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Abstract

For first and second moments of structure functions of
electromagnetic and weak scattering Q'E corrections ( Q
is the momentum transfer ) are found by means of operator
product expansion method. Renormalizations of relevent ope-
rators of twist=4 are fourid to be small., Available data on
scaling violation are discussed, and results a&e translated
into average value of certain diquark operator over the nuc=—
leon, The naive quark picture with wvalente quarks only can
not reproduce them, and some clusters of virtual quarks
with dimensions sbout 1/3 of that for the.nﬁclénn ﬁre pre=

dicted, identified naturally with constituent quarks.



1. Introduction

1.1« Preface

The studies of lepton-hadron deep~inelastic scattering
has been very fruitful during the lest decade. Discovery
of (approximate) Bjorken scaling has lead to Feynman parton
model with its point-like fundamentel constituents, quarks.
Now these observations have fundamental thecoretical explana-
tion in the framework of the asymptotically {ree guantum
chromodynamics (QCD).

With all progress in our understending of interactions at
small ({ 1 fermi ) distances, we still know very little
about the large scale interactions, which bind quarks inside
hadrons., BExperiment give us a lot of information about the
properties of hadronas, but it is very difficult at the moment
to connect it with the fundamental theory, so more or less
phenomenological models are used.

In order to comnect data with well ﬂefiﬁﬁ quantities one
needs some probe, which is in some sense point-like and well
understood by itself. Deep~inelastic lepton-hadron scattering
is the best one.

Last years the theory of deep-inelastic scattering has
been concenirated on the calculations of logarithmic effects
arising due to emission of soft glucns, see rewies 1-3].
Experimental groups have increased their accuracy and have

been able to detect certain deviations from I crien scaling.



The works [4-7] have shown that these effects can be asc-
ribed to logarithmic corrections, However, next order correc-
tions {4i did not produced better agreement with data. liost
suspicious is the fitted value of fundamental QCD perameter
ﬁ_:O.S-D.? Gev, which seems to be too large. For definiteness
we refer here_ﬂﬁﬁ , for other popular rencrmalization schemes
one has Aﬁ;" 7 _?};'\HS: t?,;?gﬂm;, Recent snalysis of e'e¢” an-
nihilation [E] has given much smaller f\w=0.1 Gev, and in it
power corrections dominate over logarithmic ones in the whole
region where scaling violation is really seen.

For purcly phenomenological data describtion it is rather
difficult to teXl :ower from log, see e.8. [9] . The importance
of power effects for quark-resonance duality has been stressed
in lij. Finally, new generation of muon data experiments are
in progress and they find no scaling viclation at large QE,
implying small A = 0.1 Gev. If so, the dominance of power
effects becomes evident.

The present work is devoted o systematic studies of physi-
call effects connected with Q-E corrections to moments of
structure functions. The mein methodical tocl is Vilscn ope-
rator expansion ( OPE ) which was previously used for calcula-
tions of perturbative corrections. Jur application of OFE to
next twist operators means the accounl for nonperturbative
effects al large distances in ‘heir matrix elements, while
their coefficients can be calculated per urbatively. The
latter fact is nontrivial but possible up o high enough po=
wer corrections, sce next section., The use of standard perilre=
batibe diagramg turns out so inadequate thut so far nobody

was able to carry out such programm. We use another approach
based on the generalization of Schwinger formalizm for

fundamental processes taking place in some external field.
Most important is the explicite gauge inveriencg of this
method at any step of the calculations, With the help of
this method systematic calculation of OPE, at least for
lowest operator spins, becomes possible., We also discuss
in chapter 2 renormalization of the next twist operators.
It turns out that for Gﬁﬁators containing gluonic field
the best method also is based on Schwinger formalism, this
time for loop diegrams in external field.

Data on scaling violation in electron, muon and neutrino
scattering,lalthough collected during last decade, still are
not accurate enough for precise and unequivocal determina-
tion of scale breaking parameters. We discuss in chapter 3
several exemples, inperticular Gross-Llewellyn-Smith sum
rule, second moments of F2 structure function and the prob-
lem of large FL geen in SLAC=MIT experiments. The second
point is most essential, for in it at least qualitative
nmumerical estimaete of the scale breaking parameters 1s pus;
sible.

