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ABSTRACT

Correction ~ & to orthopositronium decay rate is calculated, which

appears as square of the one-loop correction to the decay amplitude.
Its relative value is equal to 28.8(2)(a/7)>.

(© Budker Institute of Nuclear Physics, Russia

The measured value of orthopositronium decay rate is equal to [1]
Terp = 7.0482(16)us™!.

At the same time, its theoretical value (including corrections ~ (a/7) and
~ a?log a) is firmly established [2, 3, 4, 5, 6, 7): '
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To explain the difference between them by (a/ w)g—cnrrectians, the factor
at (a/7)” should be as large as 250(40), which is very unusual for QED. To
remove this discrepancy would be of importance for clear understanding of
the relativistic bound—-state problem in QED.

However, there exists at least one contribution of the second order with a
large coeflicient at (a/7)?; it arises when we square the one-loop correction to |
the annihilation amplitude. Naive estimate of this contribution is 26.4(a/7)?
7] (here factor 26.4 appears as (10.28/2)%); it will be shown below that this
estimate is in fact the lower bound for contribution under consideration. The
subject of the present paper is to compute this contribution accurately.

"To do this, the amplitude of annihilation has been computed, as distinct
from all the previous works where the width was calculated. After obtaining
this amplitude as a function of the polarizations and energies of photons and
the polarization of positronium, we can get quadratic one-loop contribution
to the width in a trivial way. It is convenient to use three-dimensional
transverse polarizations. Since only limited precision is necessary, it is enough
to calculate the amplitude at only a few frequences of photons. For checking
of the amplitude obtained, it is convoluted with the zero—order amplitude;
the result coincides with the first—order correction to the width, as it should
be. ;

Feynman graphs, which contribute to the first order annihilation ampli-
tude, are presented in Fig.1. In the previous works it was shown that graph
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(b)

Fig. 1

(f)

(a) includes also zeroth order amplitude arising as term ~ a/v. It is enough,
to the first order in a, to evaluate all the graphs, except (a), for initial
particles on mass shell and with zero momenta. Contribution of graph (a)
is correctly included if we calculate this graph putting the external legs on
mass shell (with non-zero momenta) and then convolute the result with the
Coulomb wave function of the initial state, as was shown in [4]; the result
of this calculation coincides with the. result of*[5], where relativistic bound
state was described in the zeroth approximation by an exact solution of the
Bethe—Salpeter equation with modified kernel [8].

Calculating the amplitude on mass shell we may choose an arbitrary
gauge; in the present paper the Feynman gauge was used. In it infrared
divergences arise in contributions of graphs (a),(b),(c),(d); however, they
easily may be separated analytically [3], and cancel each other in the sum of
all the graphs. In [5] the one-loop correction to the width has been calculated
in Coulomb gauge, for which infrared divergences do not appear at all in the
problem under consideration.

Contribution of graph (b) has been evaluated using the known expression
for one-loop mass operator [9]; that of the {¢),(d) using expression for one-
loop vertex as two—dimensional integral over Feynman parameters ( numerical
integration was carried out by Monte-Carlo procedure). Ceontribution of
graph (e) has been found by taking residues in the zeroth component of
loop momentum followed by the numerical integration over remaining space
components. Graphs (a) and (f) have been evaluated by two methods: using
Feynman parameters, and with direct momenta integration; the obtained
numerical results are consistent. The term ~ a/v in the contribution of
graph (a) has been separated in a way similar to that of [3]. The Pauli-Villars

‘regularization was used when calculating contribution of graph (f). When

summation over polarizations of finite photons was carried out covariantly,
we rederived contributions to the width, for each of the diagrams separately,
obtained in [3].

The numerators of integrands in the Feynman integrals are known to be
polynomials in the loop momenta. When the Feynman integrals are calcu-
lated in the usual way, these polynomials are found analytically, taking traces
of products of y—matrices and propagators. In this paper, however, analytical
expressions for numerators are not used when integrals are evaluated by direct
momenta integration. Instead, the Fortran program calculates coefficients at
corresponding polynomials starting immediately from the y-matrix structure
of the numerator. While following Monte-Carlo integration, symmetrization
of the integrand over substitutions k; — —kz, ky — —ky, k; — —k, was
done to improve the convergence; the numerator polynomial was formed in
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such a way that this symmetrization demanded only small extra computer
time. s

The amplitude obtained as a function of photons energies (iheir set we
denote by w), their polarizations, and polarizations of positronium(the set of
polarizations is denoted by #), may be written in the following way :

M(,i)'= Mo(w, )fo(@)(1 - ale/m) + fi(@)a/n)] + (a/m)Ma(w, ) @;

where fo(w), fi(w) and polarization tensors Mo(w, i), Ma(w,1) are defined
so that

Zi Mﬂ-(w!i)Mﬂ(wj i) :1, . z' Mg(w, i)ﬂr{ﬂ(w’ i) : 11
> Mo(w, ))Ma(w,i) =0, _
[fo@)fi(@dw=0, and [fFwdo=1.

