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ABSTRACT

Statistical theory of spectra formulated in terms ol
random matrices is exiended to unstable states. The
energies and widths ol these states are treated as real
and imaginary parts ol complex eigenvalues for an
effective non-hermitian Hamiltonian. Eigenvalue statis-
tics are investigated under simple assumptions. 1 the
coupling through common decay channels is weak we
obtain Wigner distribution for level spacings and
Porter — Thomas one for widths with the only excep-
tion of spacings less than widths where level repulsion
fades out. Meanwhile in the complex energy plane the
repulsion of eigenvalues is quadratic in accordance
with T-noninvariant character of decaying systems. In
the opposite case of strong coupling with continuum %
short-lived states are formed (& is the number of open
decay channels). These states accumulate almost the
whole total width the rest of states becoming long-
lived. Such a perestroika corresponds to separation of
direct processes (a nuclear analogue ol Dicke coherent
superradiance). At small channel number, Ericson
fluctuations of cross sections turm out to be sup-
pressed.

The one-channel case is considered in detail. The
joint distribution of energies and widths is obtained.
Average cross sections and density of unstable states
are calculated.
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1. INTRODUCTION

Statistical methods are now getting deeply insight into physics
of real quantum systems. It is caused by structure uncertaincies of
systems under consideration (for instance, disordered solids or
atoms in random external fields) as well as by complexily of wave
functions. The latter can take place not only in many-body systems
but, at some conditions, even for small number of degrees ol free-
dom. Statistical properties of a quantum system turned out to be
profoundly interrelated with dynamical stability of phase space
trajectories of a corresponding classical system.

One can schematically subdivide existing statistical approaches
[1] into global and local ones. Theories of the first kind deal with

- wide energy regions. The main statistical quantity here is the level

density p,(£) for given energy E and other exact integrals of mo-
tion f. Tt results in the coarse grained description using usually
thermodynamical concepts. Actually, one should take an ensemble
average over typical eigenstates of the given Hamiltonian. The Bohr
idea of compound nucleus [2] is an excellent example.

In the local-type approach [3] a sequence of closely spaced
levels is considered and the main subjects of interest are correla-
tions and [luctuations of quantities relating to specific states. As for
regular dependence of state properties on excitation energy, it is of
minor importance here. This field can be naturally referred to as
statistical spectroscopy [4]. Its extensive development was initiated
by pioneering works of Wigner [5] and Dyson [6] although empiri-
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cal studies of local regularities have been started long before [7].
Usually one considers statistics of energy levels and matrix ele-
ments of simple operators [8]. The progress in this area has pro-
vided us with understanding of difference between regular and
stochastic quantum systems as connected with quasi-periedic or
ergodic behaviour of corresponding classical systems [9—11].

The random matrix theory [3, 6, 12] proved to be an adequate
tool for investigating local statistics of quantum states. This way
implies higher degree of abstractness in comparison with Gibbs
thermodynamics and allows to reveal the most profound properties
determined by general features of dynamics (hermiticity, unitarity,
T-invariance) rather than by specific details. Stochasticity of motion
gives rise to the hypothesis of equivalence of basises in the space of
states. 1t means that the distribution function of matrix elements of
a Hamiltonian is invariant with respect to orthogonal transiorma-
tions. Thus, one obtains the Gaussian orthogonal ensemble (GOE)
of random real symmetrical matrices which gives a good description
of stochastic motion in actual systems (for example, isolated neut-
ron resonances in nuclei) as well as in model calculations. Lifting
the T-invariance restriction one comes to the Gaussian unitary
ensemble (GUE) of complex hermitian matrices. As it well known
GOE and GUE predict respectively linear and quadratic level repul-
sion at small spacings. The repulsion reflects possibility of level
crossing only on a manifold of zero measure in the space of random
matrix elements.

Actually, excited states of physical systems have a finite lifetime.
An unstable state is created by an external field and decays after-
wards via open channels. Strictly speaking, above-mentioned stan-
dard Gaussian ensembles are applicable to discrete stationary levels
only. The influence of coupling with continuum on the properties of
internal states has not been sufficiently understood up to now. In
fact, such effects have being considered only in some numerical cal-
culations (see e.g. [13]) of nuclear reactions. On the physical
grounds, one should expect that even in the case of separated reso-
nances (I'/D<«1) the level statistics will be modified due to insta-
bility. In particular, one can guess that the level repulsion at small
distances <CI' should be washed out. The remote classical analog
for this phenomenon is the possibility of intersection of «corridors»
originating from noncrossing phase space trajectories of conserva-
tive motion as a result of dissipation. In the opposite case of overlap-
ped resonances (I'/D=1) the whole pattern is set by the openness
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of a system, namely by external mixing via continuum [14]. This
situation is new for statistical spectroscopy.

Since unstable states emerge as intermediate ones in various
reactions, the complete statistical description calls for extra hypo-
theses concerning reaction amplitudes. Assuming that the decay of
the internal state n into the channel a performs an analysis of a
complicated wave function and extracts the modulus squared |A%|*
of its component matched to this channel, one can as well obtain
the distribution of decay probabilities within the scope of the Wig-
ner — Dyson theory. In such a way, the Porter — Thomas distribution
[15] for neutron widths of isolated resonances arises in good agree-
ment with experiment [l]. In contrast to this approach, we use
below independent statistical assumptions on internal states and
decay amplitudes. For separated resonances nevertheless, we come
to the same Porter —Thomas width distribution. :

For years statistical reaction theory and statistical spectroscopy
were being advanced practically independently. Only recently the
progress was achieved in the direction of combined description of
reaction amplitudes and cross sections together with levels of an
open quantum system [16—18]. Having in mind primarily investi-
gation of unstable intermediate states we will pursue essentially the
same aim of combined description using methods generalizing those
of traditional statistical spectroscopy. Such an approach leads to the
problem of spectral properties of nonhermitian random matrices.
Ensembles of those matrices provide generalization of Gaussian
ensembles of hermitian Hamiltonians to unstable systems.

We proceed from the general theory of resonance nuclear reac-
tions [19]. In good approximation reaction amplitudes can be repre-
sented as sums of pole terms in the complex energy plane. Such

poles %"ann—%l‘n being the eigenvalues of the nonhermitian

effective Hamiltonian & correspond to unstable intermediate states
with energies £, and widths I',. We adopt simple statistical hypo-
theses concerning matrix elements of hermitian and anti-hermitian
parts of . Ii coupling of internal states with continuum is weak
(small external mixing) and resonances do not overlap, I'/D<«1,
our assumptions give the same results as the Wigner —Dyson
theory. The only significant difference is disappearance ol level
repulsion at small distances |E,— E,| <<max {['m, I'a}.

in the opposite limiting case of strong external mixing, the
results are governed by the algebraic structure of the anti-hermitian
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part of #. This structure follows, in fact, from the unitarity condi-
tion. Therefore its consequences are of a general nature. Due to this
structure, sharp redistribution («collectivization») oi widths occurs
at I'/D>1. As a result, k rapidly decaying states are formed (k is
a number of open channels) reflecting segregation of fast «direct»
processes. The rest of intermediate states are long-lived and have
small excitation cross sections. This discrimination of widths is con-
sistent with the picture [20] of the two-step course of nuclear reac-
tions in the region of overlapping resonances. The similar phenome-
non — formation of a short-lived coherently decaying state in a system
with almost degenerate levels—is known in quantum optics as
Dicke superradiance. Such a state of N identical two-level atoms
coupled via the common radiation field has a width I'=Ny where y
stands for the width of the excited level of a single atom.