Chapter # is devoted to rather detailed discussion of the
relation between experimental value of scaling violation
end our present understanding of hadronic stiructure. It is
shown that the so called naive quark picture [19] is wrong
for it gives predictions with the wrong sign and nearly one
order of magnitude smaller, Cur OFE results connect, loosely
speaking, scaling violation with the square of color density
averaged over nucleon. So, one can conclude thet clusters of

dimension 1/3 of thas for nucleon are present, naturally

idenified with constituent quarks.
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1,2, Operator product expansion = Z = )H[( 3 ;
The gener_al idea of this method is the systematic separa- | = (- 5’:2 g/“v’ f/“?v/? )gﬁ, i/q: [L i (1.1)

tion of the two different scales of relevant distances, In

! 2 2
the case of deep-inelastic scattering they are small disten- 3¢ g/’fﬂ- {7}‘7‘2 ? & ?/"/“- iv i/’z % gvﬂz g/u tz_,«; + g/-w 9 ) Q/q‘,) f‘.; &
ces of the order of /¢ ( Q is the momentum transfer ) : o s £
and large distances hezmal hadromic scale 1 Yerml I, = é/“ e fi ?J/qf C3 ] Q/’“’S CZ/"“ 0_/"'! LR

More precisely, it is the expansion of the product of two :where e e e S e e S &;";/ﬂﬂ
operators A(x) and B(0O) in close points ( x is small ) into vith Lorentz spin n, namely symmetric and traceless tensors,
the set of some local operators 0,(0). Their coefficients mhree types of coeeficients CL:CEJ {3 correspond to three
c; are determined at scale x, while all information sbout types of structure functions for unpolarized target.
larger scales is given by Di‘ Such formal approach is very ¥ one neglects S,c... quarks and Cabbibo angle etc.
suitible for QCD in which we are able to calculate at small ne finds simple relations between crossing symmetry of
but not at large diatances, so we can at least localize our (1.1) ( which is MOV, ?H ‘Q ) and isotopic properies
Ignoriube in. Sl Rolinl te way. 5f operators, In such approximation neuirino interact omly

Short comment about th status of OPE, In prturbation theo- with d quark, snd antineutrino with u ( we do not consider
ry it is obviously valid and is just{ expansion in powers of in this work neutral currénta of weak interactions ).
small x ., Nonperturbative phenomene like instantons give more Introducing crossing even and odd amplitudes as
complicated cﬂefficients,'althﬂﬁgh the OPE still can be defined, ]
see e.g8. Li?". In the present work we do not discuss so distant ;i\i {?} ¥ AMV {Q) + AHH (__ g) %

terms as x where such phenomena first appear.

The standard OPE for the product of vector currents is as S e CaahEeE L uboil Tl Shb e S SRR AL
follows: i antiparticle, or as isotopically reversed target. Then it

Aw Sk jfﬁ?‘-’ Ebi Tf’ o/ (x) J:fﬂf ) ~ (1.1) follows that structure functions FS, Fg for isosinglet tar-

; - zet correspond fo operators with even spin, while Fg - only
50 operators with odd apin.. For isovector case the situation
i reversed.
= For electroma.gnetiic scattering crossing symmetry is obvious

and all structure functions expand in operators with even spin.

=



___—“

Concluding this point we may say, that scattering of

electrons, neutrirno znd arntineutrino ( charged currents )

give in total 7 sef: of {}I With even n and 3 with odd ones.
The next step is the connection between the two current
correlator and scattering cross section., The most convenient
way of doing this was propossd by Nachtmann :_14_] y 1t con-
necis directly definite spin n with certain integrals of the

measured structure function, the so called Nachimann moments
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here X ia(-ﬁaﬁygﬁ '(;:zxf?ffif??éﬁ$§33§3) and M

is the itarget mass. Theconnection mentioned is rather simple:

