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1 Introduction
Diagnostics for measurements of magnetic field magnitude and pitch-angle
on the basis of a translational Stark effect (or Motional Stark Effect, MSE)
are widely used in experiments in toroidal systems for magnetic plasma con-
finement [1], [2]. An MSE diagnostic has several obvious advantages, such as
possibility to perform local measurements and capability of obtaining elec-
tric field value and direction in addition to B measurements. Under typical
conditions of experiments in tokamaks (magnetic field 1 ÷ 5 T, beam en-
ergy 50 ÷ 100 keV), the resulting splitting of the beam emission line due to
the motional Stark effect is about two or three orders of magnitude larger
than the fine structure of atom levels allowing to easily neglect the latter.
Zeeman splitting becomes comparable to the MSE-driven one only at rela-
tively low beam energies ∼ 5 keV for magnetic field in the order of a few
Tesla. Accordingly, a relatively simple model of intensity distribution in the
recorded spectrum is applicable for measurements processing [3]. On the
contrary, a proper interpretation of the measured spectrum in low-field MSE
experiments requires the Zeeman splitting and fine structure to be taken into
account. For example, the fine structure splitting of energy levels of a hy-
drogen atom amounts to ≈ 10% of the splitting due to MSE for the beam
energy 40 keV and magnetic field 2 kGs.

The present work has been pursued to allow for a proper interpretation of
local measurements of |B| in plasma in GDT experiment [4] at Budker Insti-
tute and magnetic field profile in MST device [5]. The magnetic field in both
devices is relatively low, so that all the above mentioned splitting mechanisms
are significant. The described numerical model allows to directly simulate an
experimental spectrum of the Balmer alpha transition of a hydrogen atom for
the real conditions of measurements. Similar calculations for Hα multiplet
can be found in [6].

The paper is organized like follows. First in the section 2 the method
of calculation of levels splitting and line intensities is discussed. Section 3
consistently states the construction of the perturbation Hamiltonian, which
includes relevant effects. Also the limitations of the model applicability and
approximations made are discussed in this section. Section 4 shows the results
of calculation for various parameters including the typical conditions of MSE
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experiments in GDT mirror device and Madison Symmetrical Torus. The
conclusion at the end of the section summarizes results presented in the
paper and considers possible application fields for the described model.

2 Method of calculations
As it is widely known (see, e.g. [7]), in the absence of external fields and
neglecting relativistic effects, a hydrogen atom energy level with the momen-
tum quantum number l is (2l+1)(2s+ 1) times degenerated according to all
possible directions of the momentum vector and spin s = 1/2 in space. Next
order approximation should take into account relativistic effects in interac-
tion between the electron and nucleus field. Strictly speaking, in this case
the orbital momentum l and spin s are not conserved separately. Only law
of conservation of the full momentum j = l + s remains as it is Lonsequence
of space isotropy with respect to a closed system. Spin-orbital coupling and
other relativistic effects then can be taken into account as perturbation lead-
ing to small corrections of level energies. Hence in the first-order perturbation
theory one can assume the absolute values (not projections) of l and s con-
served and levels can be characterized by corresponding quantum numbers l
and s. Arising of the external magnetic field leads to the breaking of degener-
acy with regard to orbital momentum projection (Zeeman effect). Interaction
of the atom electron with external electric field also breaks the levels degen-
eracy. The corresponding terms of the total perturbation Hamiltonian are
studied in detail in Section 3.

It is convenient to work in |l, s,ml,ms〉 representation, which is defined
by orthogonal set of electron eigenfunctions with given l, s,ml,ms - respec-
tively the orbital quantum number, spin (1/2), z-projection of the orbital
momentum and spin z-projection. In this representation interaction opera-
tors mentioned above have simple forms which can be easily derived. The
wavefunction of a single electron in the spherically symmetric electrostatic
potential of the hydrogen nucleus can be found in [7]. It has the following
form:

|l, s,ml,ms〉 = Rnl · Y ml

l · S, (1)

where Rnl is the radial part of the wavefunction, Y ml

l is the spherical har-

monic defining the angular part and S is the Pauli spinor;
(

1
0

)
corre-

sponds to the state with ms = 1/2 and
(

0
1

)
corresponds to the state with
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ms = −1/2. Radial and angular wavefunctions for n = 2 and n = 3 states
are tabulated e.g. in [8].

