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Abstract

The beam-beam interaction is responsible for loss of
luminosity and beam lifetime in colliding beams
machines. In this work, the properties of nonlinear
beam-beam resonances in the full three-degrees-of-
freedom system are examined. Theoretical conjectures
concerning the mechanisms for luminosity and lifetime
degradation are compared with the results of simulation
and experimentation at VEP:>-4. 1t is shown that machine
nonlinearity may also play an important role in limiting
the lifetime.



1. INTRODUCTION

In a colliding-beam storage ring, the beam-beam interaction is the
collective, relativistically enhanced, transverse electromagnetic force
experienced by a beam particle as it passes through a bunch of the
opposing beam.
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Every time a particle of one beam passes through a bunch of the opposing
beam, it experiences a transverse kick which changes Lhe amplitude of
its vertical and horizontal betatron oscillation.
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The beam-beam kicks are important Dbecause they can cause the
amplitudes of both the vertical and horizontal betatron oscillations to
increase, either via diffusion caused by a sequence of uncorrelated kicks,
or via resonant pumping caused by a sequence of highly correlated kicks.
This growth of betatron amplitudes can cause 10sS of luminosity and/or
beam lifetime.
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(a) Diffusive kicks

{b) Resonant kicks

(c) Regular oscillation

To investigate analytically (and numerically) the cumulative effect of
many beam-beam kicks, a mathematical model is needed. This model
necessarily involves several approximations (historically, the usual
approach has been to starl with 25 many approximations as possible,
removing them one-by-one, as one-by-one they prove to be unrealistic).
Most studies of single particle behavior have been based on the
"weak-strong-beam” approximation. This approximation assumes that the
current distribution in the "opposing” beam is a constant and thus, that
the beam-beam force is a well-defined function of the two transverse
coordinates %, z, and the time L The analysis presented here is
fundamentaily dependent on the weak-strong beam assumption.

I1. THE HAMILTONIAN

The simplest two dimensional model of the colliding beam system
consists of two linear oscillators and a periodic kick which changes
instantly the two momenta. The oscillators are coupled since the
beam-beam kick for each oscillator depends not only on Its own
coordinate, but on the cocrdinate of the other oscillator as well
Apy(%,2), ApAx,2). The magnitude of the beam-beam kick may be
expressed as the derivative of a potential V(x,z).

Apy(%.2) = Bvé:;,z)
(1)
Apz(x,2) = --—avéi'ﬂ

The system as a whole may be roughly represented (less the damping and
quantum fluctuations) by the Hamiltonian

H = H/z.pz) + Hy(x,py) * % §(t-n) V(x,z) (2)

where the sum is over all positive and negative integers and t is in units
of the period between interactions. It is convenient to change to the
action-angle variables defined by the linear oscillations

% = (2182 cos(6y)
py = (21,/8,)1/2 sin(6y) o

where By is the beta function at the interaction point. If the beam-beam

term in (2) is Fourier transformed with respect to 6, and 6, the
Hamiltonian becomes




H= 1,0+ 1,0,+ % £ Z Fy(D) cos(my®y + mz0z * 2mnt)  (4)
n mymy ;
The m=0 term is independent of 6y and 6. It is convenient to def ine an
integrable nonlinear oscillator Ho(D) by adding together the two linear
oscillator terms and the m=0 term from the perturbation expansion.
Equation (4) then becomes

H=HgD + £ & FplD cos (MyOy + MO + 27Nt ) (5)
n fin

This Hamiltonian does not correspond to an integrable system, but a
finite portion of its phase space is covered by regular trajectories, i.e.
trajectories that are bounded for all time and are characterized by
discrete frequency spectra (of phase variables). The behavior of such a
system is very complicated and can only be understood by carefully
examining the properties of its nonlinear resonances (represented by the
Fourier terms of (5)).