_ ‘ s
Mudn, G0 - EZC” « O,M. v % (1.4)

where ({D}) is the so called reduced average value of the

operator defined asz

M Oy, 1652 260D(P, . p. - tuees) (1.5)

ol

Because moments are dimenecionleas nunmbers, the pover de-
» 'y

e

pendence of the coefficienis on Q7 in (CID ie evident Trom
dizensional considerations. With standard intrcduction of
the operator twist t as the dimension minus spin, one hag

s £~
Eirsonl) o

operaters survive which are

2
A%t Q= eoc only =2 (or leading twist)

i f et =

Lf*‘v i J., HI)L o (1.6)
s N7 =

"G,Ml 7 P e ‘{r:;&ﬂf'; I-Z-)f"'z 5 .Z)ﬂn-.r (:I-’{e’-:'ﬂ

In the former one we may still use different flavors of
quarie. In thies expression ( and below ) the symutriza-
tion over indeces and trace subtraction is not expliciiely
shown, but is implied,

iow we have io give more precise definiftion of OFE in
respect tc cperator normalization, Usually it is made by
setting all matrix elements equal to those For free quark
and gluon fields at gome fixed Buclidian momentum =
By definition, all virtusl momenta c'z‘«*ﬂzare ascribed to

: T IR 2 :
OPE coefficients, while 6 < M to matrix element of ope-
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rators, Of course, physical quantities are /M independent
and the variation of M leads to renormalizations of
both coefficients and operators according to renormali=-
zation group equations, These phenomena are studied in
the logarithmic approximation for leading twist operators
in the works [I*‘f] .

We study below power corrections, which arize from next
twist operators. In order to define them prcﬁ%ly, one needs
to account also for power ( in éqj corrections to OPE.
Becauge integration in loop dingramg for coefficients of
the leading twist operators is restricted ta)uAf(Q’ correc-
tions of the order U(jhﬁfﬁzj appear, This m dependence of
the amplitude is canceled by D(;Hz) correction to average
value of the next twist operator. Crudely speaking, it hap-

pens as followa:

2

ﬂ

-+ e
i d}i)ﬁfuii

where C is some number, and M is internal hadronic scale

1 MY
: (ci'fi_éfdj =1+ qéj}
@ M twist-y

of matrix element. We do not discuss such ‘Adﬂﬂja terms
in details because the physical contribution ﬂ¢?ﬁf turns
out to be so large that there exists low endgh M such
As (p)

in order to calculate coefficients in perturbative way.

that miee Mt ana 8till is reasonably small

This statement will be discussed in section 4 in more

details.

eJe Processges in external field

This introductory section is devoted to very convenient
formalism developed by S@winger [11] for the motion of par-
ticles in the arbitrary external field, Generalised easily
%0 nonabelian QCD it is adeguate to its pProblems because of
its explicite gauge covariance at all steps of calculations,

This is not so for standard perturbative expansion in
Feynoman- diagrams, which is much more often used. For example,
for guark-gluon operators of the type % 6 Y to be discus-
sed below one ey use disgrams ahcwﬁ at Fig.1. However, the
covariant operators contain parts of different order in coup=
ling constant ( e.g, covariant derivatives ) amd it is rae
ther combersome to reconstiruct them out of perturbative
expressions, More important is the problem with gluon emig-
sion from external legs ( €eg. diagrams a,c ), The main part

of such emission takes plade at distances much larger than

=
=

Q"' ana correspond not to coefficient of {FI}?” but to ave-
rage of W¥ which we do not need and should subtract, Only
the part in which smallness of propagators is compensated in
nominator ( the so called contact part ) should be consi-
dered. Its selection is rather inconvenient in practical cal-
eulations. The general reason is that if we want to select
aifferent distances, then coordinate representation is more

natural,

The Schwinger formalism is Just the coordinate one, it is
bagsed on formal set of states /x> , eigenvalues of the

coordinate operator:



{1.7)

/\; P FTRD

Also momentum operator ﬂll is introduced which satiafies
(] i (1.8)
[\Bu XV J' : E{}-IMV 3

(1.9)

- — "15.

where |  are color ( Gell-Mann ) matrices for relevant re=-
presentation of SU(SJG. In coordinate basis Gi“ acts as the
covariant derivative

of i ) h ‘éi g . .?quqﬁfjé?k‘ J

X } Uﬂ* fy } ot S 'fH j) T 9 bl {1,10)
: L)'f;,, W

In such representation one may write down simple formal

preseniation for propagators, for example for massless quarks

: 1 : ‘ $1a31)
G(x0) = <x| ~— )
¢

which can be proved by the action of the Dirac equation,
The Fourier transform of (11) looks as

: il ll?x ! g g ¥ /

S i Ge Ly 2 N A RLK] e [0 (1.12)