In section 2 we discuss the phenomenological nonhermitian
effective Hamiltonian & and its connection to the scattering matrix
8 arising [rom the general reaction theory. In particular, it is
shown that the number of nonzero eigenvalues of the anti-hermitian
part of # can not exceed the number k of open channels. Two dii-
ferent forms of the secular equation for complex energies Z, are
considered in section 3. In the case of strong external mixing, the
width accumulation at a single state is demonstrated for one-chan-
nel scattering. We introduce the phenomenological R-matrix and
compare different representations of the scattering matrix. Sections
4 and 5 are devoted to discussion of our statistical hypotheses con-
cerning the distributions of matrix elements of hermitian and
anti-hermitian parts of #. The distributions of corresponding eigen-
values are analyzed. In sections 4 and 6 the ensemble averages of
R- and S-matrices are found as well as the averaged cross sections
of scattering and absorption processes. The joint distribution func-
tion for energies E, and widths I', is obtained in section 7 for the
one-channel case. In particular, quadratic repulsion of complex
energies is revealed. Due to the unitarity condition, residues in the
poles of an amplitude for the one-channel scattering can be expres-
sed in terms of complex energies &, only. Therefore the statistics of
residues follow from the level statistics in this case. Finally, the
mean density of unstable states in the complex energy plane is
found in section 8. Both cases of weak and strong external mixing
are explicitly examined.

2, EFFECTIVE HAMILTONIAN AND SCATTERING MATRIX

Suppose a complex quantum system (for instance, a highly exci-
ted atomic nucleus) near an excitation energy £ is considered. Let
the given energy region contain N resonance states studied with
reactions a—b (a, b=1, 2,..., k are open channels). In accordance
with [19], the scattering matrix

S’ E) = 8" —iT*(E) (2.1)

can be expressed in terms of amplitudes An connecting an internal
basis state n (n=1, 2,..., N) with a channel state a as follows:

T*(E) — i A,?E'(E_‘_E)m,a:. (2.2)

ma=}

Here the N X N matrix in the internal space
H—H— % W (2.3)

plays the role of the effective Hamiltonian; matrices # and W both
are hermitian. For simplicity, we do not take into account pure
potential scattering. The corresponding contribution can be intro-
duced without difficulties.

The anti-hermitian part W of (2.3) has the form

Woe= Y AZA® (2.4)

=]

where the sum goes over k open channels. Eq. (2.4) assures unita-
rity of S-matrix (2.1} [14]. Generally speaking, amplitudes A and

‘matrix elements Hp, are energy dependent. However, this dependence

is rather smooth. Since the level density is high in the energy region
we are interested in, the regular energy variations of Hamiltonian
matrix elements within this region are negligible (one should assu-
me that reaction thresholds are sufficiently far from this interval).
Hence, one can restrict oneself to considering only explicite pole
energy dependence in (2.2). Just this allows to use the matrix # as
an effective Hamiltonian for studying local dynamical and statisti-
cal properties of an unstable system.
Eq. (2.2) corresponds to the resonance diagram
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Fig. 1.

‘where the internal doubled line depicts the exact Green function G
of an intermediate system. Even in the basis of eigenstates of the
hermitian part H, the matrix G is not diagonal because of coupling
of these states through common decay channels. This coupling can
be represented by the mass operator

Z—mn:f "n,'{f b5

Fig. 2.

The 6-functional contributions to X corresponding to real decays
with energy conservation give rise to the anti-hermitian part (2.4).
On the other hand, virtual decays described by the principal value
integrals renormalize the hermitian part of #. The approximation
dropping off-diagonal matrix elements of £ is used sometimes in the
nuclear reaction theory as well as in the theory of resonance light
scattering by quantum systems. Meanwhile if the coupling via conti-
nuum is strong enough such an approximation violates unitarity.
For convenience, we introduce operator notations in the channel
space marking them with caret. Using rectangular N)X#& matrices
A=|A7n} we write down eqs. (2.2) and (2.4) in the compact form

fE) =A+ E—IEA' W—AA"+. (2.5)

Separability of W causes the important consequence: for k<N
the matrix W cannot have more than & nonzero eigenvalues. Indeed,
columns of the matrix A are N-dimensional vectors in the inner
space. Provided that k<< N these vectors span the k-dimensional
subspace of the state space. One can choose remaining N—#k basis
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vectors to be ‘orthogonal to the columns of the matrix A. Then it is
clear that the rank of the matrix W is equal to .. It can be shown
readily that the nonzero eigenvalues of W coincide with those of the
kX k matrix

X=A*A (2.6)

in the channel space. Its elements X**= ZA'” Aj7 are scalar products

of £ N-dimensional vectors A“

For definiteness, we will consider below the T-invariant theory.
As it is known, then the choice of channel states is feasible making
the S-matrix symmetric. Without loss of generality, the inner basis
also can be chosen for the T-invariant case to make the effective
Hamiltonian % symmetric, #7 =% (the superscript T marks tran-
spfsed matrices). As a result, the amplitudes A% become real,
A AT :

N eigenvectors ¢\ (n=1, 2,..., N) of the nonhermitian Hamil-
tonian F# correspond to exponentially decaying states and the com-
plex eigenvalues

FiwiBe Lp, (2.7)

give their energies £, and widths I',. With notation W for the N XN
matrix composed of columns '™, one can write the diagonalizing
transformation of # as

=W v, (2.8)

where (#4) mn=0m & .. Symmetry of F# leads to
Yy =] =yyT (2.9)

Here the first equality expresses the orthonormalization condition
whereas the second one is the completeness condition. At the same
time WTWs£1 since the Hamiltonian % is nonhermitian. Thus
eigenstates ¢\ are nonorthogonal because of existence of common
decay channels. Multiplying the equation #W =W, of the eigen-

value problem by W™ ‘from the left and the conjugate equation by
¥ from the right we get

VIVH,— K VTV =P H—FH )=Vt WP =—iAAT. (2.10)




Unlike to A, the tilded amplitudes
A=wTA, Aa=Y AZ¢p{" (2.11)

are complex, A% being the decay amplitude of an unstable eigensta-

te m into a channel a. Eq. (2.10) is nothing but the matrix form of

the Bell — Steinberger relation [22]. In components, it reads
PPy =i Y A% AZ) (Fn—Fn) " (2.12)

a

After diagonalization of F, the scattering matrix (2.2) takes a
form of a sum of resonance terms

it =
' : At s
o8 F =(AT S S nfdn 2.13

i

Thus, in adopted approximation, reaction amplitudes are meromor-
phic functions in the complex energy plane having poles in the
points of eigenvalues of #. Residues in the poles are complex. It is
essential for interference of close resonances [23, 24].

3. SECULAR EQUATION AND R-MATRIX.
«COLLECTIVIZATION» OF WIDTHS

Complex energies (2.7) of intermediate states are roots of the
secular equation

Det (2 — %) =0. (3.1)

The structure (2.4) of the operator W guarantees nonnegativity of

widths T,
Let us introduce the resolvents G°(#) and G(¥) of the mat-

rices H and & respectively,

BV =(F —H)"", GF)=(Z—x) ", g:g—%r, (3.2)
In what follows we will need also the kX k matrix in the channel
space

R(#F)=ATG"(F) A, (3.3)
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similar to the Wigner R-matrix of the nuclear reaction theory.
Matrix elements of ﬁ(%"] have poles in the real points @ =¢e, of
eigenvalues of the hermitian part 4. Eq. (3.1) can be transformed
as follows

Det (¥ — ) =Det (& — H) Det ( I+ —GU#)W )=

— Det (% — H) exp{‘rrlug(w—é-sﬂ(ﬁ} AAT)}‘ (3.4)

It is easy to verify that one can permute cyclically the matrix AT
under log. As a result one reduces the secular equation (3.1) to

det[l—t— %ﬁ’[@’}]:{] (3.5)

where det stands for the determinant in the k-dimensional channel
space. In the practically interesting case k<< N, the new equation
(3.5) is simpler than the original one (3.1).