The total perturbation operator is expressed as a sum of the interaction
operators:

Ĥtotal = ĤStark + ĤZeeman + Ĥrel, (2)

where the term Ĥrel is responsible for the spin-orbital coupling and other
relativistic effects. Each term in (2) is examined in Section 3.

The calculation scheme comprises the following steps:

1. Specification of the calculation geometry and parameters. Modeling
of the Hα multiplet was performed using the geometry of real MSE
experiments. Instead of calculation of intensity for π and σ spectrum
components separately (as it is usually done), we calculated lines in-
tensity with the experimentally observed polarization.

2. Calculation of the operator (2) eigenvalues for n = 2 and n = 3 states,
which represents the splitted energy levels of the multiplet with given n.
Since in most general case the level degeneracy is totally removed, there
are eight different eigenvalues for the n = 2 level and eighteen – for the
n = 3 level. Each eigenvector, which corresponds to given eigenvalue
for n = 3, represents a set of coefficients giving the expression in the
chosen |l, s,ml,ms〉 basis:

ψ =
8∑

i=0

ci|l, s,ml,ms〉i, (3)

and similarly for n = 3 levels. To study the dependence of level energies
upon magnetic field, this procedure must be rerun with the different
value set. Numerical approach to the eigenvalue task is more preferable
than the theoretical one, since no additional assumptions and simplifi-
cations have to be made.

3. To obtain the Hα multiplet component intensities one has to calculate
matrix elements of ri (x, y, x coordinates) between levels with differ-
ent n as 〈i|ri|j〉, where 〈i| and |j〉 are eigenfunctions with n = 3 and
n = 2, respectively. Expression for a transition intensity comprises the
coordinate matrix elements as described in Section 3.

4. The final step is simulate spectrum setting a finite broadening for each
line of the multiplet. In real condition of MSE experiments the broad-
ening arises from several sources: finite beam temperature and angular
divergence, specific light collection solid angle of registration optics, etc.
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3 Perturbation operator

3.1 The relativistic effects
Relativistic effects in interaction of an electron with electromagnetic field are
described by the Dirac theory [9]. As the electron speed in a hydrogen atom
v/c ∼ α � 1, the relativistic corrections to Hamiltonian can be obtained
by means of perturbation theory. Expansion of the Dirac equation in power
series of 1

c leads to the following form of the Hamiltonian of an electron in
the external electric field E (see [10]):

Ĥ =
p̂2

2m
+ eΦ − p̂4

8m3c2
− e�

4m2c2
σ[E p̂] − e�2

8m2c2
divE, (4)

where σ is the Pauli matrix. The last three terms in (4) are of the order of
∼ 1

c2 . The first of them is due to the relativistic kinetic energy dependence on
electron impulse (i.e. it is the result of

√
p2 −m2c2 −mc2 expansion). The

second term is responsible for the spin-orbital interaction. The third term is
non-zero only at the origin of coordinate where the nucleus is located. It is
significant for calculation of the energy level shift for states with l=0.

Substituting the expression E = er
r3 for the hydrogen nucleus electric field

into the (4), one can easily obtain the following form for the perturbation
operator:

V̂ = − p̂4

8m3c2
+

1
2

(
e�

mc

)2 1
r3

l̂ ŝ +
πe2

2�c3m2
δ(r). (5)

Due to the spin-orbital interaction (the second term in (5)), an elec-
tron wavefunction becomes an eigenfunction of operators of full momentum
squared ĵ2 = (̂l + ŝ)2 and ĵz – z-projection of ĵ. Accordingly, it gives rise
to a new set of quantum numbers: j,mj , which are eigenvalues of the corre-
sponding operators. However, the levels with given n and j are still remain
double-degenerated with regard to the orbital quantum number l: l = j±1/2
[7, 10], except the levels with the maximal value of j for a given main quantum
number n: jmax = lmax + 1/2 = n − 1/2. Each of the eigenfunction |j,mj〉
is the superposition of two states with the same j but different l: l = j ± s.
These |l, s, j,mj〉 states (Pauli eigenfunctions) can be in turn expressed in
|l, s,ml,ms〉 representation as [7]
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l = j − 1
2

:

|j,mj〉 =

√
l+ 1/2 +mj

2l+ 1
|l,ml = mj − 1

2
,ms =

1
2
〉

−
√
l+ 1/2 −mj

2l+ 1
|l,ml = mj +

1
2
,ms = −1

2
〉,

l = j +
1
2

:

|j,mj〉 =

√
l+ 1/2 −mj

2l+ 1
|l,ml = mj − 1

2
,ms =

1
2
〉

+

√
l+ 1/2 +mj

2l+ 1
|l,ml = mj +

1
2
,ms = −1

2
〉.

