefficient k = 0.096
in (3.109) instead of k = 0.09 lowers data upon ∼ 6% and this is imitate
inclusion of the reduction factor. As a result, the excellent agreement of the
theory and data noted in [18] is not broken. It is seen that in Fig.18(a) there
is a perfect agreement of the theory and data. In Fig.18(b) there a overall
difference: data is order of 10% are higher than theory curve. For photon
energy ω = 500 MeV the theory coincide with Bethe-Maximon formula (with
the Coulomb corrections) applicable for this energy. Note that just for this
case it was similar problem with normalization of data matching with the
Migdal Monte Carlo simulation (+12.2%, see Table II in [14]).

For thickness l = 0.1% Lrad there is a qualitative difference between our
theory prediction and Monte Carlo simulation in [14]. There was a number
of experimental uncertainties associated with this target. Nevertheless, we
show data for ε = 25 GeV which are lying higher than theory curve.

a
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b

Figure 19: The energy losses ω
dW

dω
in gold with thickness l = 0.0038 mm in

units
2α
π

, ((a) is for the initial electrons energy ε = 25 GeV and (b) is for
ε = 8 GeV). The Coulomb corrections and the polarization of a medium are
included: curve 1 is the contribution of the term Re J (2)

1 = Re J (2)
3 ; curve

2 is the contribution of the term Re J (2)
2 ; curve 4 is the contribution of the

term Re J (2)
4 , all (3.29); curve 5 is the contribution of the boundary photons

see Eq.(2.20), [18]; curve T is the total prediction for the radiation energy
losses. Experimental data from Fig.13 of [14].

4 Effects in colliding electron-positron beams

4.1 Mechanisms of radiation
In this section we consider the radiation at head-on collision of high energy
electron and positron beams. The properties of photon emission process from
a particle are immediately connected with details of its motion. It is conve-
nient to consider the motion and radiation from particles of one beam in the
rest frame of other beam (the target beam). In this case the target beam is
an ensemble of the Coulomb centers. The radiation takes place at scattering
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of a particle from these centers. If the target consists of neutral particles
forming an amorphous medium, a velocity of particle changes (in a random
way) only at small impact distances because of screening. In the radiation
theory just the random collisions are the mechanism which leads to the inco-
herent radiation. For colliding beams significant contributions into radiation
give the large impact parameters (very small momentum transfers) due to
the long-range character of the Coulomb forces. As a result, in the interac-
tion volume, which is determined also by the formation length lf Eqs.(1.5),
(1.6) (in the longitudinal direction), it may be large number of target parti-
cles. Let us note that in the case when the contribution into the radiation
is given by impact parameters comparable with the transverse size of target,
the number of particles in the interaction volume is determined by the ratio
of the radiation formation length to the mean longitudinal distance between
particles.

However, not all cases of momentum transfer should be interpreted as a
result of random collisions. One have to exclude the collisions, which are
macroscopic certain events. For elaboration of such exclusion we present
the exact microscopic momentum transfer to the target particle in the form:
q =< q > +qs. Here < q > is the mean value of momentum transfer
calculated according to standard macroscopic electrodynamics rules with av-
eraging over domains containing many particles. The longitudinal size of
these domains should be large with respect to longitudinal distances between
target particles and simultaneously small with respect to the radiation forma-
tion length. The motion of particle in the averaged potential of target beam,
which corresponds to the momentum transfer < q >, determines the coherent
radiation (the beamstrahlung). While the term qs describes the random col-
lisions which define the process of incoherent radiation (the bremsstrahlung).
Such random collisions we will call “scattering” since < qs >= 0.

One of principal characteristics of particle motion defining the properties
of coherent radiation is the ratio of variation of its transverse momentum to
the mass during the whole time of passage across the opposite beam T

∆p⊥
m

∼ eE⊥σz

m
∼ 2αNcλc

σx + σy
≡ δ, (4.1)

where Nc is the number of particles in the opposite beam, σx and σy is its
transverse dimensions (σy ≤ σx), σz is the longitudinal size of opposite beam.
The dispersion of particle momentum during time T is small comparing with
m. It attains the maximum for the coaxial beams:〈

q2
s

〉
m2

= γ2
〈
ϑ2

s

〉 ∼ 8α2Ncλ
2
c

σxσy
L� 1, (4.2)
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here ϑ2
s is the square of mean angle of multiple scattering, L is the character-

istic logarithm of scattering problem (L ∼ 10). This inequality permits one
to use the perturbation theory for consideration of bremsstrahlung, and to
analyze the beamstrahlung independently from the bremsstrahlung1.

Another important characteristics of motion is the relative variation of
particle impact parameter during time T

∆�i

�i
∼ eE⊥σ2

z

εσi
∼ 2αNcλcσz

γ(σx + σy)σi
≡ Di, (4.3)

here i is x or y. When the disruption parameter Di � 1, the collision
doesn’t change the beam configuration and the particle crosses the opposite
beam on the fixed impact parameter. If in addition the parameter δ � 1
(this situation is realized in colliders with relatively low energies) then the
beamstrahlung process can be calculated using the dipole approximation.
The main contribution into the beamstrahlung give soft photons with an
energy

ω

ε
≤ γλc

σz
� 1. (4.4)

In the opposite case δ � 1 the main part of beamstrahlung is formed
when the angle of deflection of particle velocity is of the order of characteristic
radiation angle 1/γ and the radiation formation length lm is defined by

eE⊥lm
m

∼ 2αNcλclm
(σx + σy)σz

= 1, lm =
σz

δ
; (4.5)

and the characteristic photon energy is

ω ∼ ωm =
γ2

lm
= εχm, χm ≡ 2αNcγ

λ2
c

(σx + σy)σz
(χm � 1). (4.6)

Here χ is the invariant parameter Eq.(1.21) which defines properties of mag-
netic bremsstrahlung in the constant field approximation (CFA). For appli-
cability of CFA it is necessary that relative variation of E⊥ was small on the
radiation formation length lm. As far lm is shorter than σz in δ � 1 times
the characteristic parameter becomes