Gla) - fdw e V12 Jo> = [d'xexl o

]

whele we have used relations

{1.13)

eV (Covd, JEY e Bse )

U€ing the propagator, one can write down expression for any
process in the external field. For example, Compton scatte-

ring we are going to study is connected with the amplitude

oo
4

rSA_ L:{x <>c![‘?Ju§’__ T (#ev)]lo) (1.14)

+g
where abstract operator Y is introduced which acis as

Pix> o FXFIXD (1.15)

Here ‘P’(){) is an arbitrary solution of the Dirac equation

5?’: 0 {1.16)

in the same field. Such representation of the amplitude is ve-
ry convenient for expansion in 1/Q
;x : "iyj'*—HPJ?—i‘m {ledT)
P19 ) 9 e Sl _
This expression, although simple, is ithe main point. The l,.h.s.

is some integral nonlocal operator,while the expansion in

r.h.8, is made over local differential operators and the

{

Oy

coefficients are simple powers of 1/Q, our small parameter,

That is why this method is so useful for OPE.

o i o



2« Theory of Q “corrections

2.1, PFirst momentg; corrections fo sum rules

The simplest operators relevant for description of deep-
inelastic scattering are those of spin 1. According to (1.4)
they are comnected with first moments of the neutrino scart-
tering structure functions. General congiderations of
section 1.2 are rather simple in this case in the leading
order in 1/q of amplitudes 11.2:

Auw = 32 Cpvap Lllidyu, 14,5, d, )

{2.1)
- o ui o & ]
Moo = gl (30,7 0. a4, - (0nd)]

The first one is commected with isosinglet target only, while
the second * = with the isovector one, A{ the same time

the first containspnly F, structure function, while the se-
cond contains Fsy One should not worry that the secnndlline
ia not transverse Q,H A-ﬂfﬂ . Its longitudinal part is due
to equal-time commutator of currents, ¢ another current.
That is why for higher twist corrections this longitutinal
part is always equal to zero,

The operators which enter (2.1) are made out of left-handed
spinors because such are the properties of weak interaction.
However, one can sufstitute 'Ff'{ ﬂzi‘?'-‘-}’ for unpolarised target.

The operators in (2.1) are just currents and their average

over nucleons are known, so the classical sum rules [}5—171

8PPeAT « Now we are going to calculate corrections to them,

-14-

T e g A

Let us expand amplitudes (1.14) further, up to terms of
the second order in @ﬂ - For brevity we (for some time)will
consider only one type of quarks ang omit jdx’{x:!... jo o8

srﬂ"" ) i Ai ﬁ‘! + =3
6‘];,,' LFJ,,Q«G{E)%(LH’_. (ver i)

(2.,2)

0dd number of gamma matrices can always be reduced to one,

so in fact we have to deal with the i-a.n]:—B tensor

7;,;#:/45 _ Ty 02,,; tg.? 3;,1 ; o (2.3)

The apin-3 part of this tensor refer to the leading twist
m
operator, which we are not interested now, while the = SPin-1
one give corrections we look for. In general (2.3) can be
written as
_Tb.Pt.lrl";
i e + - - ' 2
Eﬁa Af 9@’ X i Ya * Jua zf Pelpyg U4 (2.0
Teking all traces and convolutions with EJ,,EJ'J one finds

the system of linear equations for unknown X, "‘"_t.rér] e

Using the equations of motion one can find that

Fﬁ&w: FRPY =0

a s (2.5)
= AAER LENE S 4
s —~ L1 Q
Eprs VOGN v = g¥ b Tl ¥
t\}Fnr example, in léu;:h condenced notations ii’j();?/ Neans

Jd:(‘l}'?"d; Y&plo )

which is zero as the int
total derivative, . tegral of the

-I5-



and finally

—
TA,&J - 3% g.g.s (9;;?3 *9;&! st) 2 #IJOJ (2.6)

where the operator Q‘ is defined as (G,ﬁ rq)
z %f#ﬁ ad

:597@::{“3;&9’ (2.7)

Note that it is uniqgue positive parity spin-1 twist-4 ope-

rator becsuse another combination is identically zero:

Vel - 2 w[p L1 ¥- o 3

Using (2.6) one may find corresponding corrections to
the amplitudes

A 2

@ Cap Lt 92* +Epvap G O

S 2 e
T @ (270l 4 18)~ 4,04.9°9.9.)600)

It is now trivial to introduce two types of quarks and re-

(2.9)

write (2 9) as the following corrections to moments: -
y, M

My 0yt [ - g ~ g e Jeao
y m-(j QE)
§ M

:?Singlet and nonsinglet moments are defined as M ' =
| 4
Sfrpgt ™M, )

o

3 -—(({.? 3 # ) (2.10)

My 00 = 301 - o~

The three relations in (2,10)(including first terms only )
are known as Bjorken, Adler and Grnss—Llaweliynnﬁmith sum
rules by the names of their authors, see works [15-17}
Logarithmic corrections are given according to first order
perturbative calculations [4], here and below the coeffici-
ent of Gell-Mann-Low function is £ =11=2/3 ¢ {¢ » the mumber
of flavours.

Last terms are the power corrections we have calculated

above., The notations used mRre as follows:
(sl i ..... q o o
OE o g(;; {ufgﬁﬁ}u t d@«&}d} (2,11)

So, the accurate comparison of (2,10) with data can give us
the correlator of gluonic field with quark axial current.

One more comment about the Adler sum rule which is valid
without any corrections. This statement follows very simply
from our approach, but in fact it can be traced from the
original analysis [16 ] .

2.2, Second moments

Second moments ére interesting because of several reasons.
First, the diquark operators come into play starting from
spin-2 operators, and we believe them to be rather.impartant
in producing Q™2 sceling violation. Second, this is the Pirst
of even moments, which are connected not only with weak inter-
action, but electromagnetic ag well, B0 more accurate data

are available.



There is no principal difference in the calculations

compared to the case of the first moments considered ;ﬂiﬂw gin _ﬂréﬁ&{jﬁk ¥ éggj'f/g g;y v 9‘405'54’%"# = ¢ (2.14)

above, although they become more lengthy. For bravity,

: The solution of this system of linear equations is the
we start with the case of one type of quarks ' and

i o8 following:
simple vector current Y | ¢ , adding quark charges
:
and isotopic factors later, pin-2 ,v 5 {2.15)
—— LT By / ll
j i N Dy ' AP 5 7 :
The starting point now is the amplitude (1.14), expanded [ ADK; £y j. t/}(ﬁp {go@-f- * /.? - 3 5‘/)3,{ 4
W

up to terms of the third power in @q « Naturally,
the central object is reducible rank-4 tensor % " _ ; X i :
. %dg’ {L‘U‘{,é_ﬁ— 35)’;’,[[” : 3 (E"ﬂfrf /“4'?.:({‘ t E‘f? 1 EZ”, T
ﬂﬂﬁ R AR (2.12)
{; vy i = ' 1 ' S -
+ e (h@" 3/ gB/L’c’ " 5}’5 (9@ 2 1"9)%.5'1
from which the spin=-2 part should be extracted, Agair, one
may write it in general form : 3 : o ;s .
d . SP‘."‘“ + 9}& {'?@-f-gz‘;"fg)ﬁﬁ t ‘éﬁ},ﬁdﬂ/? ﬂ 5 5'8 02'.):1‘*5'?
i o ol :
(2.13)
FGpo Kar t Gas Wor * Gyg Was “prd Vet

¥ Capsi (1-5B D)t Cpyy (A -28-22)p j

+ Cu6rs uﬁ',a t €68 Ty

where. T * Z are some unknown operators of spin 2. They

can all be determined if all traces and convolutions with where 3 spin-2, twist-4 operators ere introducved:
€ { are found. Note that one possible structure
Ap¥e . P e L Q 3] e fi i ]
4 | s WD 3L o SO QU 1N Fty) (2.15)

1 ARYE 56'5 is not given in (13), for it is not indepen- . ’ Al_,-b‘u { fdhv( ol Gv'-’”) (:3«,“ 4 97’ J; ?,/ J;

dent due to the identity:

-
.



B. = ¢ ;{@:f‘-’@ff AR

(2.15)

e A N R

where symmetrisation and trace subtraction is not expli-

citely shown, Note that for operator A/m, we have

£

used the equations of motion

oy e, S 4 i k] . - )
{Ldédﬁ--‘?&fl{ézft% {E16)

hove
and rewrittem it (n the four-fermion ( or diquark ) form.