The set of wavefunctions |l, s, j,mj〉 for n = 2 is written below:

l = 0 :
j = 1

2 :

|j =
1
2
,mj =

1
2
〉 = |0, 1

2
, 0,

1
2
〉,

|j =
1
2
,mj = −1

2
〉 = |0, 1

2
, 0,−1

2
〉,

l = 1 :
j = 3

2 :

|j =
3
2
,mj =

3
2
〉 = |1, 1

2
, 1,

1
2
〉,

|j =
3
2
,mj =

1
2
〉 =

√
2
3
|1, 1

2
, 0,

1
2
〉 −

√
1
3
|1, 1

2
, 1,−1

2
〉,

|j =
3
2
,mj = −1

2
〉 =

√
1
3
|1, 1

2
,−1,

1
2
〉 −

√
2
3
|1, 1

2
, 0,−1

2
〉,

|j =
3
2
,mj = −3

2
〉 = |1, 1

2
,−1,−1

2
〉.
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j = 1
2 :

|j =
1
2
,mj =

1
2
〉 =

√
1
3
|1, 1

2
, 0,

1
2
〉 +

√
2
3
|1, 1

2
, 1,−1

2
〉,

|j =
1
2
,mj = −1

2
〉 =

√
2
3
|1, 1

2
,−1,

1
2
〉 +

√
1
3
|1, 1

2
, 0,−1

2
〉.

The set of wavefunctions |l, s, j,mj〉 for n = 3 can be written in the same
way:

l = 2 :
j = 5

2 :

|j =
5
2
,mj =

5
2
〉 = |2, 1

2
, 2,

1
2
〉,

|j =
5
2
,mj =

3
2
〉 =

√
4
5
|2, 1

2
, 1,

1
2
〉 −

√
1
5
|2, 1

2
, 2,−1

2
〉,

|j =
5
2
,mj =

1
2
〉 =

√
3
5
|2, 1

2
, 0,

1
2
〉 −

√
2
5
|2, 1

2
, 1,−1

2
〉,

|j =
5
2
,mj = −1

2
〉 =

√
2
5
|2, 1

2
,−1,

1
2
〉 −

√
3
5
|2, 1

2
, 0,−1

2
〉,

|j =
5
2
,mj = −3

2
〉 =

√
1
5
|2, 1

2
,−2,

1
2
〉 −

√
4
5
|2, 1

2
,−1,−1

2
〉,

|j =
5
2
,mj = −5

2
〉 = |2, 1

2
,−2,−1

2
〉.

j = 3
2 :

|j =
3
2
,mj =

3
2
〉 =

√
1
5
|2, 1

2
, 1,

1
2
〉 +

√
4
5
|2, 1

2
, 2,−1

2
〉,

|j =
3
2
,mj =

1
2
〉 =

√
2
5
|2, 1

2
, 0,

1
2
〉 +

√
3
5
|2, 1

2
, 1,−1

2
〉,

|j =
3
2
,mj = −1

2
〉 =

√
3
5
|2, 1

2
,−1,

1
2
〉 +

√
2
5
|2, 1

2
, 0,−1

2
〉,

|j =
3
2
,mj = −3

2
〉 =

√
4
5
|2, 1

2
,−2,

1
2
〉 +

√
1
5
|2, 1

2
,−1,−1

2
〉.
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The n = 3 states also includes the 3P3/2, 3P1/2 and 3S1/2 wavefunctions,
corresponding to momentum quantum numbers l = 1 and l = 0. These
wavefunctions are identical to the corresponding n = 2 states. Averaging
of the perturbation operator (5) over state |n, j〉 leads to the well known
equation

∆ε = −mα
4

2n3

(
1

j + 1/2
− 3

4n

)
, (6)

which contains relativistic corrections of the order 1/c2, as it is discussed
above. Taking into account (6), the energy for a hydrogen atom states are
defined by the formula (see [10, 7])

Enj = −Ry
n2

[
1 +

α2

n

(
1

j + 1/2
− 3

4n

)]
. (7)

In equations (6), (7) Ry is the wave number corresponding to the energy
unity in Rydberg, α is the fine structure constant. The values of physical
constants used in the calculation are tabulated in Section 5 for helper pur-
poses.