An analysis of a certain nonlinear resonance M usually assumes that
all of the other Fourier terms in (5) can be neglected. The resonance

Hamiltonian is then
Hp = Ho(D + Frn(D) cos (myby + mz07 * 2mnt) (6)
The time derivative of the action from Hamilton's equations is

BHy

~ s FroD) i (my8y + 785 + 2mnt) (7)

i=-

Thus, in the action space (ly,l7), the motion defined by the Hamiltonian
(6) lies on a line parallel to the vector m. The frequency of oscillation in
action space is determined by the time rate of change dYm/dt of the

resonance phase

The resonance system (6) is said to be "in resonance” if dypy/dt =0, i.e.
if i
MyBy + M8, + 27tn = 0 2 (G)

The frequencies 6y and 6 are, to zero order, determined by Hy

. BH4(D
6~ oxD = 51

9Hq(l )

6z ¥ 0= 5~

=

and are functions of the actions ly and 1. Thus, the resinance condition
(9) defines a line in the action space. The resonance line and the
direction of resonance oscillation are illustrated in Fig. 4.
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111. RESONANCE CHARACTERISTICS

Besides its location and the direction of its resonant oscillation,
the nonlinear resonance is characterized by its width in action space and
its frequency of small amplitude oscillation. By transforming to the
resonance phase Y, and its corresponding conjugate momentum Ip,, it's
possible to reduce the system to one degree of freedom. Taylor expanding
the zero order Hamiltonian Hg about some point 15 which satisfies

Mywyy) + Maw(lp) + 27N = 0 (11)
i e. which is on the resonance curve in action space, and with
Ym = My * Mz6z +27tnt (12)

the Hamiltonian for the resonance is given by (see Appendix A for
details)
Hm¥m) = 1/2 1> A * F (Lp) €08 ¥y (13)

This is the Hamiltonian for the simple pendulum with mass 1/ A, where
the "nonlinearity” Ap, is defined in Appendix A to be

9%H, 8%H, , 9%

hm=2mxmzm +mf-§rx—2+mz —ai"_?“ “4)

The width of the resonance is given by

or
Al= m Alp (16)

while the frequency of small amplitude oscillation is

o=V [Fp A ' (17)

The phase portrait of the nonlinear resonance is shown in Fig. S.
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Thus, in action space, the resanance is represented by a strip of varying
width, as shown in Fig. 6.
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If all of the resonance curves could be plctted in the action space, they
would form a dense network of intersecting paths. Aithough the
resonances each have a finite width and are dense, they do not fill the
space (the measure of nonresonant points is non-zero). However, if the
resonance widths are larger than the typical spacings between them,
they can nearly fill the space. The resonance network is illustrated in
Fig. 7 (the figure is slightly unrealistic because It shows a uniform
resonance width. Actually, the widtn varies with Fﬂl and A, from one
resonance to another, and, along a single resonance, from one point in
action space to another). !

The nonlinear resonances
form a dense web in

Action opace I:.;
How do these resonances affect the luminosity and lifetime of the
beam? There are several mechanisms that fall roughly into two
catagories: single resonance effects and dynamical instability
(stochasticity). Dynamical instability is generally dominant in hadron
storage rings, while single resonance effects dominate in e*-e”
colliders. The principal features of dynamical instability are briefly
reviewed in the next section. Single resonance mechanisms are discussed
in more detail in the following section and then illustrated in an
analysis of the beam-beam limit in the VEPP-4 colliding beam facility at
Novosibirsk.
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IV. DYNAMICAL INSTABILITY

It can be proved (the "KAM" theorem) that although nonresonant
particles oscillate slightly in the action space due to the beam-beam
interaction, they are confined eternally (for the -ideal Hamiltonian
system (2)) to a neighborhood of their initial conditions

