Институт ядерной физики им. Г.И.Будкера СО РАН

С.А. Никитин, И.Я. Протопопов

СКЬЮ-КВАДРУПОЛЬНЫЕ ВАРИАНТЫ КОМПЕНСАЦИИ ВЛИЯНИЯ ПРОДОЛЬНОГО МАГНИТНОГО ПОЛЯ ДЕТЕКТОРА КЕДР НА СВЯЗЬ БЕТАТРОННЫХ КОЛЕБАНИЙ В КОЛЛАЙДЕРЕ ВЭПП-4М

ИЯФ 99-44

Новосибирск 1999

Скью-квадрупольные варианты компенсации влияния продольного магнитного поля детектора КЕДР на связь бетатронных колебаний в коллайдере ВЭПП-4М

С.А. Никитин, И.Я. Протопово

Институт ядерной физики им. Г.И.Будкера СО РАН 630090, Новосибирск, Россия

Аннотация

Предложены и рассмотрены варианты локализации связи бетатронных колебаний на участке детектора КЕДР с продольным магнитным полем в электрон-позитронном коллайдере ВЭПП-4М на основе применения схемы Штеффена с двумя скью-квадрупольными линзами. Рассчитаны размеры пучка другие параметры, характеризующие качество компенсирующего и воздействия, с использованием параметризации Тенга. Показано принципиальное свойство схемы, состоящее в значительном увеличении вертикального размера в месте встречи в зависимости от уровня продольного поля.

Skew-quadrupole variants of compensation of a detector KEDR longitudinal magnetic field effect on betatron coupling at the VEPP-4M collider

S.A. Nikitin and I.Ya. Protopopov

Budker Institute of Nuclear Physics SB RAS 630090, Novosibirsk, Russia

Abstract

Variants of betatron coupling localization at the VEPP-4M magnetic structure section incorporating KEDR detector with a magnetic longitudinal field are proposed and considered on a basis of a Steffen's compensation scheme with two skew-quadrupole lenses. Beam sizes as well as other parameters describing a quality of compensation effect are calculated using Teng's parameterization. Principle feature of the scheme to the effect that a vertical beam size in the interaction point may be considerably increased depending on the longitudinal field value is revealed.

© Институт ядерной физики им. Г.И.Будкера СОРАН

Введение

Для компенсации связи бетатронных колебаний, вносимой продольным магнитным полем детектора КЕДР, в коллайдере ВЭПП-4М предусмотрено использование двух специальных сверхпроводящих соленоидов. В принципиальном отношении данный способ компенсации связи колебаний, очевидно, наиболее эффективен. Тем не менее, с методической точки зрения представляет интерес рассмотреть альтернативные схемы компенсации, исключающие использование корректирующих соленоидов.

Известны различные способы компенсации влияния продольного магнитного поля с помощью скью-квадрупольных линз (повернутых на 45° магнитных квадрупольных линз). Их условно можно разделить на схемы с "сильным" (χ =H_sL_s/(2HR)~1) и "слабым" (χ <<1) продольным полем. Здесь χ – параметр, характеризующий угол поворота плоскости бетатронных колебаний на участке с продольным полем величиной H_s и протяженностью L_s; HR – магнитная жесткость. Главная область применения первой группы – спиновые ротаторы с продольным полем ("сибирские змейки")[1-4]. Случай КЕДРа относится ко второй группе [5-7], так как на энергии E=1 ГэВ и значении поля в детекторе, например, 0.2 Тесла параметр поля будет χ =0.075.

Обычный метод коррекции слабых возмущений, ответственных за связь, состоит в занулении ширины разностного линейного резонанса связи колебаний Δv . На ВЭПП-4М с этой целью используется система скью-квадрупольных корректоров, расположенных в полукольцах и в экспериментальном промежутке. В рассматриваемом случае данный метод не позволит эффективно управлять вертикальным размером пучка. Основная причина связана с большой амплитудой вертикальной дисперсионной функции D_z , возбуждаемой из-за наличия продольного поля (max{ D_z } ~ D_x).

Принцип локализации связи колебаний на отдельном участке ускорителя (при одновременном устранении эффектов связи на большей части кольца) является более радикальным способом по сравнению с методом компенсации линейного резонанса связи. Он нашел естественное применение в схемах спиновых ротаторов с продольным полем. Для случая "слабого" поля соответствующая схема локализации связи колебаний описана в работе Штеффена [7]. Она предельно проста и экономична, так как требует всего два skew- квадрупольных корректора.

Ниже обсуждается возможность применения этой схемы на ВЭПП-4М. Рассчитаны параметры пучка в различных ее вариантах. Особое внимание уделено вертикальному размеру пучка в месте встречи – в центре КЕДРа. В условиях локализации связи на участке, включающем КЕДР, этот параметр может значительно измениться. Последнее обстоятельство нужно учитывать при рассмотрении факторов, влияющих на светимость.