Then g = 5.14, and

T = Tol(t - 20(a/m) + (o/n)715? + [ F@o+ [ Bl @)

Hence we see that g2 = 26.4 is indeed the lower bound for the coefficient
at (a/m)” in the width. In fact, the result of the present work is the values
for the second and third terms at (a/7)* in (2) . They contribute to width
0.?5(5)(&/1)3[‘9 and 2.15(15)(a/ﬂ)2l“u correspondingly. Although precision
of calculating of the one-loop amplitude was not large (and corresponds to
the error of 0.2(a /) in the width), we may employ value of g known with high
precision from previous works [3, 5]. Then error in amplitude corresponds in
fact to errors in f; and fo. As fi and fo give to amplitude the contribution
essentially smaller than that of g, the error in amplitude squared is as small
as 0.2(a/7)°.

Thus, the final result for considered contribution to the width is 28.8(2)
(a/7)’Tg, that differs from naive estimate 26.4 by less then 10%.

We would like to note some fact concerning polarization dependence of
the obtained correction to amplitude. This dependence for contributions of
graphs (a) and (f) approximately.coincides with the polarization dependence
of the basic amplitude My (i. e. these graphs contribute to g and f; in (1),
but their contributions to fo is much less). The polarization structure of
contributions of graphs (b), (¢) and (d) differs essentially from Mp, but this
difference almost cancels in their sum. As to graph (e), the situation is
opposite: although after the three—dimensional transverse summation over
polarizations of final photons its contribution to g and f, is rather small, fo
originates mainly from this graph.
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Taking into account symmetry under the permutation of photons, it
is enough to consider the frequences of photons, satisfying the condition
2- w1 —wy = w3 < wy < w; (this region is presented in Fig. 2a; we re-

fer to it as region C). Respectively, the differential width dwfgwg is defined
in such a way that the integral of it over region C is equal to the full width.
This reads wafm

dT g
i _I‘DZM (w, 1),

; 1
W2 = W3
/ Frdwidws = 1. ¥ é
[

Function fi(w)fo(w) contributes to the differential width in order «, and
fi(w) + f3(w) in order a®. In the Table 1 the values of functions Fy(w) =
= 1()fo(w)/6 and Fyw) = (f(w) + f3(w))/12 ate given at 22 points,
which are positioned in (wy,w;) — plane as represented in Fig.2b, 2¢. Here

w1 = Wy
N is the label of each of the points in the Fig.2b,2c. For F)(w) the result 3 e
obtained is in agreement with the differential width of the first order, quoted 1 g
in [5]. Below we denote w, = 0.99m, wp = 0.9Tm. Fig.2a

(dashed region is C: w3 < ws < w)

To illustrate obtained results for the amplitude, let us write down its
values (for the set of independent polarizations) for few sets of energies w;,
o, Wa:

We define the amplitude in the following way.

If we choose the polarizations of the final photons to be three-dimensionally
transverse, then the amplitude at any point in the (w1, wg)-plane represents a
set of 24 quantities. For each of the three photons we choose two independent
polarization vectors so that one of them lies in the same plane as photons
momenta, the other being transverse to this plane. Similarly, the three inde-
pendent positronium polarizations we choose so that two of them are in the
decay plane, the third is transverse to this plane. It may be easily shown that -
under this choice only 12 of 24 amplitudes differ from zero (those of them,
for which even number of polarization vectors lies in the decay plane). If we
widen energies change region to all sets of wy, wy, we obtain two independent L A
amplitudes.

Explicitly, let us define qi, q3, g3 to be momenta of the photons 1,2,3,
4 + 92 + g3 = 0, €] to be’their polarizations ( @ = 1,2 refer to two inde-
pendent polarizations for each of the photons, j = 1,2,3 refer to different
photons). Let us choose coordinate frame in such a way that q; is directed




along the axis z, qs lies in (z,y)-plane, and g3y > 0. We denote coordinate
unit vectors as ng, ny, n,. Then, our choice of independent polarizations
reads

- 200
E%=E%:E%=B;, El—"'—ny,
il
E% = NzQay —NyJ2r, €3 = Ngq3y — Dyq3z.
The independent polarizations of positronium, ej , are choosen merely as

follows: e; = iy, ef, = ny, €5 = n;. Let us to write down the values of

P
My(i) at three points: 1. w) =wz =wq, 2.W) =W, W2 = Wa = wy /4,
3. w1 = wg — w6, wa =w;s—wp/8 (in Fig.2b these are points 11,15, 4 re-

spectively); these values are referred as A, B,C, and are given in Table 2.

Table 2

t, | 12 | i3 | ip A B e
1(1(1}]3]|-042| -032 | —-0.53
| b Ll 3 g dok 5 2 B B 0.01 0.00
1111212 000  -0.07}| -0.09
11211111 -040| 0.12 0.21
1 {21112 -024] -0.53 | —-0.28
2L 1111 D4l 0.31 0.48

S B g B e R 0.13 0.23
21211131 023 |-0.28] —-0.07
201 1384 04l 0.565 0.48
1121213 ]|-006}| 007 0.26
21211211]|-015]| 0.01 0.00
o B8 G N st e 0.31 0.07
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