Dmi = Di
lm
σz

=
Di

δ
=

σz

γσi
, (i = x, y) (4.7)

1Actually more soft condition should be fulfilled:〈
q2

s(lf )
〉

/m2 =
〈
q2

s

〉
/m2 lf /σz � 1
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to that extent. The condition Dmi � 1 is fulfilled in all known cases. The
mean number of photons emitted by a particle during the whole time of
passage across the opposite beam T isNγ ∼ αδ, it include the electromagnetic
interaction constant. Using the estimate (4.6) we get an estimate of relative
energy loss

∆ε
ε

∼ αδχm (χm � 1). (4.8)

In the case χm � 1 (this condition is satisfied in all existing facilities and
proposed collider projects) the soft photons with energy ω ∼ ωm = εχm � ε
are mainly emitted. For ω � ωm the emission probability is exponentially
suppressed. So, such photons are emitted in the bremsstrahlung process only.
The boundary photon energy ωb, starting from which the bremsstrahlung pro-
cess dominates, depends on particular parameters of facility. If χm ∼ 1/10
the energy is ωb ∼ ε. The formation length for ω � ωm is much shorter
than lm. On this length the particle deflection angle is small comparing with
1/γ and one can neglect the variation of transverse beam dimensions (see
Eq.(4.7)). This means that all calculations of bremsstrahlung characteristics
can be carried out in adiabatic approximation using local beam characteris-
tics σx,y(t),v(t) etc, with subsequent averaging of radiation characteristics
over time. Note that actually we performed a covariant analysis and the
characteristic parameters are defined in a laboratory frame.

As an example we consider the situation when the configuration of beams
doesn’t change during the beam collision (the disruption parameter D � 1),
and the total particle deflection angle during intersection of whole beam
is small comparing with the characteristic radiation angle 1/γ (the dipole
case). The target beam in its rest frame is the ensemble of classical potentials
centers with coordinates ra (xa, za) and the transverse coordinate of emitting
particle is r⊥. In the perturbation theory the total matrix element of the
radiation process can be written as

M(r⊥) =
Nc∑
a=1

m(r⊥ − xa) exp(iq‖za) (4.9)

We represent the combination MiM
∗
j in the form

MiM
∗
j =

∑
a=b

mi(r⊥ − xa)mj(r⊥ − xb)

+
∑
a�=b

mi(r⊥ − xa)mj(r⊥ − xb) exp(−iq‖ (za − zb)) . (4.10)
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In the expression Eq.(4.10) we have to carry out averaging over position of
scattering centers. We will proceed under assumption that there are many
scattering centers within the radiation formation length lf = 1/q‖

Nf = nzlf � 1, (4.11)

where for the Gaussian distribution

nz =
Nc√
2πσz

exp
(
− z2

2σ2
z

)
, (4.12)

here Nc and σz are introduced in Eq.(4.1). Note that in the situation un-
der consideration �max = |r⊥ − xa|max ≥ σt, where σt is the characteristic
transverse size of target beam. Let us select terms with approximately fixed
phase q‖(za − zb) = φab in the sum with a = b in Eq.(4.10). If the condi-
tion (4.11) is fulfilled, there are many terms for which the phase variation
is small (∆φab � 1). For this reason one can average over the transverse
coordinates (xa,xb) of target particles in Eq.(4.10) without touching upon
the longitudinal coordinates (za, zb)

MiM
∗
j = Nc 〈mimj〉⊥ + 〈mi〉⊥ 〈mj〉⊥

∑
a�=b

exp(−iq‖ (za − zb)) (4.13)

= Nc

(
〈mimj〉⊥ − 〈mi〉⊥ 〈mj〉⊥

)
+ 〈mi〉⊥ 〈mj〉⊥

∣∣∣∣∣
∑

a

exp(iq‖za)

∣∣∣∣∣
2

,

where

〈mi〉⊥ =
∫
mi(r⊥ − x)wc(x)d2x,

〈mimj〉⊥ =
∫
mi(r⊥ − x)mj(r⊥ − x)wc(x)d2x, (4.14)

here wc(x) is the probability density of target particle distribution over the
transverse coordinates normalized to unity. In Eq.(4.13) in the sum with a =
b we add and subtract the terms with a = b. We assume that the dispersion
of number of scattering centers over the formation length lf (∆N)2f � Nf

(see Eq.(4.11)). Then on the adopted assumption the first term (proportional
to Nc) on the right-hand side of Eq.(4.13) is the incoherent contribution to
radiation (the bremsstrahlung). The second term gives the coherent part of
radiation. For Gaussian distribution Eq.(4.12) performing averaging over the
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longitudinal coordinate za one has∣∣∣∣∣
∑

a

exp(iq‖za)

∣∣∣∣∣
2

→
∣∣∣∣
∫ ∞

−∞
nz exp(iq‖z)dz

∣∣∣∣
2

= N2
c exp(−q2‖σ2

z). (4.15)

4.2 The beam-size effect in bremsstrahlung
It was pointed in Sec.1.3 that the external factors act differently on the
radiating particle and on the recoil particle. This leads to a specific effect
in the bremsstrahlung process at electron-electron(positron) collision. The
point is that in the rest frame of recoil particle the formation length is longer
by ε/m times than in the laboratory frame. Just this length determines the
maximal impact parameters at scattering (e.g. the screening radius). The
are a few factors which could act on the recoil electron. One of them is the
presence of an external magnetic field in the region of particle collision [27]
(see Sec.1.3). Another effect can appear due to smallness of the linear interval
l where the collision occurs in comparison with lv Eq.(1.6). This was pointed
in [46].