Fig. 8 Bounded (regular} motion
]
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Consecutive kicks from the beam-beam interaction are perfectly
correlated so that no diffusion takes place. But when particles are close
to a resonance in action space, correlations can break down and diffusion
can occur. The regions of phase space where correlations break down are
called "stochastic® regions or regions of “"dynamical instability”.
Stochasticity is almost always attributable to the interaction (or
overlap) of one or more resonances. There are several situations in
which resonances interact with one another to produce stochasticity. The
most general, though least dangerous, stochastic regions are the thin
layers which form in the vicinities of resonance separdtrices due to the
overiap of secondary resonances (as shown in Fig. 9). These secondary
resonances are created by the interaction between the resonance to
which the separatrix belongs and the other resonances in the system (the
nonresonant Fourier components in (B)). Thus, around every resonance
there is a thin stochastic tube which follows the resonance wherever it
goes in the phase space. These tubes connect with each other at the
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resonance intersections (see Fig. 7). Since the resonances are dense in
the phase space, a particle starting inside any stochastic layer can
eventually diffuse into any other region of phase space. This universal
diffusion is called "Arnold diffusion” (for a detailed description of the
thin stochastic layer and Arnold diffusion, see Chirikov [1]). Since Arnold
diffusion is very slow, and effects only a tiny portion of the phase
space, it is usualiy negligible in comparison to other beam-beam
effects.

Another area where stochasticity occurs is at the intersections of
the resonances in phase space. The stochasticity in these areas is much
stronger than the thin-layer stochasticity, but since the intersections
are relatively isolated (except for the thin-layer bridges that connect
them), they are not dangerous unless they are very large. A rough
illustration of a resonance intersection and the accompanying stochastic
region are shown in Fig. 10.
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V. STUDIES AT VEPP-4

The VEPP-4 colliding beams machine in Novosibirsk operates at a
maximum energy of 5.1 GeV with luminosity S X 1030 and a minimum
beam lifetime of 3 hours. The tune shifts are approximately £5=.06 and
£,=.02 with typical working tunes at v,=8.535 and vz=9.585. The
synchrotron tune is about uu=,02 and the vertical tune variation due to
the longitudinal synchrotron oscillation is about Av,=015 at a
synchrotron oscillation amplitude of A,=0y. There is only one interaction
point. An electrostatic deflector separates the beam on the other side
of the ring.

Measurements were recently made (A. Temnykh [2]) of the machine’s
luminosity and lifetime over a wide range of working tunes. The results

‘of these measurements are shown in Fig.s 11 and 12.
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Two sets of data were collected, one of them, Fig.11, before an
adjustment of the lattice configuration in September 1984, and the
other, Fig. 12, after the adjustment (it is thought that the machine
nonlinearity changed sign during this adjustment, from positive to
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negative. "Positive” refers to the case where the machine tune shift is
positive). The darker the shading in these figures, the poorer the
performance. In some of these plots (primarily in Fig. 11a), there is an
artificial shear displacement of the contours along the left-to-right
diagonal. This defect was apparently caused by hysteresis when the time
derivative of the magnetic field changed sign during the automated tune
scan.
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In all four plots, the behavior of the beam is apparently affected by
certain nonlinear resonances, though the resonances that affect
luminosity are clearly quite different from those that affect lifetime
and those that affected lifetime before the adjustment are quite
different from those that affected !ifetime after the adjustment.

To understand these resultls, 2 number of computer simulations were
run in the vicinity of the intersections of the 10v,=96 and the
40,-20z=13 resonances. This area was chosen because it was observed
that the 10v,=96 resonance (labeled R;) seemed to affect only the
lifetime, while the 4v,-2v,=15 (labeled Rp) affected only the
luminosity. The computer simulations were successful in recreating the
luminosity dependence, but, at first, could not recreate the sensitivity of
lifetime to the 10v,=96. In an effort to improve the realism of the
simulation mode!, a thin nonlinear (octupole) lens was added at the
interaction point. With the lens (whose strength was set to a positive
value comparable in magnitude to the octupole error in the actual
machine), the adverse effect of the 10v,=96 resonance on lifetime was
clearly observed in the simulation.