1. Схема Штеффена

Данная схема компенсации основана на приближении "тонкого" магнита [7,8], в котором орбитальное преобразование в соленоиде приведено к его центру и имеет вид ($\chi <<1$; $\chi^2/L_s \rightarrow 0$):

$$\begin{vmatrix} x \\ x' \\ z \\ z' \\ out \end{vmatrix} = M_{s} \cdot \begin{vmatrix} x \\ x' \\ z \\ z' \\ in \end{vmatrix} = \begin{vmatrix} 1 & 0 & -\chi & 0 \\ 0 & 1 & 0 & -\chi \\ \chi & 0 & 1 & 0 \\ 0 & \chi & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x \\ x' \\ z \\ z' \\ in \end{vmatrix}$$

Магнитная структура зеркально симметрична относительно места встречи в центре соленоида. Симметрично по обе стороны соленоида помещено по одной "тонкой" скью-линзе. Их положение в структуре и "сила" определяются из условия локализации связи на участке между ними, включающем соленоид. Обозначим через M_+ матрицу преобразования от азимута, где расположен скью квадруполь SQ_+ , до середины левой половинки соленоида. Обозначения для правой половины схемы имеют индекс "—". Пусть $\chi=H_sL_s/(4HR)$ относится к половинке соленоида, полная длина которого равна L_s . Матрица преобразования на участке от SQ_+ до SQ_- имеет вид

$$M = Q_{-} \cdot M_{-} \cdot M_{s} \cdot L^{2} \cdot M_{s} \cdot M_{+} \cdot Q_{+}$$

Здесь L – матрица пустого промежутка длиной L_s/4; M_s – матрица половинки соленоида в приближении "тонкого" магнита; Q₊ и Q- матрицы "тонких" skew линз, "силы" которых из-за симметрии равны по величине и отличаются знаком: g =g₊=-g₋ =G₊·L₊/HR; G₊ – градиент в линзе длиной L₊. Из-за зеркальной симметрии матрицы M₊ и M₋ сопряжены операцией транспозиции вдоль главной диагонали (можно показать, что данное свойство основано на равенстве диагональных элементов в матрице перехода 2×2 для произвольного однородного участка магнитной структуры):

$$M_{+} = \begin{vmatrix} a_{X} & b_{X} & 0 & 0 \\ c_{X} & d_{X} & 0 & 0 \\ 0 & 0 & a_{z} & b_{z} \\ 0 & 0 & c_{z} & d_{z} \end{vmatrix}; M_{-} = \begin{vmatrix} d_{X} & b_{X} & 0 & 0 \\ c_{X} & a_{X} & 0 & 0 \\ 0 & 0 & d_{z} & b_{z} \\ 0 & 0 & c_{z} & a_{z} \end{vmatrix}$$

В рассматриваемом приближении, когда можно пренебречь членами второго порядка по χ, адиагональные блоки 2×2 матрицы М в соответствии с

принципом локализации связи будут нулевыми, если выполнены следующие условия:

(1)

$$g = \frac{2\chi}{b_X d_Z - b_Z d_X},$$

$$P = b_X d_Z + d_X b_Z + \frac{L_S d_X d_Z}{2} = 0.$$

Там, где функция азимута P(s) принимает нулевое значение, и должен быть расположен skew квадруполь, "сила" g которого определяется через параметр χ и элементы матрицы M₊. По сравнению с [7], где, по-видимому, из практических соображений, пренебрегается пустым промежутком между двумя "тонкими" соленоидами, функция P(s) дополнена слагаемым, явно зависящим от L_S. Соответственно изменена формула для силы skew-линз (в [7] g= $\chi/(b_x d_z)$).

В варианте схемы, предложенной в [7] для РЕТRA, χ =0.008 на энергии 16 ГэВ. Для предполагаемых условий эксперимента на ВЭПП-4М в области низких энергий (см. пример выше) величина χ на порядок больше. Кроме того, параметр краевой фокусировки половинки соленоида $2\chi^2/L_s$ (L_s =250см) сравнительно не так уж мал, поскольку его обратная величина близка к значениям β_X и β_Z функций в линзах L1 и L2 около места встречи (~100м). Это говорит о том, что приближение "тонких" магнитов будет выполняться в нашем случае хуже. Поэтому необходимо не только найти оптимальный по указанным признакам вариант схемы, но и исследовать соответствующие ему характеристики бетатронного движения и параметры пучка без использования предположения о малости возмущений.

2. Варианты для ВЭПП-4М

На Рис.1 показано поведение параметра Штеффена P(s) в экспериментальном промежутке ВЭПП-4М для значения эффективной длины соленоида КЕДРа $L_s \approx 250$ см, определенной по расчетному магнитному полю. "Магический" азимут, где P=0, находится внутри линзы L2. Рассмотрены несколько вариантов с учетом полученной зависимости P(s).