The special experimental study of bremsstrahlung was performed at
the electron-positron colliding beam facility VEPP-4 of Institute of Nu-
clear Physics, Novosibirsk [72]. The deviation of the bremsstrahlung spec-
trum from the standard QED spectrum was observed at the electron energy
ε = 1.84 GeV. The effect was attributed to the smallness of the transverse size
of the colliding beams. In theory the problem was investigated in [73], where
the bremsstrahlung spectrum at the collision of electron-electron(positron)
beams with the small transverse size was calculated to within the power
accuracy (the neglected terms are of the order 1/γ = m/ε). After the prob-
lem was analyzed in [74], and later on in [75] where some of results for the
bremsstrahlung found in [73] were reproduced. It should be noted that in
[73] (as well as in all other papers mentioned above) an incomplete expres-
sion for the bremsstrahlung spectrum was calculated. One has to perform
the subtraction associated with the extraction of pure fluctuation process as
it was shown above. An analogous problem encountered in the analysis of
incoherent processes in the oriented crystals [83],[82] where the necessity of
the subtraction procedure was indicated. Without the subtraction the re-
sults for the incoherent processes in oriented crystals would be qualitatively
erroneous.

The correction to photon emission probability due to the small transverse
dimensions of colliding beam for unpolarized electrons and photon was calcu-
lated in [76] basing on subtraction procedure as in Eq.(4.13). It is obtained
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after integration over the azimuth angle of the emitted photon

dw1 =
α3

πm2

ε′

ε

dω

ω
U(ζ)F (ω, ζ)dζ, ζ = 1 + γ2ϑ2, (4.16)

where ϑ is the photon emission angle, ε′ = ε− ω,

U(ζ) = v − 4(ζ − 1)
ζ2

, v =
ε

ε′
+
ε′

ε
, F (ω, ζ) = F (1)(ω, ζ) − F (2)(ω, ζ),

F (1)(ω, ζ) =
η2

ζ2

∫ [
K0(η�)K2(η�) −K2

1 (η�)
]
�
dΦ(�)
d�

d2� ,

F (2)(ω, ζ) =
2η2

ζ2

∫ (∫
K1(η�)

�

�
wc(x − �)d2�

)2

wr(x)d2x, (4.17)

here

η = qminζ, qmin = m3ω/4ε2ε′, Φ(�) =
∫
wr(x + �)wc(x)d2x, (4.18)

where wc(x) is defined in (4.14), wr(x) is the same but for the radiating
beam, value qmin is defined in c.m.frame of colliding particles. The term
F (2)(ω, ζ) is the subtraction term. The total probability is dwγ = dw0 +dw1,
where dw0 is standard QED probability. The analysis in [76] was based on
Eqs.(4.16)-(4.17).

We considered in [76] the actual case of the Gaussian beams. The Fourier
transform was used

w(x) =
1

(2π)2

∫
d2q exp(−iqx)w(q);

wr(q) = exp
[
−1

2
(q2x∆2

x + q2y∆2
y)
]
, wc(q) = exp

[
−1

2
(q2xσ

2
x + q2yσ

2
y)
]
,(4.19)

where as above the index r relates to the radiating beam and the index c
relates to the target beam, ∆y and ∆x (σy and σx) are the vertical and
horizontal transverse dimensions of radiating (target) beam. Substituting
Eq.(4.19) into Eq.(4.18) we find

Φ(�) =
ΣxΣy

π
exp[−�2

xΣ2
x − �2

yΣ2
y]; Σ2

x =
1

2(σ2
x + ∆2

x)
, Σ2

y =
1

2(σ2
y + ∆2

y)
.

(4.20)
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Using the relation dσ1 = Φ−1(0)dw1 the following expression for the correc-
tion to spectrum was found in [76] starting from Eq.(4.16)

dσ
(1)
1 =

2α3

m2

ε′

ε

dω

ω
f (1)(ω), f(s) =

√
π

2s
(v − 8s2)erfc(s) + 4e−s2

+ 2Ei(−s2),

f (1)(ω) = − 1
πΣxΣy

∫ 2π

0

dϕ

Σ−2
x cos2 ϕ+ Σ−2

y sin2 ϕ

∫ ∞

0

F2(z)f(s)sds, (4.21)

z2 =
s2q−2

min

Σ−2
x cos2 ϕ+ Σ−2

y sin2 ϕ
, F2(x) =

2x2 + 1
x
√

1 + x2
ln(x+

√
1 + x2) − 1,

where Ei(x) is the exponential integral function and erfc(x) is the error func-
tion. This formula is quite convenient for the numerical calculations.

The subtraction term (F (2)(ω, ζ) in Eq.(4.17)) gives for coaxial beams

dσ
(2)
1 = −2α3

m2

ε′

ε

dω

ω
J (2)(ω), (4.22)

where

J (2)(ω) =

√
ab

ΣxΣy

∫ ∞

0

ds1

∫ ∞

0

ds2g

(
qmin

√
s

2

)
G(s1, s2),

G(s1, s2) =
1
2

(
a1a2b1b2
AB

)1/2 [
a1a2

A
+
b1b2
B

]
(4.23)

Here the function g(q) is:

g(q) =
(
v − 2

3

)
e−q2 − 2q2

[√
π

2q

(
v − 8

3
q2
)

erfc(q) +
4
3
e−q2

+ Ei(−q2)
]
.

(4.24)
In Eq.(4.23) we introduced the following notations

a =
1

2∆2
x

, b =
1

2∆2
y

, a1,2 =
1

s1,2 + 2σ2
x

, b1,2 =
1

s1,2 + 2σ2
y

,

A = a1 + a2 + a, B = b1 + b2 + b, s = s1 + s2. (4.25)

In the case of narrow beams one has qmin/(Σx + Σy) � 1. In this case of
coaxial beams dσγ = dσ0 + dσ1 is

dσγ =
2α3

m2

ε′

ε

dω

ω

{(
v − 2

3

)[
2 ln

m

Σx + Σy
+ C + 2 − J−

]
+

2
9

}
, (4.26)
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where

J− =

√
ab

ΣxΣy

∫ ∞

0

ds1

∫ ∞

0

ds2G(s1, s2) (4.27)

The dimensions of beams in the experiment [72] were σy = ∆y =
24 µm, σx = ∆x = 450 µm, so this is the case of flat beams. The estimate for
this case gives J− � (4/3

√
3)πσy/σx � 1. This term is much smaller than

other terms in Eq.(4.26). This means that for this case the correction to the
spectrum calculated in [73] is very small.