The next step was to investigate the mechanisms through which
these two resonances affect the luminosity and iifetime. Why was the
luminosity sensitive to the difference resonance while lifetime
responded only to the parametric resonance? Furthermore, why was the
effect of the parametric resonance on lifetime only significant when an
octupole field was added to the beam-beam kick? To answer these
questions, a number of tracking studies were performed on the
simulation model (with the damping and quantum fluctuation effects
removed). Surface-of-section plots were made in order to observe the
location, width, and oscillation direction of the two resonances. The
results of these "tracking” studies are shown in Fig.s 13-14. These
studies were quite successful in explaining the results of the
simulation, and (presumably) the sensitivity of the actual machine to
these resonances.

——

Fig. 13
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In Fig. 13 it is clearly seen that the dirfarr?nce resonance
4v,-20,=15 is very large, even at relatively small ampllludels. and that
its nearly vertical resonant oscillation can easily move particles uutrr:r
the beam core, resulting in a blow up of the beam and an accnmpanglrjg
loss of luminosity. The resonant oscillation is not, however, situated In
such a way that it can transport particles all the way to rtne aperture
(which is located approximately at A;=800): its oscillation does not
span sufficiently large intervals of Ay when Ay < Say. .

The parametric resonance 100,96 is shown in Fig. 14. The tnree
cases correspond to zero, positive, and negative nonlinearity,
respectively. All three were calculated at v»=.599, ux=.55§, £-=.03,
£,=.01. The magnitudes of the octupule—irﬁuced? tune shifts were
Avy=£2.5 % 1075 at Az=0, Ag=1 and Avz=22.5 x 1077 at Az=1, As=0.

In the case of zero nonlinearity (no octupole lens) the T'EEMETICE
spans the distance from about A;=2007 to A-=400, arf Ay=0. The: DEFIID:CI
of resonant oscillation is about 20% of the damping time. The dnjectu:lm
of resonant oscillation is vertical, so that wvertical damping IS

eliminated inside the resonance.
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It is therefore expected that at small x amplitudes, the density of
particles between A»=200, and A;=400, is approximately constant.
However, the aperture is at about 800, and without additional
resonances, it is very difficult for a particle to overcome the very
strong damping between 400, and 800, The situation changes
dramatically (as shown by Temngkh in Ref. 3) when positive nonlinearity
is added (Fig. 14b). On a certain line in amplitude space, the beam-beam
induced nonlinearity is cancelled by the octupole induced nonlinearity.
where the resonance crosses this line, it folds back on itself and a
region of very wide oscillation appears. Since a sufficiently small ver-
tical damping
18

is completely cancelled inside the resonance, the particle distribution
here is dependent only on Ay. At A,=1.5, the resonance spans the entire
distance from A,=150 to A,=700. The iower edge of the resonance can
be considered @ nonlinear dynamic aperture. Thus, the coupling of the
beam-beam interaction with a thin octupole lens can seriously affect the
rate of particle loss when the lens nonlinearity is positive.

The case of negative nonlinearity is shown in Fig. 14c. Here there
is no line of zero z-nonlinearity, and the effect of the octupole is to
simply bend the resonance upwards as Ay Increases. Since vertical
damping is still cancelled inside the resonance, even this situation
should be detrimental to beam lifetime. Particles entering the resonance
at its bottom edge should be able to diffuse (from quantum-induced
fluctuations of Ay) up the resonance to the aperture. However, since the
area covered by the resonance is much smaller here than in the previous
case, the reduction in lifetime is also expected to be smaller.

Figures 13 and 14 were drawn using numerically generated

surface-of-section plots of particle orbits in Pz, z phase space. Two
examples are shown in Fig. 15. The first shows resonant tori in the
"fold” region of Fig. 14b.