<u>В варианте #1</u> используется штатный skew квадруполь SQ1 (и зеркально симметричный с ним - по другую сторону от места встречи), расположенный между линзами L1 и L2;

<u>Вариант #2</u> предполагает размещение skew линз на свободном месте рядом с секступольным корректором S2 в непосредственной близости к L2;

<u>В варианте #3</u> пара тонких skew-квадруполей помещена внутри линз L2 на "магических " азимутах.

<u>Вариант #4</u> основан на повороте линз L2 вокруг продольной оси в противоположные стороны на угол $\eta << 1$.

Таким образом, варианты различаются по азимуту корректора, а оптимизация заключалась в подгонке его силы g. В варианте #4 $g=G\cdot L\cdot sin(2\eta)/HR$, где G,L градиент и длина линз L2.

В качестве критерия локализации связи выбран один из параметров преобразования Тенга [9], равный косинусу угла "симплектического поворота" φ, Согласно приложению **A**, вне участка локализации величина Ω=cosφ в

результате подгонки параметров схемы должна быть как можно ближе к единице. На самом участке Ω может принимать произвольные значения как больше, так и меньше единицы. При подгонке контролировались ширина резонанса связи Δv и остаточные возмущения в виде вертикальной дисперсии (D_{Z}) и угла поворота поперечного сечения пучка (Ψ). Рассчитаны равновесные размеры пучка по вертикали и горизонтали.

На Рис.2b показано распределение параметра Ω по азимуту (s) для случая без компенсации влияния соленоида КЕДРа с полем 2 кГс на энергии 1ГэВ. На участке соленоида функция Ω (s) имеет резкий пик. На основной части

кольца Ω =const<1. На Рис.2а построена соответствующая азимутальная зависимость вертикальной дисперсии D_z . Ее амплитуда недопустимо большая, поскольку сравнима с величиной радиальной дисперсии (~100см). На Рис.2с приведено распределение вертикального размера пучка по кольцу ВЭПП-4М $\sigma_z = (\sigma_{Z\beta}^2 + D_z^2 \sigma_E^2)^{1/2}$ в тех же условиях. Здесь $\sigma_{Z\beta}$ - бетатронный вклад в размер; σ_E – относительный раброс энергии в пучке. Вертикальный размер всюду одного порядка с радиальным, но в месте встречи примерно в десять раз меньше последнего. Ширина разностного резонанса связи рассчитана путем моделирования сближения парциальных частот вертикальных и радиальных бетатронных колебаний за счет изменения градиента поля в полукольцах и составляет $\Delta v \approx 0.05$.

Характеристики магнитной структуры и пучка в <u>варианте #1</u> приведены на Рис.3. В результате подгонки силы корректоров SQ1 параметр Ω близок к единице на всем кольце, за исключением участка с КЕДРом и скью-линзами, где он больше единицы. При этом ширина резонанса связи занулена (<10⁻⁴). Размер пучка по вертикали на кольце уменьшен на порядок по сравнению со случаем без компенсации, т.е. пучок стал плоским. В то же время размер в месте встречи практически не изменился (около 14 мкм) и очень близок к среднему размеру $<\sigma_Z >$ в полукольцах. Вертикальная дисперсия уменьшена до приемлемого уровня 5-10 см, который не сказывается заметным образом на результирующем размере пучка. Пучок немного развернут в поперечной плоскости, на разных азимутах по разному (см. Рис.5), но в месте встречи, в силу определенной азимутальной симметрии возмущения, он вытянут строго по горизонтали ($\sigma_{X*}=150$ мкм, $\sigma_{Z*}=14$ мкм).

Необходимый градиент поля в SQ1 составляет ±39 Гс/см (длина линзы 10 см) при поле $H_s=2$ кГс и энергии 1 ГэВ. Максимально достижимый по источнику питания и конструкции обмотки градиент поля в реальном корректоре 100 - 120 Гс/см. Поэтому технический предел по значению поля КЕДРа в данном варианте равен примерно 6 кГс.

Принципиально <u>вариант #2</u> мало отличается от варианта #1, так как в том и в другом случае место расположения корректора не совпадает с "магическим" азимутом. Однако в месте встречи вертикальный размер пучка оказывается в полтора раз меньше, чем в #1. Рядом со скью-линзой расположен секступольный корректор хроматизма. Это дает возможность компенсировать вклад в связь колебаний, вызванный вертикальным смещением равновесной орбиты в секступольной линзе, за счет дополнительного корректирующего воздействия скью-линзы.

<u>Вариант #3</u> есть точная реализация схемы Штеффена. Близок к нему <u>вариант #4</u> с поворотом линз L2. Компенсация влияния продольного поля детектора с помощью механических поворотов квадрупольных линз,

входящих в мини-бета вставку, применяется на установке CESR [10]. В нашем случае необходимый угол поворота линз L2 дается выражением

$$\eta[zpad] \approx 48.4 \cdot \frac{H_S[\kappa \Gamma c]}{L[cM] \cdot E[\Gamma \Im B]}$$

Вид азимутальных зависимостей вертикальной дисперсии, параметров Ω и ψ показан на Рис.4.