Figure 20: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr20
versus the photon energy in units of initial electron energy (x = ω/ε) for
VEPP-4 experiment. The upper curve is the standard QED spectrum, the
three close curves below are calculated for the different vertical dimensions
of colliding beams (equal for two colliding beams σ = σz = ∆z):σ = 20 µm
(bottom), σ = 24 µm (middle), σ = 27 µm (top). The data measured in
[72] are presented as circles (the experiment in 1980) and as triangles (the
experiment in 1981) with 6% systematic error as obtained in [72].

The result of calculation and VEPP-4 (INP, Novosibirsk) data are pre-
sented in Fig.20 where the bremsstrahlung intensity spectrum ωdσ/dω is
given in units 2αr20 versus the photon energy in units of initial electron energy
(x = ω/ε)[76]. The upper curve is the standard QED spectrum, the three
close curves below are calculated using Eqs.(4.21) and (4.22) for the differ-
ent vertical dimensions of colliding beams (equal for both colliding beams
σ = σz = ∆z):σ = 20 µm (bottom), σ = 24 µm (middle), σ = 27 µm (top)
(this is just the 1-sigma dispersion for the beams used in the experiment).
All the theoretical curves are calculated to within the relativistic accuracy
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(the discarded terms are of the order m/ε). It is seen that the effect of
the small transverse dimensions is very essential in soft part of spectrum (at
ω/ε = 10−4 the spectral curve diminishes in 25%), while for ω/ε > 10−1 the
effect becomes negligible. The data measured in [72] are presented as circles
(experiment in 1980) and as triangles (experiment in 1981) with 6 % system-
atic error as obtained in [72] (while the statistical errors are negligible). This
presentation is somewhat different from [72]. It is seen that the data points
are situated systematically below the theory curves but the difference is not
exceed the 2-sigma level [72]. It should be noted that this is true also in the
hard part of spectrum where the beam-size effect is very small.

One more measurement of beam-size effect was performed at the HERA
electron-proton collider (DESY, Germany) [77]. The electron beam energy
was ε=27.5 GeV, the proton beam energy was εp=820 GeV. The parameters
of beam in this experiment were (in our notation): σy = ∆y = (50 ÷ 58)µm,
σx = ∆x = (250 ÷ 290)µm. Since the ratio of the vertical and the hor-
izontal dimensions is not very small, the contribution of subtraction term
(Eq.(4.22)) is essential (more than 10%). The bremsstrahlung intensity spec-
trum ωdσ/dω in units 2αr20 versus the photon energy in the units of initial
electron energy (x = ω/ε) for the HERA experiment is given in Fig.21. For
details of comparison of experimental data [72], [77] with theory see [76],
where we discussed also possible use of beam-size effect for linear collider
tuning. It should be noted that for linear collider the condition of strong
beam-size effect σyqmin � 1 (σy � σx) is fulfilled for the whole spectrum.
This can be seen in Fig.22, where the lower curve is calculated using Eq.(4.21)
and the subtraction term is very small since σy/σx < 0.01. As far as the
narrow beams are considered in Fig.22, the lower curve is consistent also
with Eq.(4.26). This curve depends on the energy and the transverse sizes of
beams. It will be instructive to remind that the analysis in [76] (see Eq.(2.8))
and here is valid if χm/u � 1 (see Eq.(4.6), u = ω/ε′). The parameter χm

depends also on number of particles Nc and the longitudinal beam size. So,
for low Nc Fig.22 is valid for any x, but for TESLA project (χm=0.13) it
holds in hard part of spectrum only. In fact, the probability of incoherent
radiation becomes larger than the probability of coherent radiation only at
x > 0.7 where the lower curve in Fig.22 is certainly applicable.

4.3 The coherent radiation
The particle interaction at beam-beam collision in linear colliders occurs in an
electromagnetic field provided by the beams. As a result, 1) the phenomena
induced by this field turns out to be very essential, 2) the cross section of
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Figure 21: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr20
versus the photon energy in units of initial electron energy (x = ω/ε) for
the HERA experiment. The upper curve is the standard QED spectrum, the
two close curves below are calculated with the beam-size effect taken into
account: the bottom curve is for σz = ∆z = 50 µm, σy = ∆y = 250 µm;
while the top curve is for σz = ∆z = 54 µm, σy = ∆y = 250 µm. The data
taken from Fig.5c in [77].

the main QED processes are modified comparing to the case of free particles.
These items were considered by V.M.Strahkhovenko and authors [78].

The magnetic bremsstrahlung mechanism dominates and its characteris-
tics are determined by the value of the quantum parameter χ(t) Eq.(1.21)
dependent on the strength of the incoming beam field at the moment t (the
constant field limit(CFA)).
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Figure 22: The bremsstrahlung intensity spectrum ωdσ/dω in units 2αr20
versus the photon energy in units of initial electron energy (x = ω/ε) for linear
collider with beam energy ε = 250 GeV. The upper curve is the standard QED
spectrum. The curve below is calculated with the beam-size effect taken into
account for σx = 553 nm, σy = 5 nm.

In the CFA the spectral probability of radiation from an electron per unit
time has the form [8], Eq.(10.25) (see also Eq.(4.24) in [10] or Eq.(90.23) in
[11] )

dwγ

dt
≡ dWγ(t) =

α

2
√

3πγ2

∫ ∞

−∞
Φγ(t)dtdω,

Φγ(t) =
(
ε

ε′
+
ε′

ε

)
K2/3(z) −

∫ ∞

z

K1/3(y)dy, (4.28)
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where Kν(z) is the Macdonald functions, z = 2u/3χ(t), u = ω/ε′. The
corresponding probability for polarized electrons and photons is given in [84].