Using separability of W we get the Dyson-type relation connec-
ting resolvents (3.2) for stable and unstable systems

> : —1
G(#)=G"(#) — + G*(¥) A[l + .;—fé{-@f)] ATGY?). (3.6)

Insertion of eq. (3.6) into eqs. (2.5) and (2.1) gives

f{E)=ATG(EjA=—E-®—, (3.7)
14 —R(E)
1— L RE)
SEyaiin 8 = (3.8)
1+§ﬂﬂ

In addition, the useful formula for the trace of the Green function

Tr G(Z) =Tr G%F) + -;w K(Z), (3.9)

follows from (3.6) where the function K(#&) is given by the trace
(tr) in the channel space

11
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K(%) =tr{ di(#) } : (3.10)

As it should be, complex poles in egs. (3.6) — (3.10) coincide with
roots of eq. (3.5). The contributions of real poles @ =g, from two
terms of eq. (3.9) cancel out.

In the simplest one-channel case the R-matrix (3.3) turns out to
be just a meromorphic function with positive residues (Wigner
R-function) and the secular equation (3.5) takes the form

1+—;'-R{3):1+§'Tr[ﬁﬂ(a’) W] =0. (3.11)

i@ F,i—?lﬂ is a root of eq. (3.11) then 1——%;3(@9;):0 i e.

the one-channel S-matrix (3.8) vanishes at # =&, Taking into
account the asymptotic condition llm S(E)=1 we obtain the facto-

rized representation
?, =H(I—£ i ) (3.12)
.-...-gn . E-"'Eﬂ-—l_ _'_é_[ﬂn

S(E) =

used repeatedly in literature (see for example [26, 27]). This repre-
sentation is equivalent to the sum (2.13) over poles provided that
complex parameters &, are roots of the secular equation (3.11).
However, the expression (3.12) remains unitary for arbitrary .. Ii
one takes, as in [26, 27], energies E, and widths ', as unspecified
parameters then the two representations of the one-channel S-matrix
cease to be equivalent. The noted fact often slips away. Meanwhile
the parametrization (3.12) with arbitrary &, may become incom-
patible with the algebraic structure of W stressed in section 2.

Such a nonequivalence is especially important in the case ol
overlapped resonances when the anti-hermitian part W dominates.
In the basis of eigenvectors of / one has

R(S’}zz gl . pa=AL (3.13)

Accordingly, the secular equation (3.11) can be written down as a
pair of coupled real equations
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In the limiting case of the cdmpletely degenerate operator H=¢e-1,
one obtains immediately that there exists the unique eigenstate of
the effective Hamiltonian % with the nonzero width

=) y%a=TrW=uw (3.15)
n

accumulated all individual widths y,. The rest N—1 states remain
stable. Similar situation rulmg out the arbitrary choice of widths I',
always occurs if external mixing is strong. Indeed, it follows from
(3.14) that if the summarized. width w exceeds the energy range AE
where levels &, are located, then the broad level with the width
['y~w emerges whereas remaining widths prove to be small. In the
limit w/AE>1 and N>, assuming the distribution of &, to be
homogeneous and symmetric around e=0, one can obtain easily for
the broad level E':iz Vnea 20, F|=w[1—0((ﬁ)2)]‘ As for

e
narrow levels (n=2, 3,..., N), their energies E, occur intermittently

beween neighbouri ; heir wi 3 AEY w nt
ghbouring ¢, and their widths Inw(—) — complement
W
I’y to the total value w..

For strong external mixing the more convenient form of the
secular equation can be obtained with the help of the orthogonal
transformation diagonalizing the anti-hermitian part W. Since in the
one-channel case the matrix W has N—1 degenerate zero eigen-
values, one can diagonalize in addition the (N—1) X (N—1) sub-
matrix of the hermitian part H with the extra orthogonal transfor-
mation of the- N —1-dimensional subspace. As a result, eq. (3.11)
takes the form

FENER-L el (3.16)

where notations

T b
:r.
-
!
=
>
I
B
|
=

R#)= (3.17)
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are introduced &, being eigenvalues of the (N—1)-dimensional sub-
matrix of H. At A,=0 only one level is unstable having a width w.
Remaining levels &, get the widths through admixture of the
unstable one. This mixing is described by the function R (3.17) ana-
logous to the function R (3.13) describing mixing with continuum
states. :

In the basis of the preceeding paragraph, the scatiering
amplitude is

T(E) = Tr| G(E) W] = = — (3.18)
E-—h—ﬁ{E]-}——;-w

Since R(E)—oo at E—&, the amplitude (3.18) and the cross section
have N—1 zeroes coinciding with &,. Peaks of the cross section are
disposed at energies satisfying the equation

E—h—R(E)=0, (3.19)

which is nothing but the secular equation for eigenvalues ol the her-
mitian part H. The R-function (3.13) has roots of eq. (3.19) as its
poles". Therefore, independently of the power of external mixing,
the one-channel cross section has (under neglecting the potential
contribution) N peaks alternating with N—1 zeroes”. However,
only in the case of weak coupling via continuum, the cross section
peaks lie, accordingly to (3.14) and (2.13), in the points E,=g, of
energies of unstable intermediate states and have near those points
the Breit— Wigner shape with widths I'y=1v.. In the opposite case
of strong coupling, Ev~e, (v=2, 3, ..., N; see eq. (7.36) below)
so that now the cross section minima rather than its maxima fall at
energies of unstable states. The contributions of the broad and nar-
row resonances happen to be opposite in phase and cancel out. Out-
side the interval AE occupied by the narrow resonances, the ampli-
tude (3.18) has the Breit — Wigner shape with the width w.

One can conclude that the variables A, &,, Ay, and w are more

) We recall that the energy shifts occuring in the general theory of nuclear reac-
tions are incorporated into H.

2 Such a behaviour of the cross section is typical for the one-channel case only.
If, apart from the elastic channel, some inelastic channels are opened the elastic
cross section has no zeros. This is the case also for inelastic cross sections at £=3
[28]. The cross section peaks do not coincide, in the general case, with R-matrix
poles. These results follow from the many-channel analogue of eq. (3.18).
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adequate for parametrizing energy dependence of the one-channel
S-matrix than energies E, and widths I', of intermediate unstable
states. The latter are suitable for analysis of time dependence of the
process. These iwo ways of treatment are complementary. We
would like to note though that the pole parametrization (2.13) is
universal for any channel number whereas the simple properties of
the expression (3.18) have no analogues in the many-channel case.

Thus, the strong coupling with continuum drives to sharp redist-
ribution of widths creating a short-lived state. Similarly, if there
exist £ open channels with comparable decay probabilities, & broad
states are formed absorbing practically the whole summarized
width. This phenomenon observed in realistic calculations of specific
nuclear reactions [13] implies predominance of direct processes
over relaxation to a compound nucleus. Quite abrupt «phase transi-
tion» from the uniform pattern of separated resonances to develop-
ment of broad coherently decaying states occurs at N>>»1 near the

¥ w AE
value w~AE i. e. {y)= r ~D = .