Основные характеристики рассмотренных вариантов для $H_s=2$ кГс, E=1 ГэВ отражены в таблице 1. Для сравнения приведены данные для случаев без компенсации (б/к) и компенсирующих соленоидов (к.с.). В варианте #4 $\eta=0.74^{\circ}$ (L=131 см). По уровню остаточных возмущений предпочтительным является вариант с поворотом линз L2. Вариант #2 обеспечивает минимальный по скью-квадрупольным вариантам вертикальный размер в месте встречи, отличающийся от прочих в полтора раза. С технической точки зрения в настоящее время без каких-либо переделок осуществим только вариант #1.

Во всех вариантах значение g, вычисленное из соотношения (1), отличается от g, найденного подгонкой, на одинаковый фактор (на 20%).

Таблица 1. Характеристики вариантов компенсации при E=1 ГэВ, H_S=2 кГс (градиент G эквивалентной скью-линзы дан для эффективной длины 10 см; размеры пучка рассчитаны без учета эффекта Тушека).

Вари ант	G кГс/см	Δv	∑ 1 смрад	Г 2 см _г рад	< σ z > мкм	б_{Z*} мкм	тахD_Z см
б/к		0.047	6.3·10 ⁻⁷	3.1.10-7	180	13	80
к.с.	_	0	7.5·10 ⁻⁷	0	0	0	0
#1	0.039	4·10 ⁻⁵	7.6.10-7	$1.8 \cdot 10^{-9}$	18	14	10
#2	0.040	$2 \cdot 10^{-4}$	7.6·10 ⁻⁷	$4.1 \cdot 10^{-9}$	27	10	15
#3	0.036	7·10 ⁻⁴	7.6·10 ⁻⁷	$4.1 \cdot 10^{-10}$	5	12	8
#4	0.039	6·10 ⁻⁴	7.6·10 ⁻⁷	5.7.10-11	4	13	6

Рис.2. Вертикальная дисперсионная функция $D_Z(s)$, параметр симплектического поворота $\Omega(s)$ и результирующий вертикальный размер пучка $\sigma_Z(s)$ как функции азимута для случая отсутствия компенсации влияния поля детектора величиной $H_S=2$ кГс на энергии E=1 ГэВ.

Рис.3. Характеристики магнитной структуры и пучка в варианте схемы компенсации #1 с использованием штатных скью-линз SQ1.

Рис.4. Характеристики магнитной структуры и пучка в варианте #4 с поворотом линз L2.

Рис.5. Азимутальная зависимость угла поворота пучка в поперечном сечении из-за связи колебаний в варианте компенсации #1 при $H_S=2$ кГс и E=1 ГэВ. *а* - с учетом остаточной вертикальной дисперсии; *b* - без учета вертикальной дисперсии.

3. Расчет размеров пучка со связью колебаний

При наличии в синхротроне сильной линейной связи колебаний равновесные поперечные размеры электронного пучка, а также угол его наклона в поперечном сечении к медианной плоскости (Ψ) можно находить различными способами [11-13]. В [13] соответствующие формулы получены путем замены переменных по Тенгу-Эдвардсу [9] в кинетических соотношениях, описывающих влияние синхротронного излучения, и имеют следующий вид:

$$\langle x^{2} \rangle = \sigma_{x\beta}^{2} + D_{x}^{2} \sigma_{E}^{2};$$

$$\langle z^{2} \rangle = \sigma_{z\beta}^{2} + D_{z}^{2} \sigma_{E}^{2};$$

$$\langle xz \rangle = \langle xz \rangle_{\beta} + D_{x} D_{z} \sigma_{E}^{2};$$

$$\sigma_{x\beta}^{2} = \beta_{1} \Omega^{2} \Sigma_{1} + (\gamma_{2} b^{2} + 2\alpha_{2} bd + \beta_{2} d^{2}) \Sigma_{2};$$

$$\sigma_{z\beta}^{2} = \beta_{2} \Omega^{2} \Sigma_{2} + (\gamma_{1} b^{2} - 2\alpha_{1} ab + \beta_{1} a^{2}) \Sigma_{1};$$

$$\langle xz \rangle_{\beta} = \Omega \cdot [(\alpha_{1} b - \beta_{1} a) \Sigma_{1} + (\alpha_{2} b + \beta_{2} d) \Sigma_{2}];$$

$$tg 2 \Psi = 2 \frac{\langle xz \rangle}{\langle x^{2} \rangle - \langle z^{2} \rangle}.$$

$$(2)$$

Угловые скобки означают усреднение по амплитудам и фазам колебаний частиц в пучке; Σ_1 и Σ_2 величины фазовых объемов для нормализованных по Тенгу переменных; α_j , β_j (j=1,2) – обобщенные параметры Твисса; Ω =cos ϕ - параметр симплектического поворота; а, b и d – элементы матрицы D·sin ϕ (см. приложение A):