For the Gaussian beams

χ(t) = χ0(x, y) exp(−2t2/σ2
z), (4.29)

here the function χ0(x, y) depends on transverse coordinates.
It turns out that for the Gaussian beams the integration of the spectral

probability over time can be carried out in a general form:

dwγ

du
=
αmσz

πγ
√

6
1

(1 + u)2

[(
1 + u+

1
1 + u

)

×
∫ ∞

1

K2/3 (ay)
dy

y
√

ln y
− 2a

∫ ∞

1

K1/3 (ay)
√

ln y dy

]
, (4.30)

where a = 2u/3χ0. In the case when a � 1 the main contribution into the
integral (4.30) gives the region y = 1 + ξ, ξ � 1. Taking the integrals over ξ
we obtain

dwCF
γ

du
�

√
3αmσz

4γ
1 + u+ u2

u(1 + u)3
χ0 exp

(
− 2u

3χ0

)
(4.31)

For round beams the integration over transverse coordinates is performed
with the density

n⊥(�) =
1

2πσ2
⊥

exp
(
− �2

2σ2
⊥

)
(4.32)

The parameter χ0(�) we present in the form

χ0(�) = χrd
f(x)
f0

, x =
�

σ⊥
, f(x) =

1
x

(
1 − exp(−x2/2)

)
,

χrd = 0.720αNcγ
λ2

c

σzσ⊥
, f ′(x0) = 0, f0 = f(x0) = 0.451256,(4.33)

where Nc is the number of electron in the bunch.
The Laplace integration of Eq.(4.31) gives for radiation intensity dI/du =

εu/(1 + u)dW/du

dIas

du
� αm2σz

3
4

√
π

|f ′′
0 |

1 + u+ u2

√
u(1 + u)4

f
3/2
0 χ

3/2
rd exp

(
− 2u

3χrd

)
, (4.34)

where f ′′
0 = f ′′(x0) = −0.271678.
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Integration of Eq.(4.30) over transverse coordinates gives the final result
for the radiation intensity. For the round beams it is shown in Fig.23 for
χrd = 0.13, the curve attains the maximum at u � 0.02. The right slope of
the curve agrees with the asymptotic intensity (4.34) and the left slope of the
curve agrees with the standard classical intensity.

dIcl

du
=
e2m2

π
31/6Γ(2/3)χ2/3

rd u
1/3 (4.35)

Figure 23: Spectral intensity of radiation of round beams in units αm2σz for
χrd = 0.13 calculated according to Eqs.(4.30),(4.33).

It will be instructive to compare the spectrum in Fig.23, found by means
of integration over the transverse coordinates with intensity spectrum which
follows from Eq.(4.30) (multiplied by ω) with averaged over the density
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Eq.(4.32) value χ0 Eq.(4.33): χ0 = χrd · 0.8135. The last spectrum re-
produces the spectrum given in Fig.23, in the interval 10−3 ≤ u/χ0 < 1
with an accuracy better than 2% (near maximum better than 1%) while for
u/χ0 ≤ 10−3 one can use the classic intensity (4.35) and for u/χ0 � 1 the
asymptotics (4.34) is applicable.

For the flat beams (σx � σy) the parameter χ0(�) takes the form

χ0 =
2γE⊥
H0

= χme
−v2

[eyerf (w) − iexerf (iv)] , χm =
2Ncαγλ

2
c

σzσx
, (4.36)

here v = x/
√

2σx, w = y/
√

2σy , erf(z) = 2/
√
π
∫ z

0 exp(−t2)dt, ex and ey

are the unit vectors along the corresponding axes. The formula (4.36) is
consistent with given in [79]. In [78] the term with ex was missed. Because
of this the numerical coefficients in results for the flat beams are erroneous.

To calculate the asymptotics of radiation intensity for the case u � χm

one has to substitute

χ0 = |χ0| = χme
−v2 [

erf2 (w) − erf2 (iv)
]1/2

(4.37)

into Eq.(4.31) and take integrals over transverse coordinates x, y with the
weight

n⊥(x, y) =
1

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
. (4.38)

Integral over x can be taken using the Laplace method, while for integration
over y it is convenient to introduce the variable

η =
2√
π

∫ ∞

w

exp(−t2)dt, w =
y√
2σy

. (4.39)

As a result we obtain for the radiation intensity in the case of flat beams

dIfl

du
=

9
8
√

2 (1 − 2/π)
αm2σzχ

5/2
m

1 + u+ u2

u3/2(1 + u)4
exp

(
− 2u

3χm

)
. (4.40)

It is interesting to compare the high-energy end of intensity spectrum at
collision of flat beams Eq.(4.40) with intensity spectrum of incoherent radia-
tion with regard for smallness of the transverse beam sizes considered above.
For calculation we use the project TESLA parameters [80]: ε = 250 GeV,
σx = 553 nm, σy = 5 nm, σz = 0.3 mm, N = 2 · 1010, χm=0.13. The re-
sult is shown in Fig.24, where the curves calculated according to Eq.(4.40),
and Eq.(4.26). It is seen that for x = ω/ε > 0.7 the incoherent radiation
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Figure 24: The spectral radiation intensity dI/dω of coherent radiation (fast
falling with x = ω/ε increase curve) and of incoherent radiation (the curve
which is almost constant) in units Nα2λc/σx for beams with dimensions
σx = 553 nm, σy = 5 nm, for χm = 0.13.

dominates. For x > 0.7 the incoherent radiation may be used for a tuning of
beams [76].

Along with the spectral characteristics of radiation the total number of
photons emitted by an electron is of evident interest as well as the relative
energy losses. We discuss an actual case of flat beams and the parameter
χm � 1. In this case one can use the classic expression for intensity (bearing
in mind that starting from χm ∼ 1/10 the quantum effects become substan-
tial). In classical limit the relative energy losses are(

∆ε
ε

)
cl

=
2αm2

3ε

∫
χ2(t, x, y)n⊥(x, y)dtdxdy. (4.41)

Using Eqs.(4.29), (4.37), and (4.38) we get(
∆ε
ε

)
cl

=
2
9

√
π

3
rχ2

m, r =
ασz

γλc
. (4.42)

For mean number of emitted by an electron photons we find

ncl
γ =

5αm2

2
√

3ε

∫
χ(t, x, y)n⊥(x, y)dtdxdy = 0.59275

5
2

√
π

6
rχm = 1.072rχm.