The remaining double degeneracy of levels |j,mj〉 with regard to an orbital
momentum l dissapears due to radiation corrections or Lamb shift [11], which
are not taken into account by the single-electron Dirac equation. In the first
order perturbation theory only s-state (with l = 0) undergoes the Lamb shift,
which can be calculated using the formula (see [7]):

∆ELamb
n =

8α3

3πn3
Ry

[
2 ln

1
α

+ ln
Ry

K0(n)
+

19
30

]
, (8)

where K0(2)/Ry = 16.64, K0(3)/Ry = 15.921.
The corrections to (7) of the next order given by subsequent terms of

Hamiltonian (5) are ∼ α · ∆ELamb
n and can be therefore neglected. Finally

the fine structure energies can be calculated including the Lamb shift of the
2S and 3S states. Assuming the 2S1/2 and 3S1/2 state energies equal to zero
for convenience, fine structure energies for n = 2 are: 1

E0 = E(2S1/2) = 0,

E1 = E(2P1/2) = −0.035279 cm−1,

E3 = E(2P3/2) = 0.330594 cm−1.

1Taken from the NIST database, http://physics.nist.gov/cuu/Constants/index.html
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and similarly for n = 3:

E0 = E(3S1/2) = 0,

E1 = E(3P1/2) = −0.010331 cm−1,

E3 = E(3P3/2, 3D3/2) = 0.097885 cm−1

E5 = E(3D5/2) = 0.133957 cm−1.

3.2 Zeeman effect
Our consideration of the interaction between the electron magnetic dipole
and external magnetic field is limited to the first order perturbation theory.
This simplification, however, does not reduce any significantly the applica-
bility of the model for simulation of Hα multiplet measured in plasma MSE
experiments. The second order of the perturbation theory, which is responsi-
ble for the quadratic Zeeman effect, is much less than fine structure splitting
for magnetic fields ≤ 25 T.

Within the |l, s,ml,ms〉 representation, which is used in the paper, the
linear Zeeman effect operator is represented by the diagonal matrix

ĤZeeman = (glL̂z + gsŜz)µBBz . (9)

Here L̂z and Ŝz are operators of orbital momentum and spin z-projection,
µB is the Bohr magneton, gl and gs are g-factors of orbital momentum and
spin, respectively. Factor gl is unity according to the Dirac theory [9], value
of gs can be found in the Section 5.

3.3 Motional Stark effect
Stark effect is responsible for level splitting due to breaking of degeneracy
of electron states for an atom in external electric field. For hydrogen and
hydrogen-like atoms Stark splitting is linear effect, providing thus good base
for diagnostic applications. In the frame of reference of a fast atom moving
in external magnetic field B, the Lorenz electric field EL = 1

c [v×B] appears,
causing energy levels to split. Directions of the magnetic field, beam velocity
and observation line defined in our calculation, are shown in Fig.1. This
geometry models conditions of GDT experiment [12]. Polarization directions
e1 and e2 (see Fig.1) correspond to observed ones.
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Figure 1: Geometry used in the calculation. B - magnetic field, v - hydrogen
beam velocity, EL - Lorenz electric field, S - direction of observation(in the
xy-plane), e1 and e2 - two independent polarization of emitted radiation
(e1 ‖ z).