$$D \cdot \sin \varphi = \begin{vmatrix} a & b \\ c & d \end{vmatrix}.$$

Хотя расчеты проводились с использованием общих формул для равновесных фазовых объемов в нормальных координатах, здесь они опущены ввиду их малой важности в рассматриваемых случаях локализации связи. Действительно, возбуждение бетатронных колебаний квантовыми флуктуациями излучения происходит в поворотных магнитах, т.е. вне участка с продольным полем и скью-линзами. Вследствие нулевой вертикальной дисперсии в магнитах размеры пучка по обоим направлениям определяются, в основном, радиальным фазовым объемом, величина которого при этом близка к той, что можно рассчитать обычным способом ($\Sigma_1 \approx \Sigma_X$ и $\Sigma_2 << \Sigma_X - cm$. Таблицу 1).

Для простоты вклад эффекта Тушека не учитывался. Он был принят во внимание лишь для оценки вертикального размера в месте встрече.

В месте встречи ($\alpha_1 = \alpha_2 = 0$) параметр $|b_*| \sim 10$ см в рассматриваемых случаях много больше $|d_*| <<1$. В силу симметрии здесь $D_{Z^*} = 0$. Поэтому размер пучка по вертикали практически полностью определяется величиной $|b_*|$:

$$\sigma_{z^*}^2 \approx \beta_{2^*} \Omega^2 \Sigma_2 + b_*^2 \Sigma_1 / \beta_{1^*} \approx b_*^2 \Sigma_X / \beta_{x^*}.$$
(3)

Ввиду важности описания поведения размера пучка в месте встречи с изменением параметров схемы компенсации, величины продольного поля и энергии частиц в Приложении **B** дан независимый способ вывода формул для поперечных размеров с использованием параметризации Тенга и метода моментов второго порядка.

Кроме того, полученные из расчетов на основе (2) соотношения легко проверить численно, пользуясь уже указанным свойством локализации связи или прибегая к сравнительно простому моделированию траектории одной частицы (трэкинг).

Первый из этих способов заключается в нахождении вертикального размера в месте встречи по заданному радиальному размеру в скью-линзе SQ на входе в участок локализации связи (общий метод точного решения подобной задачи изложен в [2]). Пусть вне этого участка существуют только радиальные колебания с фазовым объемом Σ_X . Повернутый квадруполь SQ переводит отклонение по X в угол по Z, возбуждая вертикальный фазовый объем (в комбинированном индексе XZ первый символ указывает "затравочные" колебания)

$$\Sigma_{XZ} \approx \frac{\Sigma_X \beta_X \beta_Z}{F^2},$$

где F - фокусное расстояние SQ; β_X и β_Z амплитудные функции в линзе. Соответствующий размер по Z в месте встречи равен

$$\sigma_{XZ^*} \approx \frac{1}{F} \sqrt{\Sigma_X \beta_X \beta_Z \beta_{Z^*}}.$$

Отношение полуосей эллипса, характеризующего поперечное сечение пучка в месте встречи, составит

$$\frac{\sigma_{XZ^*}}{\sigma_{X^*}} \approx \frac{\sqrt{\beta_X \beta_Z}}{F} \sqrt{\frac{\beta_{Z^*}}{\beta_{X^*}}}.$$
(4)

Аналогично, для случая, когда вне участка с КЕДРом возбуждены только лишь вертикальные колебания, отношение полуосей соответствующего эллипса равно

$$\frac{\sigma_{ZX^*}}{\sigma_{Z^*}} \approx \frac{\sqrt{\beta_X \beta_Z}}{F} \sqrt{\frac{\beta_{X^*}}{\beta_{Z^*}}}.$$
(5)

Площади эллипсов определяются произведениями

$$\sigma_{XZ^*}\sigma_{X^*} = \Sigma_X \sqrt{\beta_X \beta_Z \beta_{X^*} \beta_{Z^*}}$$

 $\sigma_{ZX*}\sigma_{Z*}=\Sigma_Z\sqrt{\beta_X\beta_Z\beta_{X*}\beta_{Z*}}.$

Физически эти эллипсы отвечают двум независимым нормальным модам, имеющим в общем случае эллиптическую поляризацию. Их прямое наблюдение в эксперименте возможно при резонансной раскачке пучка на собственных частотах. Изображение мод в виде последовательности точек положения частицы на плоскости X-Z для данного азимута легко найти моделированием ее многооборотного движения с фиксированными начальными условиями. Для одной из мод в качестве таких условий служит отклонение траектории по X-, а для другой - по Z-направлению на одном из азимутов синхротрона вне участка локализации связи. Эти отклонения траектории определяют собой величины фазовых объемов $\Sigma_{\rm X}$ и $\Sigma_{\rm Z}$.