Using the term «direct process» we have in mind actually any
fast process independently of its mechanism. The duration i/w of
this process is essentially shorter not only than the recurrence time
h/D but also than the time interval 2/AE of fragmentation of the
entrance state into more complicated configurations. In standard
notations of the nuclear reaction theory, it means that
' ~w>T'~AE. On the other hand, we have shown that the life-
time of long-lived states is TNﬂi;‘J}E. This time exceeds the

AE D D

delay time obtained in [29] by the factor w/AE. The discrepance is
due to the difference of input assumptions. We have started from
the S-matrix representation (2.1), (2.2) based on the general reac-
tion theory. In the one-channel case we have obtained from here
eq. (3.18) as a consequence. Hence, the only parameter characteri-
zing instability ol intermediate states is Tr W=w. Unlike to this,
the explicitly unitary form (3.12) of the S-matrix with arbitrary
widths was used in [29]. As it have been stressed earlier, the two
representations are not equivalent. The large lifetime t of compound
states as compared with the recurrence time %/D implies that the
system reaches thermal equilibrium.

Elastic scattering through the single-particle resonance coupled
with the background of stable many-particle levels [30] can be con-
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sidered as a particular example. The single-particle resonance is
formed by the optical shell-model potential. The scattering ampli-
tude found in Rei. [30] coincides with (3.18) w being the width of
the single-particle resonance. Generally, short-lived states are gene-
rated by the anti-hermitian part W of the effective Hamiltonian.
This part forms superpositions of internal states matched to channel
wave functions.

As it has been mentioned in Introduction, width collectivization
" induced by strong coupling via common decay channels («seli-orga-
nization» observed in numerical calculations [13]) can be con-
sidered as a nuclear analogue of Dicke coherent superradiance
[21]. Similar effects were found in numerical simulation [31} of a
dissipative spin system.

4. STATISTICS OF THE HERMITIAN PART OF THE HAMILTONIAN.
AVERAGING OVER GOE

In preceding sections we have discussed dynamical properties of
a phenomenological Hamiltonian  of an unstable system. Now we
proceed treating # as a member of an ensemble of random mat_rl—
ces. We assume the simplest statistical postulates consistent with
general physical principles.

We consider the hermitian H and anti-hermitian W parts of #
to be statistically independent. We suppose that a real symmetric
NX N matrix H belongs to the GOE, i. e. matrix elements Hn., are
not correlated and their distribution function is invariant with res-
pect to orthogonal transformations.-Such assumptions are known
[1] to imply the Gaussian distribution for matrix elements of H,

?{H}:QWT_%( i) : egp(—%TrHZ). (4.1)

na’ a

" Here the centre of the énergy scale is placed at the origin. Eq. ('4,_1}
leads to the joint distribution function oi N. eigenvalues e, ..., &y

Per,. by} =Cy [| lem—eal exp ( —::',-; ). ﬁ) . (4.2)

HE < 1
n

~ The normalization constant in (4.2) is equal [32] to
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As in [18] we have introduced the scale factor ¥ in the exponent of
eq. (4.1). As a result, in the limit N—oo the energy levels e, are
located within the N-independent interval (—a,a) the mean spacing
being equal to D=2a/N. ke

The essential feature of the GOE is correlation of levels. The
probability for two levels to coincide tends to zero in proportion to
their spacing (so-called linear level repulsion). For N=2 the Wig-
ner level spacing distribution (s=|E,—Es|/D)

(gl = %5 exp( — %52) (4.4)

follows from (4.2). It is evident that level crossing is possible only
if the matrix element H,» and the difference H,1— H22 both are
equal to zero, i. e. on a manifold of zero measure in the random
parameter space. Eq. (4.4) is nothing but the Rayleigh distribution
for lengths of random two-dimensional vectors having uncorrelated
normally distributed components. This formula is sufficiently accu-
rate for the spacing of adjacent levels at any N [l] when exact
results could be achieved only numerically. If T-invariance -is not
supposed and Re A2 and Im H,2 are independent, the level repulsion
becomes quadratic [6],

P(s)~s?,  s—0. (4.5)

In what was stated above we have had in mind level sets with fixed
values oi exact constants of motion. On the contrary, il many
spectra corresponding to different values of those constants are
superimposed [8], level correlations are washed away converting
the level spacihg distribution into the Poisson one

F.apae (4.6)

so that level repulsion disappears. Finally, adding to a regular
Hamiltonian a randomizing perturbation, which destructs certain
integrals of motion, one gets the domain of spacings less than the
typical magnitude of perturbation where levels with given values of
survived integrals repulse each other [33].
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Due to orthogonal invariance, wave functions ¢ of stationary
states may be represented in the GOE by N-component unit vectors
{@W)} spreaded isotropically over the hypersphere Y (g))*=1. In the

large N limit, it gives the Gaussian distribution of components ¢!’
with zero mean values and variances ( (¢4)?) =1/N. Postulating
that amplitudes A% have the same statistical properties as compo-
nents ¢\ one easily obtains the ys-square distribution of decay
widths where the number of degrees of freedom k& is equal to the
channel number (Porter-Thomas distribution for k=1). This proce-
dure, however, has no serious justification so we preier to derive
the width distribution with the aid of independent statistical hypo-
theses concerning the anti-hermitian part W (see the next section).
Computation of mean values of various quantities over the GOE
is simplified in the limit of large N. In particular, in order to ave-
rage the Green function G°(#) (3.2), one can expand it into a for-
mal series about H and average each item with the use of the pair
contraction formula (see (4.1))
ﬂi

H IH P e ——
{ HIRT ﬂﬂ} 4

N f‘ﬁmﬂ ﬁm’n’ _I_ 6nm’ am"n) * (47}

At N— oo nonintersecting contractions are only surviving [16] since
there a trace in the internal space being proportional to N compen-
sates the factor N~' in (4.7). The summation of those terms gives?

1

(OY)S = 2 . (4.8)
& 0
From eq. (4.8) we gel [34]
g(F) = J}f <TrG”(@°) )= -QT[ # --\/afé""—’-'-é-;‘?] (4.9)
a

where the sign is determined by the asymptotic condition
g (F)=1/% at ¥—>0).

Using expression (4.9) we obtain the mean level density for a
stable system

* This method is applicable also to Hamiltonians containing a regular part along
with a random one.
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m

pE) = (Y 8(E—es) ) = = Im(Tr GYE —i0)) =

2 i .
——_NFVaE—E" 0(a®— E?) (4.10)

(the semicircle Wigner rule [5]).