The term in the perturbation Hamiltonian (4) responsible for the motional
Stark effect, has the following form [7]:

ĤStark =
evB

c
· x̂. (10)

Matrix elements of (10) in |l, s,ml,ms〉 representation are given by integrals

〈n, 1/2,ml,ms|x|n, ĺ, 1/2, ḿl, ḿs〉 = xn,ĺ,ḿl

n,l,ml
· δḿs

ms
, (11)

multiplied by the constant evB
c . Integrals (11) with n = 2 form the operator

matrix 8×8 elements for the lower state of the multiplet, the operator matrix
for n = 3 (upper) state has 18× 18 elements. Separating (11) into radial and
angular parts, one obtains:

xn,ĺ,ḿl

n,l,ml
=

∫ π

0

Pĺḿl
(θ)Plm (θ) cos θ sin θdθ ×

∫ 2π

0

1
2π
ei(ml−ḿl)ϕ

eiϕ + e−iϕ

2
dϕ ·Rn,ĺ

n,l. (12)
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Here radial integrals are:

Rn,ĺ
n,l =

∫ ∞

0

Rnĺ(r)Rnl(r)r3dr. (13)

Since (11) and all other matrix elements, which are considered in respect
to our calculation are diagonal by ms index, it will be omitted below. It
is most convenient to calculate (11) using conventional definitions of linear
combinations

D+ = x+ iy = r sin θ · eiϕ,

D− = x− iy = r sin θ · e−iϕ.

Matrix elements of D± can be written as follows [7]:

(x + iy)n,l+1,ml+1
n,l,ml

=

√
(l +ml + 2)(l +ml + 1)

(2l + 3)(2l+ 1)
Rnl+1

nl ,

(x− iy)n,l+1,ml−1
n,l,ml

= −
√

(l −ml + 2)(l−ml + 1)
(2l+ 3)(2l+ 1)

Rnl+1
nl ,

(x+ iy)n,l−1,ml+1
n,l,ml

= −
√

(l −ml)(l −ml − 1)
(2l + 1)(2l− 1)

Rnl−1
nl , (14)

(x− iy)n,l−1,ml−1
n,l,ml

=

√
(l +ml)(l +ml − 1)

(2l+ 1)(2l − 1)
Rnl−1

nl .

All others matrix elements are zero. Hence we get the following selection
rules for the l and ml: ∆l = ĺ− l = ±1, ∆ml = ḿl −ml = ±1. According to
[7], radial integrals can be calculated as

Rn,l−1
n,l = Rn,l

n,l−1 =
3
2
a0n

√
n2 − l2, (15)

where a0 is the Bohr radius. Matrix elements of x can be now easily calculated
as

xnĺḿl

nlml
=

1
2
[(x + iy)nĺḿl

nlml
+ (x− iy)nĺḿl

nlml
].
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3.4 Complete perturbation Hamiltonian
Combining (5), (9) and (10), we get Hamiltonian (4) in the form

Ĥ = − p̂4

8m3c2
+

1
2

(
e�

mc

)2 1
r3

l̂̂s +
πe2

2�c3m2
δ(r)

+ (glL̂z + gsŜz)µBBz (16)

+
evB

c
· x̂

Matrices of the operator (16) in the |l, s,ml,ms〉 representation for n = 2
and n = 3 levels are presented in Section 6. Theoretical solution of eigenvalue
problem for (16) is not possible in most general case. The set of eigenval-
ues and eigenvectors was computed for given values of beam velocity and
magnetic field by diagonalizing the matrices.

3.5 Calculation of the Hα multiplet component
intensities

Intensity of the optical transition ń −→ n for radiation with polarization e
in erg/sec·ster is given by the formula (see [7]):

Je =
e2

2πc3
ω4 (e rńn)2 , (17)

where ω = (Eń − En)/� is the radiation frequency, rńn – the dipole matrix
element:

rńn =
∫
ψ∗

ń

∑
r

i
ψndτ, (18)

where the integral is taken over the configuration space of the atom elec-
tron. For polarization directions e1 and e2 used in the calculation (see Fig.1)
we obtain intensity as

Je1 =
e2

2πc3
ω4 |zńn|2 ,

Je2 =
e2

2πc3
ω4

(
|xńn|2 + |yńn|2

)
. (19)

Upper and lower states of the transition ń −→ n are the eigenfunctions
of the perturbation operator (16):
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|ń〉 =
∑
ĺ,ḿl

aĺḿl
|3, ĺ, 1

2
, ḿl〉,

|n〉 =
∑
l,ml

blml
|2, l, 1

2
,ml〉, (20)

where coefficients aĺḿl
and blml

in linear expansions (20) in term of used
|l, s,ml,ms〉 basis are components of eigenvectors corresponding to the states
of |ń〉 and |n〉. Thus coordinate matrix elements can be written as

xńn =
∑∑

a∗
ĺḿl
blml

〈2, l, 1/2,ml|x|3, ĺ, 1/2, ḿl〉,
yńn =

∑∑
a∗

ĺḿl
blml

〈2, l, 1/2,ml|y|3, ĺ, 1/2, ḿl〉, (21)

zńn =
∑∑

a∗
ĺḿl
blml

〈2, l, 1/2,ml|z|3, ĺ, 1/2, ḿl〉.