На Рис.6 показаны нормальные моды в разных сечениях ВЭПП-4М, рассчитанные вышеописанным путем при $\Sigma_X = \Sigma_Z$ для варианта схемы компенсации #4. Эллиптическая мода в центре КЕДРа, наиболее вытянутая по горизонтали, связана с реальной формой сечения пучка. Площади эллипсов в месте встречи равны между собой из-за равенства фазовых объемов в соответствии с приведенными выше оценками. Отношение осей эллипсов по результатам трэкинга $\sigma_{XZ}/\sigma_X \approx 0.177$, $\sigma_{ZX}/\sigma_Z \approx 2.15$. Оценки по формулам (4) и (5) при F=1/g=86 м (Таблица 1) дают близкие значения с точностью порядка процента. Аналогично, из (2) следует

$$\frac{\sigma_{Z^*}}{\sigma_{X^*}} = \frac{|b_*|}{\beta_{1^*}\Omega_*}.$$

В варианте #4 из Таблицы 1 это выражение для отношения осей эллиптического сечения пучка приводит к значению 0.184 ($|b_*|=12.6$ см; $\beta_{1*} \approx \beta_{X*} \approx 69$ см).

Таким образом, тремя разными способами получены практически совпадающие результаты по определению геометрических характеристик пучка на участке локализации связи.

Рис.7. Вид эллиптически поляризованных нормальных мод поперечных колебаний в варианте компенсации #4 на различных азимутах: 0 - место встречи; -1 и 1 на азимутах -20 и +20 см относительно места встречи; 2 - на азимуте +40 см; 3 - край основного соленоида; 4 - в линзе L1; 5 - в полукольце.

4. Зависимость вертикального размера пучка в месте встречи от параметров компенсационной схемы

Согласно (1) сила корректора полностью определяется величиной поля КЕДРа и меняется прямо пропорционально вместе с ним. Задание необходимого тока в корректирующей обмотке (градиента поля в скью-линзе) при H_s =const не зависит от энергии частиц. Используя (3), запишем выражение для вертикального размера в месте встречи в виде

$$\sigma_{Z^*} \approx |b_*| \cdot \sqrt{\frac{\Sigma_X}{\beta_{X^*}}} = |b_*| \cdot \frac{\sigma_{X^*}}{\beta_{X^*}} = \left| \frac{db_*}{dH_S} \cdot H_S \right| \cdot \frac{\sigma_{X^*}(E)}{\beta_{X^*}}.$$
(6)

Здесь учтена линейная зависимость коэффициента Тенга b* от поля H_S и нелинейная, в общем случае, зависимость радиального размера σ_{X^*} от энергии частиц Е. На Рис.8 построена расчетная зависимость $\sigma_{X^*}(E)$ с учетом эффекта многократного внутреннего рассеяния в области низких энергий ВЭПП-4М для типичного тока частиц в сгустке ~ 1 мА. В варианте компенсации #1

$$\left|\frac{db_*}{dH_S}\right| \approx 7 c_M / \kappa \Gamma c$$

В других вариантах эта величина меняется прямо пропорционально с размером σ_{Z^*} из таблицы 1. С использованием данного коэффициента и уточненной зависимости $\sigma_{X^*}(E)$ рассчитана зависимость σ_{Z^*} от поля H_S при E=1.5 ГэВ (см. Рис.9).

Рис.8. Радиальный размер пучка в месте встречи как функция энергии, рассчитанный с учетом эффекта Тушека. 1- бетатронная часть размера; 2- полный размер, включающий вклад энергетической дисперсии.

Рис.9. Зависимость вертикального размера в месте встречи от величины поля детектора в варианте компенсации #1 (E=1.5 ГэВ). Пунктиром показан уровень для случая без поля с коэффициентом связи колебаний k=1/10.

Для сравнения пунктиром на Рис.9 показан уровень σ_{Z^*} , определяемый при $H_S=0$ слабой связью колебаний, при которой отношение вертикального и горизонтального размеров в полукольцах ($\beta_X \approx \beta_Z$) составляет k=1/10.

Таким образом, повышая поле в детекторе в условиях локализации связи скью-линзами, можно в значительной мере увеличить вертикальный размер в месте встречи, оставляя неизменным размер по горизонтали. Чтобы выяснить, можно ли при этом сохранить или поднять светимость за счет увеличения тока в пучках, необходимо провести соответствующие эксперименты и численное моделирование эффектов встречи. Особенностью рассмотренного способа управления поперечным размером в сравнении с известным методом "раздувания" пучка с помощью магнитных вигглеров является то, что он не приводит к изменению энергетического разброса частиц и радиального эмиттанса.

Заключение

Предложены и рассмотрены варианты локализации связи бетатронных колебаний на участке детектора КЕДР с продольным магнитным полем в электрон-позитронном коллайдере ВЭПП-4М на основе применения схемы Штеффена с двумя скью-квадрупольными линзами. Рассчитаны размеры пучка И другие параметры, характеризующие качество компенсирующего воздействия, с использованием параметризации Тенга. Показано принципиальное свойство схемы, состоящее в значительном увеличении вертикального размера в месте встречи в зависимости от уровня продольного поля.