The analogous GOE-averaging the R-matrix (3.3) leads in the
limit N—o00 to '

(R(#))Ygor = (GY®) YR~ (2) R (4.11)

where the matrix £ has been defined by eq. (2.6). In particular, in
the one-channel case

<R{g)>gggzgu{g} w. (4.12)

In the similar manner averaging the function R(%) (3.17), we find

= z
(R@)) =) () ()2 8%®). (4.13)
For GOE-averaging the S-matrix connected with the R-matrix by
the nonlinear relation (3.8), we note that at N—oo contractions
(4.7) of random matrix elements belonging to different R-matrices
reduce the number of independent traces leading to contributions of
higher order in L/N. If the channel number k< N, then the small-
ness of 1/N can not be recompenced by a trace in the channel space
arising when contracting two matrix elements of # from neigh-
bouring R-matrices. Therefore, up to terms of order £/N,
1 ——g%E)R
<§{E)>GDF_= 2

L

= g E)X

(4.14)

As one can see the GOE-averaging has smoothed contributions of
long-lived compound states so that the result depends only on the
matrix X rather than on the original matrix W. In other w-:;}rds, the
average S-matrix (4.14) describes fast «direct» processes.
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5. STATISTICS OF THE ANTI-HERMITIAN PART OF THE HAMILTONIAN

In the T-invariant theory, the anti-hermitian part W of the effec-
tive Hamiltonian is defined by specifying. Nk real amplitudes. Let us
regard them as independent randem Gaussian variables assuming
that® '

(ARY=0, (AfAhy=—n"8"8,,. (5.1)
Like in (4.7), we have introduced here the s_éale factor 1/N so that
the average trace ’

{wy=(TrW)=) 7 (5.2)

is independent of N serving as an invariant characteristic parameter
of decay channels under study. As eq. (4.1), the Gaussian distribu-
tion of amplitudes A% follows practically uniquely from statistical
independence and orthogonal invariance in the internal space.

For simplicity, we suppose open channels to be equiprobable
(n*=r, (w)=4kn). Then additional orthogonal invariance in the
channel space arises resulting in the joint amplitude distribution
function

PA . A= (2‘_“])'“‘””2 exp(—%w) ol
dependmg on w=Tr W= Z (A%)? only. .

The distribution (5.3) allc}ws us to derive statistical prupertles
of matrix elements W,.. (2.4). Diagonal ones W,IH—Z(A =y, are

po‘silix-;é, statistically independent and distributed b}f the ye-square

rule,
k)

'(3)

k/2

N
Pl Vo) = o exp( — Evﬂ) " (5.4)

9 In the paper by Weidenmiiller [18], it is supposed that the amplitude random-
ness takes place in the eigenbasis of the hermitian part A only. However, it is diffi-
cult to adjust this assumption to orthogonal invariance of the GOE of hermitian
parts.
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This derivation needs no identification of decay amplitudes with
components of wave functions (section 4). With the channel number
increasing, the expression (5.4) tends to the Gaussian distribution

Pilys) = —— exp{— NZ ("Fn—'_'ﬂ)g} (5.5)

E’"rn." nk 4fem

with the mean value and the variance

)y =m0 — ()= o’ = = ()’ (56)

N
respectively. These equations were used frequently [35] in order to
extract the effective number of open channels from experimental
data. Such a procedure can be meaningful only if widths are small
and resonances are not overlapping. The matrix W is then a weak
perturbation and the y.'s indeed can be treated as resonance widths.

The trace w of the matrix W is a sum of independent random
quantities y» and its distribution function

Nk/2—I1
1 N * N
Puw) = ——Ei (z—w) exp ( - mr) (5.7)
F(;—M‘e) R "
at Nk>>1 turns into Gaussian one
ey W il i M e ?}
Zdw)=5-\] 2 exp{ e O (5.8)

with the mean value (w) =#kn and the small variance
"rE _ 71 2=% 22_2_ 2 -
(W) fw)i = nime W) (5.9)

As for off-diagonal elements W, m==n, their distribution
function depends on | Wa.| only and can be expressed in terms of
the MacDonald function Ky(z},

N (k—1)/2
Po(Wrn) = lk x (_iw’mu) K,;k_l_,ﬁ(i"iwm,,q), (5.10)
@ n
2
= P o SREPL NS RTE
<Wmﬂ> ——U‘, <Wmn>_ Nz"l Ry Nk <‘ﬂ> 4 {5-11)

The analogous distribution function of matrix elements for a transi-
tion between complicated states has been considered in [8].
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Unlike original amplitudes A%, elements of a certain row or
column of W are not statistically independent. Variables indepen-
dent of y, are the angles 0., between N k-dimensional vectors A,
with components Aj. Using such a representation we have

fLsnoils

"Frnn:{Am 'A-.vt} = _"g":"Fm?n oS Oy . (5 ]2)

The distribution of any angle 8, is given by the formula (k£=>2)

ZiB) = — sint 2, (5.13)

ensuing from the expression for a solid angle in a k-dimensional
space. Since a rotation in the channel space does not change a sca-
lar product (5.12) the total number of random parameters specify-

ing the matrix W is equal to Nk — —E}r;‘e{k——- ) for k<CN. For &> N

one should add the number %(’fe—w’) (k—N—1) of rotation genera-

tors for the complementary (k— N)-dimensional space getting as a
result —;-N(M+ 1) independently of £.

The distribution of & nontrivial eigenvalues of the matrix W at
k<N is of particular interest. As it has been mentioned in section 2
they coincide with & eigenvalues y° of the matrix ¥=ATA (2.6) in
the channel space.

The distribution sought for can be obtained by the stochastic
equation method [36, 37]. A stochastic process is constructed to
describe evolution of the amplitude matrix A in fictitious time ,

dA(t) = — A1) dt+da(t), (5.14)

where the Gaussian random force is defined by

dad =0, da®dal, — %qﬂaﬂﬂ S, (5.15)

Independently of initiat conditions, the distribution function of
amplitudes Af tends to that of eq. (5.3) at 1—>oo. Evolution of
eigenvalues y*(t) is determined by (5.14) as well. Diagonalizing
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the matrix X (t4dv) with the help of perturbation theory‘with res-
pect to the parameter (dv)'/® one can get drift and diffusion coefli-
cients and then write down the Focker —Planck equation for the
distribution function of eigenvalues. Its steady solution is (recall
that all y*= 0)

N—k—1

0ot =Co( 11 1¥=21) (1 7) exp(-z‘—ig?‘*) (5.16)

== c

where Y y'=trX=Tr W=w. The normalization constant can be

et

calculated by methods developed in [32] and proves to be equal
. NE/2

cu=(ge) " #[ren]] f(Pr(*5H] e

=

It can be seen from (5.16) that (y*) =n. .

When applied to the hermitian part H the stochastic equation
method leads naturally to eq. (4.2). The distinction between
eqs. (4.2) and (5.16) is caused by the specific form (2.6) »:_?.f the
matrix X: its matrix elements are finite sums of products of nor-
mally distributed random variables. In the limit N—oo this diife-
rence fades and the expression (5.16) turns into :

PE ) =[2k,-2 Fik-+1) u F(%)] s (::';) i X
x| —vlew{ =55 Y -=n’) (5.18)

a<_h

similar to (4.2). Note that formulae (5.16) and (5.18) manifest
linear repulsion of close eigenvalues y*.

- 6. AVERAGE S-MATRIX AND CROSS SECTIONS

Let us return to averaging over the ensemble of effective Hamil-
tonians started in section 4. In accordance with (5.1), the mean
value ¢ X"y =n"6" is diagonal and independent of N. Therefore the
average R-matrix (4.11) is diagonal as well,

(R™(¥)) =g"(F)n"s". (6.1)
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When averaging the expression (4.14) one should not contract
amplitudes belonging to different matrices X provided that the
channel number E< N. Such a contraction would break a trace in
~ the internal space contributing a term of relative order k/N. Hence,
within this accuracy we obtain the entirely averaged S-matrix

S | — %n“H“(EJ f : _
(SUE)) = — 2 o= (SHE) )6, 6.2)
1+ %ﬂ“g“iﬁi

which is diagonal and coincides with the result of Ref. [18]
achieved in a different way.