Matrix elements for x and y-coordinate can be evaluated according to the
equations

xńn =
1
2

[(x+ iy)ńn + (x− iy)ńn] ,

yńn = − i

2
[(x+ iy)ńn − (x− iy)ńn] .

Here matrix elements for x±iy for transitions between the |l, s,ml,ms〉 states
are written as in (14), but the upper and lower states in radial integrals are ń
and n. For further considerations it is convenient to write also the equations
for matrix elements of z-coordinate (see [7]):

zńl+1ml

nlml
=

√
(l + 1)2 −m2

l

(2l+ 3)(2l + 1)
Rńl+1

nl ,

zńl−1ml

nlml
=

√
l2 −m2

l

(2l+ 1)(2l − 1)
Rńl−1

nl , (22)

and zńĺḿl

nlml
are zero in all other cases.
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Radial integrals from eqs. (14) and (22) are tabulated in [7]. Their
expressions for a transition of the Balmer series are the following:

2s −→ np : Rn1
20 =

√
217n9(n2 − 1)(n− 2)2n−6

(n+ 2)2n+6
,

2p −→ nd : Rn2
21 =

√
219n9(n2 − 1)(n− 2)2n−7

3(n+ 2)2n+7
, (23)

2p −→ ns : Rn0
21 =

√
215n9(n− 2)2n−6

3(n+ 2)2n+6
.

Equations (22) and (14) lead to the following selection rules: ∆ml = ±1,
∆l = ±1 for transitions with e2 polarization (magnetic dipole) and ∆ml = 0,
∆l = ±1 for transitions with e1 polarization (electric dipole). In other words,
if 〈ń|z|n〉2 
= 0, then both 〈ń|x|n〉2 = 0 and 〈ń|y|n〉2 = 0 (and vice versa).

4 Results of calculation

4.1 Consideration of the calculation verification
To provide the code verification, several additional calculations were per-
formed. Oscillator strengths submit to the well-known Thomas-Reiche-Kuhn
(TRK) sum rule (see [7]), which was utilized for the examination of dipole
matrix elements (18) calculation. Also we have made a comparison of cal-
culated energy levels with those tabulated in the NIST database. 1 Results
of simulation of levels splitting and multiplet spectrum pattern were found
to be in agreement with the results obtained in similar calculations by other
authors [6].

4.2 Results of Hα multiplet modeling
This section shows the results of calculation of the Hα multiplet spectrum
for typical conditions of motional Stark measurements in low-field devices for
plasma confinement. Fig.2 presents the dependence of a hydrogen atom level
splitting upon magnetic field. The relatively low beam velocity of 107 cm/s
is set for this calculation to make the fine structure and translational Stark
effect (and also "pure" Zeeman effect) similar in magnitude.

1http://physics.nist.gov
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Figure 2: Calculated splitting of the n = 3 (upper plot) and n = 2 (lower
plot) levels as a function of the magnetic field strength.

In most works devoted to spectrum calculations, π and σ polarizations of
emitted radiation are considered separately [6]. However, in general case of
real experiment, radiation with mixed polarization is observed. In the present
paper the geometry in Fig.1 is used. Accordingly, intensity of radiation with
the polarization e2 is Je2 = Jπ cos2 Θ + Jσ sin2 Θ, where Θ is the angle
between the beam and viewing line (see Fig.1). Polarization e1 in this case
is equal to πB polarization, i.e. it is parallel to the magnetic field.