(4.43)
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If χm > 1/10 one have to use the quantum formulas. For the energy losses
one can use the approximate expression (the accuracy is better than 2% for
any χ) [81]

dε/dt = 2/3αm2χ2
[
1 + 4.8(1 + χ) ln(1 + 1.7χ) + 2.44χ2

]−2/3
. (4.44)

Here χ is the local value, so this expression for dε/dt should be integrated
over time and averaged over the transverse coordinates. For mean number
of photons emitted by an electron there is the approximate expression (the
accuracy is better than 1% for any χ0)

nγ(�) =
1.81χ0r

[1 + 1.5(1 + χ0) ln(1 + 3χ0) + 0.3χ2
0]1/6

, (4.45)

where the expression should be averaged over the transverse coordinates.
For the project TESLA one gets for (∆ε/ε)cl = 4.3% according to Eq.(4.42),
while the correct result from Eq.(4.44) is ∆ε/ε = 3.2%. For mean number of
photons emitted by an electron we have correspondingly ncl

γ � 1.6 while the
correct result is nγ � 1.5.

4.4 Mechanisms of e+e−- pair creation
The probability of pair creation by a photon in the external field can be find
from formulas (4.28) using the substitution rule (see e.g.[11], [10]): ε → −ε,
ω → −ω, ω2dω → −ε2dε. Performing these substitutions we obtain (see also
Eq.(3.50) in [10])

dwe

dt
≡ dWe(t) =

αm2

2
√

3πω2
Φe,

Φe(t) =
(
ε

ε′
+
ε′

ε

)
K2/3(y) +

∫ ∞

y

K1/3(x)dx, y =
2ω2

3εε′κ
, κ =

ωF

mH0
(4.46)

here ε is the energy of the created electron, ε′ = ω−ε is the energy of created
positron.

There are different mechanisms of electron-positron pair creation

1. Real photon radiation in the field and pair creation by this photon in
the same field of the opposite beam. This mechanism dominates in the
case χ ≥ 1.

2. Direct electroproduction of electron-positron pair in the field through
virtual photon. This mechanism is also essential in the case χ ≥ 1.
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3. Mixed mechanism(1):photon is radiated in the bremsstrahlung process,
i.e. incoherently, and the pair is produced by photon in an external
field.

4. Mixed mechanism(2): photon is radiated via the beamstrahlung mech-
anism, and pair is produced in the interaction of this photon with in-
dividual particles of oncoming beam, i.e. in interaction with potential
fluctuations.

5. Incoherent electroproduction of pair.

In the actual case χ � 1 mixed and incoherent mechanisms mostly con-
tribute. We start with the mixed mechanism (2). In the case χm � 1 the
parameter κ Eq.(4.46) containing the energy of emitted photon is also small
and the incoherent cross section of pair creation by a photon is weakly de-
pendent on the photon energy. To logarithmic accuracy

σp = 28/9α3λ2
c ln(σy/λc)

(
1 + 396κ2/1225

)
. (4.47)

If the term ∝ κ2 being neglected, the pair creation probability is factorized
(we discuss coaxial beams of identical configuration). The number of pairs
created by this mechanism (per one initial electron) is

n(2)
p =

∫ ∞

−∞
Wγ(�, t)dt

∫ ∞

t

2σpn⊥(�, t′)dt′d2�

=
35
9

√
π

6
Nrα3λ2

c ln
σy

λc

∫
χ0(�)n2

⊥(�)d2� =
35
9

√
π

6
Nrχmα

3 λ2
c

2πσxσy

4
π

×
∫ ∞

0

exp(−3v2 − 2w2)
[
erf2 (w) − erf2 (iv)

]1/2
dwdv

= 0.1167α3Nrχm
λ2

c

σxσy
ln
σy

λc
. (4.48)

So for the project TESLA parameters the total number of produced pairs by
this mechanism is Nn(2)

p ∼ 1.4 · 104 per bunch in one collision.
Now we turn over to discussion of incoherent electroproduction of pairs

when both intermediate photons are virtual. To within the logarithmic ac-
curacy for any χ and κ one can use the method of equivalent photons

dσv

dω
= n(ω)σp(ω), (4.49)
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where

n(ω) =
2α
πω

ln
∆
qm

, ∆ = m(1 + κ)1/3,

qm = m
ω

ε

(
1 +

εχ

ω

)1/3

+
1
σy

≡ qF + qσ. (4.50)

Taking into account that the cross section of pair photoproduction is

σp(ω) =
28α3

9m2
ln

m

qm(ω′)
, ω′ =

m2

ω
(κ� 1); σp ∝ κ−2/3 (κ� 1), (4.51)

we obtain in the main logarithmic approximation for the cross section of the
pair electroproduction

σ(2e→ 4e) =
56α4

9m2

∫ ωmax

ωmin

ln
m

qm(ω)
ln

m

qm(ω′)
dω

ω
, (4.52)

where ωmax = ε/(1 + χ), ωmin = m2/ωmax. If we put χ = 0, σy = ∞ we
obtain the standard Landau-Lifshitz cross section σLL (see e.g. [11], [8])

σLL =
28α4

27m2
ln3 γ2. (4.53)

With regard for the bounded transverse dimensions of beam and influence of
an external field the equivalent photon spectrum changes substantially. For
χ ∼ 1 we have q(ω) = m(ω/ε)2/3 + 1/σy and under condition γ2/3λc/σy ≥ 1
we find

σv =
28α4

3m2
ln

(
γ4/3 λc

σy

)
ln2 σy

λc
. (4.54)