In a customary manner we adopt that any ensemble average is
equivalent to a corresponding energy average. In the nuclear reac-
tion theory, the energy-averaged S-matrix is identified with the
S-matrix of the optical model [20]. Eq. (6.2) allows us to find the
average total cross section o,(£) as well as the shape elastic cross
section o, (£). The latter describes a fast elastic process avoiding
formation of an equilibrium compound nucleus. At energies |E|>a
outside the domain of compound resonances the two cross sections

coincide being equal to (in units of %(QJ-H) where J is the angu-

lar momentum and k& is the relative initial wave number)

2

R 2 s YA Sy W T ::— S5
[FENE-D ][+t [F(E/E-1)]+ 1

The parameter x=m/a introduced in (6.3) is a measure of external
mixing and resonance overlapping. In the far regions |E|>a, the
function (6.3) looks like wings of a Breit— Wigner resonance with
the broad width n (we omit the channel superscript for simplicity).

In the compound resonance region |E|<Ca, the projectile can be
captured following by formation of an intermediate compound
system. As a result, the total cross section

.(6.3)

Hj—{—ﬂ_\/l_g_j
o{E)=2(1 —Re(S(E))) = . - (6.4)
1 E? | 7 -
TN T gt D)

and the shape elastic one
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do not coincide, their diiference

e (6.6)
| E? i .-
?“\/“?*‘T“ i,

being the cross section of absorption due to compound nucleus for-
mation. In accordance with the qualitative analysis of Ref. [20], the
absorption cross section (6.6) decreases when the degree of reso-
nance overlap increases. .

Fig. 3 demonstrates energy behaviour of the cross sections
(6.4) — (6.6). The shape elastic and the total cross section have the
double-humped form symmetric with respect to the center of a spec-
trum. The maxima lie at the edges £= 4-a whereas the minimum is
in the center. The relative drops of the minima are

Um’:_\-(E} =]— | <S{E} > |2 =

off) _ w41 L. e atl . 2 (6.7)

= |

oda)  #m+1) % gkdy . et %

The approximate equalities correspond to the strong mixing limit
when the middle parts of resonance curves flatten.

7. DISTRIBUTION OF COMPLEX ENERGIES
FOR AN N-LEVEL ONE-CHANNEL SYSTEM

As we have noted in section 5, at k<< N the matrix W is speci-
fied by Nk— %k{k“l). random parameters. Recollecting N eigen-
values of the hermitian part H we have altogether [=
=N[k—+—1)—%k(k—l) parameters the N complex energies are
dependent on. Being interested in the distribution of energies and
widths we have to-integrate over I—?N:(k——l)(h'v-——;—k) extra

variables. In the exceptional case of k=1 the number [/ ol original
variables is just equal to the number 2N of parameters {E,, I's} so
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- Puc. 3. Energy behaviour of average cross sections:
solid lines f and 2 correspond to the shape elastic cross section and to the absorption cross see-

tion respeclively, the dashed line 3 corresponds to the total cross section.

that the necessity of integration drops out and the problem becomes
reduced to variable transformation and calculation of the Jacobian.
This one-channel case will be considered below in detail.

We use the secular equation (3.11) with the R-matrix in the
form (3.3) symmetric with respect to levels and perform the trans-
formation [en, YaJ—{En Ta}. Let us define characteristic polynomials

of N X N matrices H, .%’:H—%W’ and T =H+ -;—-‘JF’:

Qo(r) =Det (A —H) =|| (h—e4) ,

& (7.1)
Q(\) =Det(A—F)=]|| A—%.),

¢ (7.2)

Q) =Det(\—F 1) =]| A— ).

i

One can easily verify that due to eq. (3.13)

QW) = Q) — =} ¥ "“j’“”*. (7.3)
Em
The coefficients A% of polynomials (7.1) and (7.2) defined
according to

N
Qofh) = Z (=17 A eya” ",
n=0 ’
i N (7.4)
Q{jl..:l = Z {_‘ I}“;ﬂ;"f}{g}}‘,ﬁ—nj Q{:‘L) e Z L__ ]Jnf\g’;”]{g.} l-"'i"'—rz ‘
i n=~0

are symmetric over their N variables and linear in each of them:
AP =1, AME) =Y e APE =) Emtn ... APE)=]] & (75)

il =_H

Derivatives of coefficients (7.5)

MV(g) = AN, (€1, .0y Ey) o e 9 N (7.6)

i
OEm

coincide with analogous coefficients of characteristic polynomials of
the (N—1)-dimensional matrix having the same eigenvalues with

£, omitted. Therefore
MV(g) = K2 M ey, Bt +» EN) =AY (6] (7.7)
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In the same way

FPADE) __ Al (e
oe, de; 0 g

s ALl (7.8)

and so on. The linearitj,,I property implies equivalence oi eq. (7.8) to
M1 (e) — Mo (e) =(en—e)) ALY 5000 (e) (7.9)

We can calculate the determinant of the NX N matrix M (e)
with elements M"(e) as follows. Subtracting the first column of

R

this determinant from others we find with the help of (7.9)

™ & ) N - (A i
Det MM (&) =AM ey, ...,e0) = [[ (e1—e) AY " V(es, .. ey) . (7.10)

=z
Continuing in the same manner we obtain
AMe)= T[ (em—en). (7.11)

mM=_H

The connection (7.3) between polynomial expansions (7.4) for
Q(A) and Qo{A) leads to

AN =ANM(e) —‘;ZM;L@}%, n=12,..,N. (7.12)

This relation together with the conjugate one gives explicitly the
transformation {en, yo)—{% ., €n. To derive the Jacobian of this
transformation we need derivatives :

(}IEHL ﬁ??ﬂ.

Tf?i'."J-:

0F . , r_'i*éf,f- ;

[FH'H'I —

(7.13)
Diiferentiating egs. (7.6), (7.12) and conjugate ones with respect to
Z we lind (in the matrix notation)

M(s}tr:]?m‘{%’j, (7.14)

M Mg
ﬂ il {F} ?f

M(e)t=iM(F) — L(e, y)o0; Lm(s,?]EZ o

i

(7.15)

Since the matrices M(e) and L(e,y) are real it follows from (7.14)
and (7.15) that

=4
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1=2ic—M~"'(e) L(e,y)o, T = —;Qiﬂ*—M_l(E} Lie,y)o". - {Fil6)
The Jacobian of the transformation {e, v} —{%, &} is equal to

o o | (7.17)

i o

A=

Because of the standard determinant property, the second items in
eqs. (7.16) do not contribute so that

Ay=(—4i)" | Deto|®. (7.18)
On the other hand, from eq. (7.14)

o L AHT) 7.19
Det o 3% A " (7.19)
Finally, we obtain
o A E . ) | 7.20
o A M ey, ..., Ey) l ; e

To complete the transiormation of the dlstnbutmn function we
have to express the combination F= [rl“" H v, in terms ol new

variables. Substituting & =e, in eq. (7.3) and taking into account
that Qo(en) =0 and (22} — —5,.]] (ea—ei) we get

Em f==n

Vo= —2i ‘——“—” ) . (7.21)

Iatn

With the help of eqgs. (7.1), (7.2) and (7.11) we come to

N(N — 1) NiN—1)

P (1] L5207 LR = o hS (—20"[] (=1)"Qu(®.). (7.22)

n

Since Q(Z.) =0 it follows from (7.12) along with the conjugate
equation and egs. (7.5) that '

Qo(Z n) = —Q{%" [ (F—F. (7.23)

m|-—

Therefore the expression (?.22) turns out to be reduced to
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NN—1)

F=(—1) ' (=" @ —Fm=]] 12— %:l [] |F0—21% (7.20)

it i) m<_n

The distribution function of original variables {e,, y.) at k=1 can
be written down, according to egs. (4.2) and (5.16), as