Upper Chain
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Lower Chain

Fig. 15a

71 Phase space
section of Fig
14b taken at

19




The section is taken at A,=1. Two separate island chains of unusually
large width are interwoven. Both chains are manifestations of the same
resonance 100,=96. One chain lies above the line of zero nonlinearity,
the other below. Note that although these two chains overlap in the
amplitude space projection (this is shown explicitly in Fig.14b) they are
out of phase and so do not overlap in phase space (there is no significant
stochasticity in this area). Figure 15b shows a phase plane section at a
larger x amplitude A,=1.5.
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Here the two island chains are well separated and considerably reduced
in size. The sections in both these figures correspond to the time at
which the particle is halfway through the interaction (in general,
phase-space sections for two-dimensional systems with time dependence
must satisfy an additional condition, e.g. 8,=0. The additional condition
is not required here because the resonance is "parametric”). This type of
study has not yet been conducted for the horizontal parametric
resonances, but a similar effect is expected since there is a line of zero

x-nonlinearity which presumably folds the horizontal resonances in the
same wal.
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The sign of the machine-induced nonlinearity in the experiment
Fig.11 is not known, though it is thought to have been positive. However,
it was fairly well established that the nonlinearity in the later
experiments Fig.12- was negative. In the earlier experiments, the
prominence of the difference resonances in the luminosity
measurements, and (if the nonlinearity was really positive) the
prominence of the parametric resonances in the lifetime measurements,
can be (qualitatively) explained by the above mechanisms. In the later
luminosity measurement, the difference resonances are not as distinct,
but remain the dominant recognizable features. Machine nonlinearity is
not expected to have a sizable effect on luminosity since its strengths
at small amplitudes is small compared to that of the beam-beam
interaction. However, the later measurement of lifetime contrasts rather
drastically with the earlier measurement. Careful surface-of-section
studies have not yet been completed, but preliminary investigations have
thus far not been successful in identifying the extremely influential sum
resonances which appear in Fig. 12b (there is some indication that they
may be odd-order resonances resulting from a slight misallignment of
the beam centers).
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APPENDIX A  Resonance Hamiltonian
The resonance Hamiltonian (6) includes only one Fourier term of the full
interaction energy

Hn = Ho(D) + Fy(D) Gos (my@y + ;8 « 2mnt) (A1)

This may be approximated in the vicinity of some phase point I, by

fixing Fy(D) at its value at L, and replacing Ho(D) by the first two terms
of its Taylor series expansion about I

Hp = Holo) * WAL + 1/2 AL aa—‘*_[l Al+Fplcos () (A2)

where wq = BHy/81 , and Al = | - I, . The Hamiltonian (A2) is integrable
and may be expressed in terms of a single pair of conjugate coordinates
{Im,l}'m). The generating function is

G = g8 - Iy (MyBy *+ MzB + 27TNt) (A3)
Then with .
Y = (my8y + Mz8 + 27tnt) . (A4)
Aly = lgy my
Al = [m m-
22

equation (A2) becomes

_ . ow
Hp ® Ho() + (@om + 27) Iy + 1/2 lnflm-Tl-mh
' v Fp(l) cos Ypp W)

If I, is chosen such that it lies on the resonance lire, i.e.

metay(lo) + Mzsylle) + 270 = 0.

then the second term in (AS) is zero and the first term is constant (and
can be dropped). Thus

| s | _ |
Hm(]m-"l{r_n_) = 1/2 ]mz [m _a"l"‘ o] & Fm(la) CGE "Pm (AB)
Defining
9,  _ 9%, 9%,
A =2 MMz g * M 5o * Me® 5z S0

the resonance Hamiltonian (A6) becomes

This is a pendulum with separatrix width

Al = 4 m]_ (A9)

or, from (A4)
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Aly = |my az_m|

(A10)
Al = |my mml

APPENDIX B Beam Beam Model and Simulation

The simulation model features

a) Two transverse and one longitudinal oscillations

b) Accurate analytic 2-D beam-beam kick

¢) Linear phase advance between interactions

d) Damping and quantum fluctuations in all three escillations
e) Small vertical tune variation at interaction point

f) Thin octupole lens at interaction point

The beam-beam kick is given by a potential

A

2 + 900 - F In[h(zx)] : (B1)

‘-P=

where f(2)=22+B +Cz?2
g(x) = D exp (+x2/E)
h(z,x) = (x2 + 22 + G)

where A=11.48  B=2. (o, /0y) =6
D=.82 E=4, F=6.6
G=2.3
and the kicks are given by
wipn 2l

o]
Aps= Ez 3z
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