For TESLA parameters γ2/3λc/σy � 1 then

σv =
28α4

81m2
ln3 γ2. (4.55)

This cross section is three times smaller than standard σLL. For the project
TESLA parameters the number of pairs produced by this mechanism is
nv = Lσv/2 � 1.5 · 104 in one direction per bunch in one collision,
L = 1/(4πσxσy) is the geometrical luminosity per bunch. So the both dis-
cussed mechanisms give nearly the same contribution for this project. It
should be noted that the above analysis was performed under assumption
that the configuration of beams doesn’t changed during collision, although
in the TESLA project the disruption parameter Dy > 1.
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So we see that the beam-size effect and an external field effects are very
essential for pair creation mechanism also.
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A Appendix
Basic equations

The quasiclassical operator method developed by authors is adequate for
consideration of the electromagnetic processes at high energy. The probabil-
ity of the radiation process has a form (see [10], p.63, Eq.(2.27)); the method
is given also in [11], for classical limit see [71]

dw =
e2

(2π)2
d3k

ω

∫
dt2

∫
dt1R

∗(t2)R(t1) exp
[
− iε
ε′

(kx(t2) − kx(t1))
]
,

(A.1)
where k = (ω,k) is the 4-momentum of the radiated photon, k2 = 0,
x(t) = (t, r(t)), t is the time, and r(t) is the particle location on a classical
trajectory, kx(t) = ωt−kr(t), ε′ = ε−ω, let us remind that we employ units
such that � = c = 1. The matrix element R(t) is defined by the structure of
a current. For an electron (spin 1/2 particle) one has

R(t) =
m√
εε′

usf
(p′)ê∗usi(p) = ϕ+

sf
(A(t) + iσB(t))ϕsi ,

A(t) =
e∗p(t)
2
√
εε′

[√
ε′ +m

ε+m
+

√
ε+m

ε′ +m

]
� 1

2

(
1 +

ε

ε′
)

e∗ϑ,

B(t) =
1

2
√
εε′

[√
ε′ +m

ε+m
(e∗ × p(t)) −

√
ε+m

ε′ +m
(e∗ × (p(t) − �k))

]

� �ω

2ε′

(
e∗ ×

(
n
γ
− ϑ

))
, (A.2)

here p, p′ = p− k is the initial and final momentum of an electron, e is the
vector of the polarization of a photon (the Coulomb gauge is used),the four-
component spinors usf

, usi and the two-component spinors ϕsf
, ϕsi describe
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the initial (si) and final (sf ) polarization of the electron, v=v(t) is the elec-
tron velocity, ϑ = v−1 (v − n(nv)) � v⊥, v⊥ is the component of particle
velocity perpendicular to the vector n = k/|k|, γ = ε/m is the Lorentz fac-
tor. The final expressions in (A.2) are given for radiation of ultrarelativistic
electrons, they are written down with relativistic accuracy (terms ∼ 1/γ are
neglected) and in the small angle approximation. If we are not interested in
the initial and final particles polarization, then

R∗(t2)R(t1) → 1
2ε′2

[
ω2

γ2
+

(
ε2 + ε′2

)
ϑϑ′

]
=

1
2
L(ϑ′,ϑ), (A.3)

where we have used the notation ϑ′ = ϑ(t2), ϑ = ϑ(t1). For polarized initial
electron we have

R∗(t2)R(t1) =
ε

2ε′γ2

{
ω2

εε′
+

(
ε

ε′
+
ε′

ε

)
pp′ + i

ω

ε
((p′ − p) × v)ζ

}
, (A.4)

where ζ is the vector describing the initial polarization of the electron (in its
rest frame), p = γϑ(t1) and p′ = γϑ(t2).

If the particle moves along a definite trajectory, then substituting the
classical values r(t) and v(t) in (A.1)-(A.3), we obtain the desired probabil-
ity for this process. When there is scattering, Eq.(A.1) must be averaged
over all possible particle trajectories. This operation is performed with the
aid of the distribution function, averaged over atomic positions in the scat-
tering medium and satisfying the kinetic equation. We consider here general
case with the external field (particle acceleration) taken into account. The
emission probability per unit time is then (in this Appendix we follow the
paper [9])

dW =
〈
dw

dt

〉
=

e2

(2π)2
d3k

ω
Re

∫ ∞

0

dτ exp
(
−i ε
ε′
ωτ

) ∫
d3vd3v′d3rd3r′L(ϑ′,ϑ)

×Fi(r,v, t)Ff (r′,v′, τ ; r,v) exp
(
−i ε
ε′

k(r′ − r)
)
. (A.5)

The distribution function F in (A.5) satisfies the kinetic equation

∂F (r,v, t)
∂t

+ v
∂F (r,v, t)

∂r
+ w

∂F (r,v, t)
∂v

= n

∫
σ(v,v′) [F (r,v′, t) − F (r,v, t)] d3v′, (A.6)
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where n is the number density of atoms in the medium, and σ(v,v′) is the
scattering cross section. The normalization condition∫

d3r

∫
d3vF (r,v, t) = 1 (A.7)

should be also satisfied, as well as the initial condition for Ff :

Ff (r′,v′, 0; r,v) = δ(r − r′)δ(v − v′).