P(E1yen, By; Voo Vo) =CyCinl AW (2., £,) ] X

)(Hﬁ exp[— N(# Z ea4 i Z"i’n)] : (7.23)

"

To transform the exponent in eq. (7.25) note that

Tr #2=Y %‘“ﬁ:Tr(HE-—-iHW’u l— wﬂ) =Y (e2—ienpn) — % Tr W2 (7.26)
n

n

In the one-channel case the matrix W has only one nonzero eigen-
value so that
2

= (W=}l (7.27)
and the real part of eq. (7.26) gives

Y eh=) Ei— —HZ ri—(Y 1;)1:253 + é- PR, 2 IORT8)

m=_n

Gathering all the results we gain the desired distribution func-
tion for energies and widths of intermediate unstable states:

i - (En—En)'+ o (Ta—T2)?
P(E, oo Eyi Tts s Ty=CiCiy H WS SN,

E
e B Eons -
m<n "\ En—En)"+ —=(Tm+In)’

XH xfllf_‘n exp{ —N[# Z Ei—t—i-g Z Fan—}v-;;]- I‘n]} : (7.29)

i m=_n 1

As one can see from the preexponent factor, energies and widths
of unstable states are correlated. According to the qualitative argu-
ments mentioned in Introduction, unlike to (4.2), the probability for
two energies E, and E, to coincide does not vanish provided that
I'ms=Ta At the same time, the complex energies #,. and &, repulse
each other the coincidence probability being in proportion to the
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I - 1 3 . . i
square of distance rm:\/{Em—E”)?-}— T“ m— I'y)? in the complex

plane of ‘E’zE—%i‘. This reflects T-noninvariant nature of a

decaying system. _
Features of distribution (7.29) at N fixed change drastically
depending on the value of the parameter fx——*n/q. The mean _level
spacing is D~a/N. In the weak overlap regime widths are tj,fplpall}:
I'~n/N (see eq. (5.6)) and I'/D~x<1. Then the bilinear in |
terms in the exponent (7.29) are negligible so that for energy spa-

1Em"_Enl

Cings Smn= > the distribution function factorizes in the

product of independent distributions of energies (see eq. (4.2)) an_d
widths (see eq. (5.4)). At these distances, energy regylsmn is
linear. Only at very small spacings sm.<Cx correlations differ from
those in a stable system resulting in disappearance of repulsion.

In the opposite limit of »>>1, widths are accumulated by the
exceptional eigenvalue having a large width of order n as it was
shown earlier (section 3). In line with such predictions, eq. {?.2-?_;}
demonstrates that the probability density (7.29) is _appreciable in
the only case (Zrnjﬂﬁzfﬁ, i. e. if only one of widths, say T,

is large, Iiamn, the others T,_, being small. Since then
| B — E.| <a <, we have

gt e T Ty
A o S AL m(_ili_)”_’ (7.30)
2 ¥

n=2 ”\/“5' —EI;)2+ —i-{l;-.:n}z
' N N g :
(; Iﬂn)z__; 1~2=QI‘|HZE I”.H—[("ZE ['n) __n;:} I‘ﬁ] : (7.31)

After integrating over E, and I'i one obtains the distribution func-
tion for long-lived resonances (m, n=2, 3,..., N):

1
L T 11 li"‘Jr_'_
i o P o
SE  F Ty Tl 08 ‘*—\/ljg— (%) ~ 7 X
(1+% r)
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(Em—Ep)" 4 - (Fm—T0)*

X . - }_ exp [__ N L E?
ek _\/lil.r:-w_Eﬂ}2 + %{F‘“—F Fu}ﬂ H ﬂ‘1"Ill1rt ( a’ ; +
! E I
¥ n; CoBish EE F)J L —

To estimate values of typical small widths it is convenient to

introduce amplitudes B,rz\/l“n (n=2) assuming that they run over
the whole real axis. Then

dls < (N 3) /2 g
H 5 —>H dp.=w* g5 d0,_,, (7.33)

"

N
where @ = Zz I'x and dOy, stands for an infinitesimal solid angle

of a (N-—1)-dimensional space with B, as its coordinates. It is easy
to show that the probabilily density (7.32) has a maximum at _

@=%<§if"gﬁn, (7.34)

whereas the angle distribution in the space of B, is nearly isotropic.
Hence, the individual small widths are of order F,o,~w/(N—1)
I e, at large N, I _,~n/%*N and the corresponding overlap para-
meter is F/Dwﬁf- %z%q’:l, As a consequence, long-lived
states fall again in the small overlap regime and, at spacings
Smn=1/%, the energy distribution coincides with that of eq. (4.2).

_ Thﬂae results are evidently of dynamical rather than statistical
origin. Therefore they can be derived from the secular equation
(section 3) straightforwardly.

The version (3.16) obtained by diagonalization of the matrix W

is appropriate for the case x>1. Since, due to eq. (4.7)
[ 2 3

2
. P o o . . i
(R, )= T s small in the limit under study, we can use the

perturbational formulae:

32

N
G s Y G P O 3
F1=h .Ew—i—z :' h EW‘I‘R'& Ew' (7.35)
= Kt
2
hﬂ
Fv=—¢8y+ L v=2, (7.36)
e‘—h—i—%w

Neglecting (h—e.)2<a® as compared with wzmﬂ“* we find from
eqs. (7.35) and (7.36) the large width

2
¥ et b ﬂ(l__lg)w (7.37)

as well as small ones

2
Fo=T, i ek, (7.38)
(h—e)*+ T

The similar picture has been discussed in Rei. [27] basing on quite
different arguments. In contrast to that paper, we are not in need
of any assumptions concerning the preexistence of narrow reso-
nances on the background of a broad one. The separation of width
scales happens automatically by virtue of structure of the matrix W
which is dictated ultimately by the unitarity principle.

It should be stressed that in the one-channel case the width
rearrangement leaves no room for manifestating Ericson fluctua-
tions [38]. Indeed, at N>>1 conditions necessary for the strong
overlap of resonances cannot be implemented. To reveal such fluctua-
tions, there should be £>>1 of open channels when k short-lived
states with comparable widths and weakly correlated decay ampli-
tudes arise. To investigate rigorously cross section fluctuations in
frames of our approach, one should derive distribution of decay
amplitudes (2.11). We hope to return to this problem elsewhere.
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8. AVERAGE DENSITY OF UNSTABLE STATES

An important quantity for an N-level unstable system is the
mean . density of complex energies ‘E’,I:E,;—f?!‘ﬂ (compare

(4.10)),

+ 1 (2}, ) _ 5 ;
oE D) =(5 Y0 (F—a))=(LHE—E) T —Ts))  (81)
normalized according to

(8.2)

g ey
=
[‘\-n.]

Gc_,..-l—la
=
—
=
2!
I
=

The straightiorward calculation of p(E, I') by multidimensional
integrating the joint distribution function (7.29) is extremely diffi-
cult. It is more convenient, analogously to eq. (4.10), to start with
evaluating the average trace of the Green function

1
¥F— %

A g I
gE, ) =—KTr {:(%n:F{Z X (8.3)

We use an electrostatic analogy to establish the connection bet-

ween functions p and g in the complex plane ‘a’zE—:'?F. Let us

interpret the function (8.1) as a density of two-dimensional charge
distribution across the (E,I')-plane. Then the function Ng(E,T')
acquires the meaning of the two-dimensional electric field created
by this charge distribution. In our notations, Maxwell equations

take the form

7 & cagl e .
N [ag ET) _ o 98, ”_] =4np(E, ) . (8.4)
5 gl dl ,

Since all T',>=0 it is clear that p(E,I') =0 in the hali-plane I'<C0.
Eq. (8.4) reduces then to the Cauchy— Riemann condition expres-
sing analyticity of g in this half-plane. On the contrary, p==0 in
points where g(E,T') loses its analyticity.