Авторы благодарят Г.М.Тумайкина и Ю.А.Тихонова за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Я.С.Дербенев, А.М.Кондратенко, Препринт ИЯФ 72-68 (1976); ЖЭТФ, 64, 1918 (1973).
- 2. С.А.Никитин, Е.Л.Салдин, Препринт ИЯФ 81-19 (1981); Internal Report DESY L-Trans-290, April 1984.
- 3. А.А.Жоленц, В.Н.Литвиненко, Препринт ИЯФ 81-80 (1981).
- 4. S.A.Nikitin, NIMA 378 (1996), 495-498.
- 5. P.J.Bryant, CERN ISR-MA/75-26 (1975).
- 6. G.Guignard, LEP-70/75 (1978).
- 7. K.Steffen, Internal Report DESY HERA 82/11 (1982).
- 8. G.Ripken, K.Steffen and A.Wrulich, DESY M-VM 82/ (1982).
- 9. D.A.Edwards & L.C.Teng, IEEE, Trans. Nucl. Sci. NS-20, No.3, p.885.
- 10. A.B.Temnykh (private communication at the HEACC'98).
- 11. A.W.Chao, SLAC-PUB-2143, June 1978, (A).
- 12. В.Н.Литвиненко, Е.А.Переведенцев, Труды VI Всесоюзного совещания по ускорителям заряженных частиц (Дубна, 1978), т.II, с.285.
- 13. А.А.Жоленц, Препринт ИЯФ 78-51 (1978).
- 14. V.A.Kiselev, S.A.Nikitin & I.Ya.Protopopov, HEACC'98 (XVII Int. Conf. on High Energy Accelerators, Dubna, 1998), p.103.

<u>Приложение А</u>

Параметры Тенга

Периодически зависящая от азимута "однооборотная" матрица 4х4 T(s), удовлетворяющая известному условию симплектичности T^T·S·T=S (индекс "T" – транспонирование; матрица S есть 4х4 версия матрицы 2х2 того же обозначения, выписанной ниже) на произвольном азимуте циклического ускорителя со связью колебаний может быть приведена к матрице U с нулевыми адиагональными блоками с помощью "поворотной" матрицы R [9]:

$$U = \begin{vmatrix} A & 0 \\ 0 & B \end{vmatrix} = R^{-1} \cdot T \cdot R,$$

$$R = \begin{vmatrix} I\cos\varphi & D^{-1}\sin\varphi \\ -D\sin\varphi & I\cos\varphi \end{vmatrix}.$$

Здесь A, B и D - 2x2 унимодулярные матрицы, причем, A и B записываются в форме Куранта-Снайдера:

$$A, B = I \cos \mu_{1,2} + J_{1,2} \sin \mu_{1,2};$$

$$J_{1,2} = \begin{vmatrix} \alpha_{1,2} & \beta_{1,2} \\ -\gamma_{1,2} & -\alpha_{1,2} \end{vmatrix}.$$

Набеги фаз $\mu_{1,2}$ связаны обычным путем с собственными числами матрицы U (=собственным числам матрицы T вследствие подобия матриц). В нормализованном фазовом пространстве величины $\alpha_{1,2}$, $\beta_{1,2}$, $\gamma_{1,2}=(1+{\alpha_{1,2}}^2)/\beta$ выполняют роль параметров Твисса, как в системах без связи колебаний. Если определить T в виде

$$T = \begin{vmatrix} M & n \\ m & N \end{vmatrix},$$

то имеем известные соотношения

$$D = -\frac{m + Sn^T S^T}{(\cos \mu_1 - \cos \mu_2) \sin 2\varphi}, \qquad S = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix},$$

$$\cos \mu_1 - \cos \mu_2 = Sp(M - N) \left\{ \frac{1}{4} + \frac{2|m| + Sp(nm)}{[Sp(M - N)]^2} \right\}^{1/2},$$

$$\cos 2\varphi = \frac{Sp(M-N)}{2(\cos\mu_1 - \cos\mu_2)} = \frac{Sp(M-N)}{Sp(A-B)} = \frac{1}{2} \left\{ \frac{1}{4} + \frac{2|m| + Sp(nm)}{[Sp(M-N)]^2} \right\}^{-1/2}$$

Из последнего следует, что $\cos 2\varphi = 1$, если связь полностью отсутствует (А совпадает с M, а B с N). Действительно, $\cos 2\varphi$ равен отношению разности шпуров блочных матриц 2x2, расположенных на главной диагонали "однооборотной" матрицы перехода 4x4, к удвоенной разности косинусов набега фаз нормальных мод бетатронных колебаний. Очевидно, что в ускорителе без связи колебаний эта величина тождественно равна единице, т.к. нормальные колебания совпадают с обычными взаимно ортогональными модами. Удобно использовать параметр $\Omega = \cos \varphi > 0$. Чем ближе друг к другу исходные парциальные бетатронные частоты, определяемые настройкой фокусировки в отсутствии связи колебаний, тем заметнее будет отличие Ω от единицы при наличии связи.

