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ABSTRACT

The longitudinal and transverse wake fields induced by
a charge moving inside cylindrical dielectric canal are
obtained analytically. Simple formulas for wake potentials

are presented.
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1. INTRODUCTION

_ A charge moving along a dielectric tube awakes Che-
renkov fields. The problem of calculation of such fields and
connected with them forces is reduced to obtaining the
longitudinal electrical field E. The transverse force ?J_ is

determined by well known Panofski-Wentzel formula:

it d

Fy ! J Eei i dzl. (1)

dar,
The fields are calculated further by means of

Fourier transformation method.

2. LONGITUDINAL WAKE POTENTIAL

For the beginning let us derive the fields induced by a
point charge travelling along the axis of cylindrically
symmetric dielectric canal, presented in Fig. L .The outer
surface of the canal is covered by ideal metal. We assume

that the bunch velocity is equal to that of light.
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Figure 1. Dielectric canal.

Using Maxwell equations and boundary conditions one can
find Fourier component for Ilongitudinal electric field on

the axis of a tube (in vacuum) [1]:

diVie e 1

5 Zo 2¢c
where 2 = k ve -1.

Functions Zo and Zi1 can be described by Neiman (No, Ni) and

Bessel (Jo, Ji1) functions, so that

Z1 _ Ni(eea)Jo(aeb) - No(=b)Ji(z=a) (3)
Zo  No(ea)Jo(eb) - Nolaeb)Jo(ezxa) ° -

When za » 1 the asymptotic expression for (3) is given by

% = ctg(e(b-a)) . (4)

The field E(z) is calculated by reverse Fourier trans-

formation of (2):

-ikz dk
2T

B J E(k) e

The sign of the distance z is determined so that behind the
charge 2z » 0.

The contour of integration is lying abnveé all
singularities of E(k), hence, the -causality princiljle is
provided:
at 'z < 0

E(z) =0,

When moving the contour of integration to lower half-plane

(at z > O ) it catches the poles, lying on the real axis,
where -

£1  >a

FOe i e

The number of poles is infinite and all of them are simple
and located on the real axis. The poles that give dominated
contribution into integral are concentrated in the region
Suppose that

28 B (5)




one can use asymptotic expression for Bessel - functions

(4). The derivative of the denominator in the pole is

2
d 2a ) _ za)’) a2
EE[ ctgle(b-a)) - E] = -(b-a) [1+[28] ] 5 - (6)
At the distances small enough, when
Akz = = el (7)
(b-a)ve - 1

the phases of neighboring addenda differ not too much and
the sum of series can be changed by integral. If the di-
electric layer is sufficiently thick | |

b=-a > 5e | (8)
the result of integration does not depend on outer radius b

and can be presented by the next f ormula [1]:

Elz) = - &-5 e_Z/S , (9)
a
where s is the effective length
5 — % : (10)

One can see that there is some contradiction between last
obtained formula (9) and initial expression for the field
Fourier component (2). Namely, the formula (9) gives nonzero

integral above the infinite z-axis, that does not correspond

to condition

T dz E(z) = B[ .| "= 0 (11)
. |

Consequently, calculation of wakefield for distances
more than effective length s demancis. taking into account
second approximation in the expansion of (2) by means. of
small parameter 1/(2¢).

It is possible, however, to come to re'quired result
from another side. For the sufficiently thick dielectric
layer (7, 8) the value of its “outer radius b does not
matter, hence, in such case the field Fourier component may
be taken from calculations when b is infinite. This Fourier
component differs from (2) only by change of Bessel func-
tions: instead of vanishing on outer radius linear combi-
nation of converging and diverging cylindrical waves (func-
tion Z) one have to take the diverging wave only (Hankel

function Hm}.' Therefore, in such formulation of the

problem
2 S 1
A 2¢€ (1) i
H (ea)
1 o dza
(1) a2
Hu (zea)
~iqQ¢
i ~ikz dk 21 = dq
E(z) J'Eke = : J e = q)
Ea it
Hﬂfq), 2
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When contour of integration (13) is shifting down to the
lower half-plane of complex g it catches there not the
infinite sequence of poles, but the cut along negative part
of imaginary axis and the only pole qp which is situated
there .too: (Fig. 2): _

iR = Pie (15)

| Im(q)

I Re(q)
Qp QT>

Fig. 2. Contour of integration.

Thus the integral (13) is presented as a sum of two

contributions

E(z) = E (2) + E (2) .
be, i

Let us consider the pointed contributions to integral
(13) separately.

As concer‘niﬁg pole contribution one can see that an
asymptotic expansion of Hankel functions for the large value
of argument here permits to calculate it to an arbitrary
precision. The first approximation gives result presented
above (9). Taking into account the second member of the
expansion permits to obtain more precise value for the pole

contribution in the integral (13) Ep{z):

4 : 1 ~7 /50

Ep(z)=—a—z[l+$€-]e ) (16)
S eouy s BlE S e ey (17)
4g 2€ 4 £

The cut contribution, as it can be seen from (13), has
in the comparison with .the pole one an additional multiplier
172e. This is the reason for the sufficiency of the cut
contribution calculation only in the first approximation in
terms of this small parameter. | In order to do it one can
take into account that the values of Iintegrated expression
at . opposite edges of the cut differ significantly only at
q <1 - in another case the difference becomes exponentially
small. The first consequence from this circumstance 1s the

sufficiency of taking into account only Hankel function




quotient in the integrated expression denominator, without
small term " g/2e. The second one is the cut contribution
independence on the distance { at ¢ « 1. This contribution
can be noticed to be connected with the second approximation
of the pole contribution: the sum of them gives the
corresponding correction -to the wake field jump at z = O.
This jump may be easily obtained with absolute precision
from the field Fourier component E(k) behavior at k-»w. The
result (9) as one can be convinced is in the exact
accordance with this asymptotic behavior, therefore the cut

contribution Ec at

i B
is:

C i g
£a

In the opposite case, when ¢ » 1, the integral along the
cut is mainly concentrated in the region of more smaller
arguments |q| < é « 1 what allows one to use Bessel function
expansion at small values of argument. After this procedure
the integration becomes quite simple and gives the following

result at: .

zom aviie i~ ] e w (B
Biigfiea e il (19)
c 2
EZ
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Limiting cases expressions (18, 19) permits one to
describe the cut contribution by some approximate formula
which is valid with rather good .accuracy for all distan-(:es
and exactly gives obtained expressions (18, 19) in corres-
ponding limiting cases. The simplest formula seems to be:

1

EC(Z] = Cz [20}

2
a e (1 + 5 )
with the corresponding result for the whole longitudinal

wake field (13):

E(z) = - — - Hhiis t2A R
2

2
a z

T il

4 [ 1 ] -z/So 1
1 e
4¢e

de |1 +

959 )

For obtaining the accuracy of the approximation (20, 21) in
the intermediate case ¢ =~ 1 one can use the known value of
the total integral (11), what means the mutual annihilation
of integrals from pole and cut contributions. The precision
of such annihilation is the measure of the obtained formula
(21) accﬁraey at . C =] where the main part of the integral
over distance from the cut contribution is concentrated.
Denoting the corresponding contributions in (11) as Ip and

IC one can obtain:

I 2v2

Therefore the accuracy is about 117%.
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The analytic expression for the 1qngitudinal wake field
potential in a dielectric canal (21) was compared with the
resul{s of the numerical simulations for this electrodyna-
mical pmblem..The accuracy of the correspondence is illust-
I"ated in Fig.3. The solid line demonstrates the numerical
result, dotted - analytical one. The. narrow bell corresponds

to the bunch density.
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Fig. 3. Longitudinal wake field.
The energy losses of a bunch with density p(z) after

passing the dielectric canal of length L is

2

i
e

AE = sz dz plzlplz"] Wilz-z) .,
where iy
Wiz) = E(z) L ,

is the canal wake potential. Supposing a bunch density to be
Gaussian:

2

Exp[_ Z ]
2
p(z) = N 20 ;
V2n o

one may calculate analytically its energy losses in  some
limiting cases.
If the bunch is shorter then characteristic length s,

o S
then

AE = —— .

In another case with
5 & 0 & ave-1 ,
one can obtain
! 2IN%e* s
a® Vo

In the conclusion of this chapter let us say some words

AE =

about the field behavior at very long distances

z > (b =alve .
For such consideration one have to return to the initial
field presentation as a sum of _contributinné from infinite

series of poles. In our case when 2e » 1 poles are situated
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almost equidistantly: the contribution of high harmonics

where the
)
| 2¢
- proximate equidistance means the approximate periodicity of

with a » Z2e, equidistance is broken, is

suppressed as ( )2, that can be seen from (6). Such ap-
‘the field with the period }lﬂ equal to wavelength of the
‘lowest harmonic

~ 4 (b - alVe .

The violation of equidistance corresponds to super slow

oscillations in the element of field periodicity; the more

faster
Fig.4,

the harmonic number, the oscillations. The field

behavior is  illustrated  in where electric field

. lines are pictured for two values of dielectric constants.

Dielectric
1
= /il

Fig. 4 Electric field lines for different dielectric
constants.
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3. TRANSVERSE WAKE POTENTIAL

In agreement with Panofski-Wentzel formula (1) the
problem of transverse wake force calculation is reduced to
obtaining the longitudinal electric field Em. The calcula-
tions for some multipolarity m are carried out in the close
analogue with the axially symmetrical case considered above

and the results are:

Fourier component of longitudinal field E is

411 . 5
G e (2) . (22)

m+1 c+]
H xa)
% m+1{ : xxa

H (za)  (m+1) (e+l)

m

VR

where I

is the multipole moment of the charge
i T

. Jp[?‘) rcos(ms) dr .

Pole contribution to longitudinal wake field is

2m+1 ] Eﬂz/s'm ( g ]m.{23]

o P T Slm+1)(e+])

47 (m+l1)
= [1
a

Sm =

ay. B 5.4 [1 2m+] ] : - (24)

(m+l)(e+1) |- T 2(m+1)(e+D)

< A T

Cut contribution for & =

15




i ) Z2m+1 r
T m m
Emc{z] o am+2 2(m+1)(e+1) ( a ) ’ (25)
and for Gid]
47
m m ! m
E_(2) = (-1) (2m+1) ( g }7(26)

m+2 2m+2
a (4 (

£+1) 22"‘ m! m!

Complete wake field (like for m=0) is the sum of

contributions:

E =F i o ;
m m D mC
Using (1) one can obtain, in the particular, the expression

for the dipole transverse wake force F1 (m=1):

for &

i
A
jo—

31
ol e s | @
and if z « sl
JA )l = SIlz [28]
sy 4o
and for C » 1 i
: ZJIII[e—l]2 :
FI B e (29)
z (e+1)

The comparison between analytical solution (27) and

numerical results for effective gradient of dipole wake

potential

16
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G=EFE/I,

is presented in Fig. S5, where solid lines demonstrﬁte
numericél results and dotted lines demostrate analytical
ones for two values of dielectric constants: &£=6 (upper li-
ne) and £=2 (lower line). The narrow bell corresponds to the

bunch -density.
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Fig. 5. Transverse wake field.
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