Fig.3 presents the calculated spectrum for 40 keV hydrogen beam moving
in magnetic field of 4 kGs, where the observation angle Θ is set to 22.5◦.
These values are close to parameters typical for the GDT experiment [12].
Since level degeneracy is completely removed, the model spectrum comprises
144 separate lines, corresponding to transitions from 18 levels n = 3 to 8
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Figure 3: The spectrum of the Hα multiplet for beam energy 40 keV and
magnetic field 4 kGs. Lines with e1 polarization are plotted in the nega-
tive direction of Y axis for convenience. Curves in the plot show the model
spectrum assuming a finite broadening for each line.

levels with n = 2. Stark effect alone would result in equdistant splitting with
the spacing between component proportional to the magnetic field. Fine
structure of levels differ this pattern as it is seen in Fig.3. This effect is
more sharply demonstated in Fig.4. The spectrum was calculated for the
following diagnostic parameters: beam energy 40 keV, magnetic field 2 kGs,
observation angle Θ = 22.5◦. Obviously, application of the simple motional
Stark splitting model for processing spectra obtained in experiment under
similar conditions, would result in considerable error.

Figure 4: The spectrum of the Hα multiplet for beam energy 40 keV and
magnetic field 2 kGs.
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Fig.5 shows calculatedHα spectrum for beam energy 30 keV and magnetic
field 4 kGs, which are typical parameters of MSE measurements in MST [5].

Figure 5: The spectrum of the Hα multiplet for beam energy 30 keV and
magnetic field 4 kGs.

4.3 Summary
The code based on the combined Stark, Zeeman and fine structure splitting,
has been developed allowing for calculation of Hα multiplet spectra in general
condition of MSE experiment. Geometry used for calculations is shown in
Fig.1. However, it can be flexibly changed enabling adaptation for a wider
field of application. Mainly, the purpose of the model is processing of spectra
obtained in low-field (magnetic field ≤ 4 kGs) spectroscopic measurements
of |B|. Some spectra are presented showing the importance of including all
the mentioned splitting mechanisms for achievement of the reliable modeling
result. The model can be also used for data processing in tokamak MSE
measurements for increasing of the accuracy.

We did not consider in the work the effects of internal electric fields in
the plasma, where diagnostic hydrogen beam propagates. Oscillating electric
fields could differ the static spectrum structure only for slow particles (ther-
mal with the temperature of few eV). Such fields E ∼ 103 V/cm could be
developed by plasma instabilities. Quasi-static electric field in plasma can
be measured using the same spectroscopic technique [1, 2]. Described model
is planned to be further upgraded in order to enable simulation of combined
measurements.
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5 Physical constants used in the paper
For helper purposes, this section contains the list of fundamental physical
constants used for calculation. Values are taken from the National Institute
of Standards and Technology (NIST) database. 1

• Light speed c = 2.99792458 · 1010 cm/s,

• Electron mass me = 9.10938188 · 10−28 g,

• Proton mass 1.67262158 · 10−24 g,

• Electron charge e = 4.8065293860 · 10−10 statcoul,

• Planck constant � = 1.054571596 · 10−27 erg·s,
• Bohr radius a0 = 0.5291772083 · 10−8 cm,

• Bohr magneton µB = 927.400899 · 10−23 erg·Gs,

• Fine structure constant α = 7.297352533 · 10−3,

• Inverse fine structure constant α−1 = 137.03599976,

• Rydberg constant Ry = 109737.31568549 cm,

• Electron spin g-factor gs = 2.0023193043737,

• Conversion factor 1 cm−1 = 1.98644544 · 10−16 erg.

Next Section 6 contains the matrices of perturbation Hamiltonian (16) in
the |l, s,ml,ms〉 representation for n = 2 and n = 3 states. Values of fine
structure energies E1, E3 for n = 2 levels and E1, E3, E5 for n = 3 levels
can be found in the Section 3.

In the matrix for n = 3, Es is the "Stark" energy: Es = eEL · a0, where
EL is the Lorentz electric field, a0 is the Bohr radius.

1The URL is http://physics.nist.gov/cuu/Constants/index.html
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6 Hamiltonian matrices
The perturbation Hamiltonian (16) matrix for n = 2 states is shown below.
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Since scaling the 18×18 element matrix in order to fit the A4 page makes
it almost unreadable, the matrix for n = 3 states is devided into four blocks:
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A C
C B . Each block is a square matrix 9 × 9.
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Block B (next page).
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Block C (values of ml and ms correspond to the lower left block).
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