In Eq.(A.5), we integrate over d3rd3(r−r′), taking advantage of the fact that
Ff (r′,v′, τ ; r,v) can only depend on the coordinate difference r′ − r:

dW =
e2

(2π)2
d3k

ω
Re

∫ ∞

0

dτ

∫
d3vd3v′L(ϑ′,ϑ)Fi(v, t)Fk(v′, τ ;v), (A.8)

where

Fi(v, t) =
∫
d3rFi(r,v, t)

Fk(v′, τ ;v) = exp
(
−i ε
ε′
ωτ

)∫
d3r′ exp

(
−i ε
ε′

k(r′ − r)
)
Ff (r′,v′, τ ; r,v)(A.9)

We can put

Fk(v′, τ ;v) = U(ϑ′,ϑ, τ)δ(|v′| − |v|)
U(ϑ′,ϑ, 0) = δ(ϑ′ − ϑ), (A.10)

if we take into account that in ultrarelativistic limit wv ∼ O(1/γ3), w � w⊥,
and the scattering cross section is

σ(v,v′) = δ(|v′| − |v|)σ(ϑ′,ϑ). (A.11)

Making use of these results and Eq.(A.6) for Ff , we obtain the following
equation for U(ϑ′,ϑ, τ)

∂U

∂τ
+ i

ωε

2ε′

(
1
γ2

+ ϑ′2
)
U + w

∂U

∂ϑ′

= n

∫
d2ϑ′′σ(ϑ′,ϑ′′)

[
U(ϑ′′,ϑ, τ) − U(ϑ′,ϑ, τ)

]
, (A.12)

where for scattering in the screened Coulomb potential the cross section in
the Born approximation is

σ(ϑ′,ϑ) =
4Z2α2

ε2((ϑ′ − ϑ)2 + ϑ2
1)2

, (A.13)
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here ϑ1 =
1
εas

, as is the screening radius (as = 0.81aBZ
−1/3, aB is the Bohr

radius). A similar equation for the ϑ-dependence of U can be obtained by
letting ϑ′ → ϑ and w → −w.

If the final state of the charged particle is of no interest, the probability
(A.8) must be integrated over d3v′. The resulting emission probability per
unit time, normalized to a single particle moving at a speed v is then

dW =
e2

(2π)2
d3k

ω
Re

∫ ∞

0

dτ exp
(
−iaτ

2

)[
ω2

ε′2γ2
V0(ϑ, τ) +

(
1 +

ε2

ε′2

)
ϑV(ϑ, τ)

]
,

(A.14)

where a =
ωm2

εε′
, and Vµ = (V0,V) satisfies the equation

∂Vµ

∂τ
+ i

b

2
ϑ2Vµ − w

∂Vµ

∂ϑ

= n

∫
d2ϑ′σ(ϑ,ϑ′)

[
Vµ(ϑ′, τ) − Vµ(ϑ, τ)

]
, (A.15)

here b =
ωε

ε′
. The initial conditions for Vµ are

V0(ϑ, 0) = 1, V(ϑ, 0) = ϑ. (A.16)

If the scattering cross section σ(ϑ,ϑ′) depends solely on the angle dif-
ference ϑ − ϑ′, as Eq.(A.13), then Eq.(A.15) is most conveniently solved by
Fourier transforming with respect to the variable ϑ:

ϕµ(x, τ) =
1

(2π)2

∫
d2ϑ exp(iϑx)Vµ(ϑ, τ),

Vµ(ϑ, τ) =
∫
d2x exp(−iϑx)ϕµ(x, τ). (A.17)

From Eq.(A.15), with the initial conditions (A.16), we have

∂ϕµ(x, τ)
∂τ

− i
b

2
∆xϕµ(x, τ) + iwxϕµ(x, τ)

= (2π)2n [Σ(x) − Σ(0)]ϕµ(x, τ), Σ(x) =
∫
d2ϑ exp(iϑx)σ(ϑ);

ϕ0(x, 0) = δ(x), ϕ(x, 0) = −i∇δ(x) (A.18)

If the angular distribution of the radiation is of no interest, Eq.(A.14) must
be integrated over the photon emission angles ϑ. Bearing in mind that d3k =
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ω2dωd2ϑ, and that

1
(2π)2

∫
V0(ϑ, τ)d2ϑ = ϕ0(0, τ),

1
(2π)2

∫
ϑV(ϑ, τ)d2ϑ = −i∇ϕ(x, τ)|x=0, (A.19)

we obtain the following expression for the spectral distribution of emission
probability per unit time

dW

dω
= αωRe

∫ ∞

0

dτ exp
(
−iaτ

2

)[
ω2

ε′2γ2
ϕ0(0, τ) − i

(
1 +

ε2

ε′2

)
∇ϕ(0, τ)

]
.

(A.20)
The equation like (A.18) in the classical limit and with w = 0 was discussed
in [4], Appendix V.

For the cross section (A.13) we have for Σ(x) (A.18)

Σ(x) =
Z2α2

πε2
x

ϑ1
K1(xϑ1), (A.21)

where K1(xϑ1) is the modified Bessel function. Bearing in mind that con-
tributions to the cross section come from x ∼ ϑ−1

ef � ϑ−1
1 , and expanding

K1(xϑ1) as a power series in xϑ1 we obtain the following equation for ϕµ(x, τ)
from Eq.(A.18), to power-series accuracy:

∂ϕµ(x, τ)
∂τ

− i
b

2
∆xϕµ(x, τ) + iwxϕµ(x, τ) = u(x)

u(x) =
2πnZ2α2

ε2
x2

(
ln
xϑ1

2
+ C − 1

2

)
, (A.22)

where C = 0.577216... is the Euler constant.
The "potential" u(x) is calculated in the Born approximation since

Eq.(A.13) was used. The Coulomb correction to the potential u(x) were
calculated in Appendix A of [17]. The eikonal approximation was use which
is valid for arbitrary value Zα. Substituting this correction we have

u(x) =
2πnZ2α2

ε2
x2

(
ln
xϑ1

2
+ C − 1

2
+ f(Zα)

)
, (A.23)

where the function f(Zα) is defined in Eq.(2.5). In absence of radiation and
an external field (b=w=0) Eqs.(A.22) and (A.17) at the initial condition
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ϕ(x, 0) = (2π)−2 give the solution of pure scattering problem (the initial
condition for the distribution function F (ϑ, t) is F (ϑ, 0) = δ(ϑ)):

ϕ(x, t) =
1

(2π)2
eu(x)t,

F (ϑ, t) =
1

(2π)2

∫
exp(−iϑx + u(x)t)d2x

dw(ϑ, t) =
[∫ ∞

0

J0(ϑx)eu(x)txdx

]
ϑdϑ (A.24)

For another form of solution see Eq.(3.25).
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