To calculate g(E, I') we use eq. (3.9). At I'> 0 the only survi-
ving contribution to eq. (8.4) stems irom the function K{#) which
can be presented in the form

34

K%)= —U[Im(l—i— %R(ﬁ;)]fmg)—u[—m](& —;—R[‘@”})]K_{%’}.(B.SJ

Here the new functions

o

K L%’_}=§ \ % {exp[iaa(1+;;ﬁ{@*])]—i} (8.6)
0

are introduced each of them being analytical in its own part of the
complex plane cut by the corresponding step function 6. In these
parts the functions (8.6) both satisiy the Cauchy-Riemann condition

Hi K:Lg.}_‘z’: -

- § :U- 8I?
I 3p &) St

Since R(#) is analytical everywhere with exception of the real axis
we get at I'>0

I PR O LS B
(ﬁ_z;ﬁ) 1m(1+ . Rtg_}.) il (8.8)
Eq. (8.5), (8.7) and (8.8) give
d g BN Bk x AORERY B 8.0)
(E!?_zlﬁi‘) sadabis I 3F l ’ ( T Riﬁ)) e
and, finally,
1 JR@) | @ fani
olE, 1) == (|2 K (|+ - R(@”;)). (8.10)

This result is valid independently of particular statistic assumptions.
With the aid of the integral representation of the twc-dimensional
§-function we can carry out explicitly averaging of p (8.10) over
the distribution function (5.4) of residues y, of the R-function:
i 3 S d*.

o2n* AF dF

- ><(<exp{ 5 —} Tr Iog(l—f 2 a"GU[@"}+AG’~‘*g-§”‘_};]} >E—1). (8.11)

exp(—2i Im i) X

plET) =

|%1*

GOE-averaging over the distribution function (4.2) of energies &, is
still to be done. This task is not trivial in general case. To getl
explicit formulae we consider the large N limit where GOE expres-

sions (4.9) and (4.10) are valid.
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At u< 1 the anti-hermitian part W is a small perturbation so
that in the lowest order &,=¢,— %ﬂ;n. The density p(E, I') is then

factorized, -

o(E.T) =p"(E) Z:(1), (8.12)

where pY(E) is the semicircular distribution (4.10) and 2,(I')
stands for the Porter —Thomas distribution (5.4) with the mean
value (I') =n/N.

In the opposite case of x> 1, il is convenient to use the alterna-
tive version (3.16) of the secular equation. Eigenvalues of # can
be found by perturbation theory (7.35)— (7.36). Separating in
eq. (8.1) the short-lived (n=1) state from long-lived ones
(R=w=2 3J,.. N) we haye

oE.T) = - (8@ —F 1))+ T (5T —%.)). (8.13)

Averaging over h, and &, in the first term (denote it by p\(E, I'))
can be carried out at N—oo like in (4.12) resulting in

pi(E, )= u;~ <6E23[@f —h4 —;—w— %ig”(h—u é w)] Yea- 189

Quantities & and w ‘are normally distributed with mean values
(hy=0 and (w)=n and variances (h’)=1"/2»’N and
((w—mn)?)=2n*/N so that we can expand the argument of the
&-function in eq. (8.14) over A/w. In the real part, the corrections
cancel out up to the second order inclusively whereas in the imagi-
nary part the result coincides with that of eq. (7.37). Hence, we
obtain in this approximation

pi(E, 1) = (SE—h) §(T—w+ ), ,, (8.15)
Final averaging over A and w can be performed {trivially giving
[ N N o N/n
A fo T A e NN
PE.T) na’ exp( a’ = ) Il — "% A

o L=t en T
Xexp{ e } (8.16)
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Within our accuracy, the energy and the width of the short-lived
state are not correlated. This resonance is located near the center of
the region of levels coupled with a given channel. The whole energy
region is covered by the resonance width. As for fluctuations of E
and I', they are relatively small, ~1/4/N.

The second term of eq. (8.13), p2(E, T'), contains N —1 identical
contributions. Each of them is equal to

wf

1 /s@re o o oY &p2 T
L (8@ — ) = (s Olee—) 883 —1)). (8.17)
with notations
R e
v SRE f-wl[q +(w—|-—|"') ] v
Now it is obvious that (see eq. (4.11))
(Be—) )= =00 Ve 0 ), (819)
— N—oo il
(02— ) n ="\ o X0 (-37). (8.20)

Remaining averaging over i and w can be done by the saddle-
point method. The result is

TSR § 2
ou(E, Ty =(N —1) 2 ~fa? — E*0(a* — E?) ~ [ X exp(— Lt F). (8.21)
na 2anl’ 2n

We keep here unity side by side with N to guarantee proper norma-
lization. Thus, for N—1 long-lived states the semicircle GOE rule
(4.11) along with the Porter —Thomas distribution are recovered.
However, the latter has a small average width (7.38),
(T'y =n/«*N. As we have emphasized earlier overlap of long-lived
resonances is small, (I'Y/D~1/x=.

9. CONCLUSION

In this paper we have attempted to extend standard statistical
spectroscopy of discrete levels to unstable states. Decaying systems
are described by ensembles of random nonhermitian Hamiltonians
represented by N-dimensional matrices. Complex eigenvalues oi
these matrices determine energies E, and widths T', of states with a
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finite lifetime. Under simple statistical assumptions corresponding to
completely stochastical motion, the eigenvalue distribution in the
complex plane (£, I') is obtained. The one-channel case is discussed
in detail.

Instability of states changes significantly energy statistics remo-
ving level repulsion at distances smaller than widths. As for com-
f

plex energies %‘?ann_?F” they repulse quadratically with res-

pect to the distance in the complex plane®. At increasing coupling
with continuum dynamical restructuring of a system takes place.
When matrix elements of the anti-hermitian part of the effective
Hamiltonian become comparable with spacings of eigenvalues of the
hermitian part, a transition to a new regime occurs. In the new
regime the picture is determined by the algebraic structure of the
anti-hermitian part dictated by unitarity rather than by particular
statistical hypotheses. As a result, decay probabilities turn out to be
redistributed in such a way to distinguish short-lived states (their
number is equal to that of open decay channels) saturating approxi-
mately the whole summarized width of levels. Remaining long-lived
states are quite isolated and their statistics are essentially the same
as those of stable states. Such a picture implies coexistence of direct
and compound processes resulting in a gross structure of cross sec-
tion. Similar structure with several short-lived resonance states has
been observed in numerical simulations of nuclear reactions [13].
In this work formation of such a structure along with the state
overlap increasing was referred to as «selforganization». As one
can see Its mechanism is of quite general nature being analogous to
Dicke superradiance in quantum optics.

In the one-channel case there is no room for manifestation of
Ericson fluctuations. In principle, they might be observed if the
channel number is large enough to generate a number of interfering
resonances. This problem is under study.

The main results of this paper have been published in [40].

5) e :
This is equivalent to cubic repulsion if one uses polar coordinate in the

(£, T')-plane. Such a rule is confirmed b}? numerical calculations [39] for a kicked
nonlinear top with dissipation.
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