Выбор знака Ω связан с выбором положительного знака перед квадратным корнем в выражениях для ($\cos\mu_1 - \cos\mu_2$) и $\cos^2\varphi$, поэтому, формально, $-\pi/4 < \varphi < \pi/4$. Вводимое таким образом знаковое соответствие между ($\cos\mu_1 - \cos\mu_2$) и Sp(M-N) помогает в идентификации нормальных мод при вычислениях. Необходимо отметить одно интересное свойство, не указанное в оригинальной работе [9]. В зависимости от особенностей магнитной структуры величины $\cos^2\varphi$ и Ω могут быть меньше (φ - действительный угол) или больше единицы (угол φ мнимый). Последнее, однако, не приводит к появлению мнимых выражений при вычислении матриц A,B и связанных с ними обобщенных параметров Твисса. Поскольку

 $A = M - D^{-1}m \cdot tg\varphi,$

 $B = N + D \cdot n \cdot tg\varphi,$

то мнимость исчезает в результате перемножения $D \propto 1/\sin 2\phi$ и tg ϕ . В последних двух формулах нет зависимости от знака Ω , т.к. они содержат Ω^2 . Сам по себе угол ϕ не имеет физического смысла с учетом имеющейся для него возможности принимать мнимые значения.

Первая степень Ω входит в выражения для декрементов радиационного затухания [13]. Это значит, что при использовании преобразования Тенга в кинетических соотношениях выбор знака соѕф не носит произвольный характер. Знак Ω должен быть всегда положительным, что можно доказать методом от противного. По определению, матрица R производит преобразование вектора Y=(x,x',z,z') в вектор V=RY. Если допустить $\Omega=\cos\phi=-[(1+\cos 2\phi)/2]^{1/2}<0$, то в предельном переходе $\cos 2\phi \rightarrow 1$ (случай отсутствия связи) вектор V будет стремиться к –Y, т.е. Y меняет знак, что недопустимо.

<u>Приложение **В**</u>

Упрощенный вывод формул для размеров пучка

Независимым путем найдем общий вид (2), не прибегая к явному использованию функции распределения. Пусть V=(u,u',v,v') - вектор нормализованных орбитальных переменных, связанный с исходным вектором X=(x,x',z,z') преобразованием Тенга: X=RV. Дисперсии компонент тензора X_iX_i (моменты второго порядка функции распределения) запишем как:

$$\langle x^{2} \rangle \approx \Omega^{2} \langle u^{2} \rangle + d^{2} \langle v^{2} \rangle + b^{2} \langle v^{\prime 2} \rangle - 2bd \langle v^{\prime}v \rangle,$$

$$\langle z^{2} \rangle \approx \Omega^{2} \langle v^{2} \rangle + a^{2} \langle u^{2} \rangle + b^{2} \langle u^{\prime 2} \rangle + 2ab \langle u^{\prime}u \rangle,$$

$$\langle xz \rangle \approx \Omega \Big[-a \langle u^{2} \rangle + d \langle v^{2} \rangle + b^{2} \langle v^{\prime 2} \rangle - b \big(\langle v^{\prime}v \rangle + \langle u^{\prime}u \rangle \big) \Big]$$

Перекрестные члены типа (uv) и (u'v) отброшены, так как в большинстве практических случаев из-за разницы собственных частот Q_1 и Q_2 фазовое расхождение между модами за характерное время релаксации τ (время радиационного затухания в единицах периода обращения) достаточно велико: $|Q_1-Q_2|\cdot\tau > 1$. (В случае "круглого пучка", вырожденного по собственным частотам, влияние перекрестных членов может оказаться не мало. В [13] функция распределения по нормализованным координатам используется в виде произведения функций, относящихся к отдельным модам, и поэтому корреляция мод в принципе не предусмотрена.)

Параметризация Тенга-Эдвардса приводит к полному разделению переменных, при котором энергия колебаний каждой моды сохраняется. Используя выражение для энергии в обычной Курант-Снайдеровской форме

через обобщенные параметры Твисса, найдем, что, как и в случае ортогональных координат,

Величины Σ_j (j=1,2) играют роль равновесных фазовых объемов, а коэффициенты C_j – амплитуд нормальных колебаний, записываемых как $C_j \cdot \sqrt{\beta_j} \cdot \cos \Phi_j$. Очевидно, что отброшенные корреляционные члены будут пропорциональны величине $(\Sigma_1 \cdot \Sigma_2)^{1/2} \cos \varphi$, где $\varphi(s)$ - разность фаз нормальных мод с близкими частотами, определяемая начальными условиями их возбуждения квантовыми флуктуациями на данном азимуте s. Нетрудно видеть, что из полученных соотношений следуют формулы (2).