Using these results we find the amplitudes
s

=y i - 2
-';.mu 2 ( {;){{MF Q 5 '[Zq ‘?ﬁ; Zu"l-"_ ?r?d an/-l + gx‘w‘ (2.17)
Cilplop )+ G )09, (58-28),, + 9.9, (54-28),, +
t G 0udy (-3 4 198 ),y + /%Qﬁi«?p/@?'
(~2A-128),, + §°(-SA+ 28), ]

A f¢
' = — ¢ w8 ;-
v ?'r AV ) Q’t fr [Zfﬂt}' e 3222 ﬁ,ﬁa’ 3 EQJ Bﬂf)

g e

Here for completeness we also presentsthe leading twist
operator f_ﬂ#{j,ﬁj , the quark stress tensor. Note also that
these expressions are automatically trensverse, namely

Qﬁ P.lﬁ"" =l ,q v = ¢ .+ The nontrivial and still unexplained
phenomenon is that the operator o does not in fact
contribute to final resultas (17) although it is present

in intermediate expressions.

OQur results are so far not complete because there exists
another diagram shown at Fig.3 and connected with the inter=-
ference of deep-inelastic scattering over different querks
of the nucleon, It is not connected witgﬁng;:nic field in
the needed approximation, so the result can easily be ob=-

tained with ordinary Feinmann diagrams:

s 5 = ;
5TMV: ‘Ez%([ux ‘? - ?/-‘ ?a! (gL-'rQIr'?.-f (u{/‘-f-!- (2.18)

" : A
1 9;’“\"/ ‘5'25"?!;; (d!p) ) JTMV s
2y - i ¢
Coe 2J(E T e dbed ¥ )
With such correction we have completed the calculation,

The final form of our results for two quark flavours

in terms of the structure function moments is the following:

i, 98



A 5 . {8 & ;
MU (2 ) = = ;L e i Y
gk IE(?J (‘ ’f_ f(?{!‘ /, ((féfw A 37{;/,? S "2}
ij
i L :1-_1 A3 (2.19}
6].\41 (?'q'}) 5 2 A g{iz? )
M’*’_J{%{;g'} = <' 3 4 £ ) ‘_f_ 25 / i g
2 (Z ?24}2'}; = fﬁf’i-“!b +'-';J"}( ;;i
M o) - «
Feis 45 0. 2 ks e
‘_:"2*, ’q gt g 3 ffﬂjt 4 ).
6 M, 00y = (™5 i‘ s 5
} l /3 f—*‘i’: Shjf' I?—J:Fq C'NJ;'?
v s -
(? q} ({,_i.ﬂf; = _:; fuf i T
Sept PP

with the operators defined ag

Bsm u{ ﬁ} Ehodot t (4 d)
S8 "Zgytawt dJ’z“};f]ja gif“d(f;f{zf'}
dp:QKHMi Wbyt U~ Lahdt1d) + fura)

C o= gLkt Umt)q)f JJ/}‘*W;.-M}
QLG UNEL Y1) - (4 d)

(2.20)

-29_
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Sunmurizing this section, we have found corrections to all
7 second moments of eleciromagnetic and weak ( charged current)

deep-inelastic scattering. Note, that the relation

MLHS{/.Z,&’E): %’,g MLE"S(::: @?) (2.21)

turns out tc be valid not only in the leading twist approxima-
tion, but in the next twist one as well, Because of this, one
has 4 singlet operators for 3 different relations and they can
not be determined uniquely even from the complete set of data.
For isovector case, one has 3 to 3 relation, so all averages
can in principle be detemined,

2.3. Anomalous dimensgions, Spin 1,

As discussed in section 1.2, in order to atudy Q-dependence’

of moments one has to nurmd&ze operators in some fixed normali-
zation point M e As it is well known, in the leading log

approximation the corresponding coefficients are related by

3 = i f-’{'jf;z‘-",]
Cial s Exp[.'"’l‘ Z 2 = W}] C/p) (2.22)

where theﬁ:’mdicea of C‘: and mixing matrix F‘f{,; are suppressed,

Matrix P4£; can be found already from one-loop calculations,
However, the logarithmic dependence due to (2,22) is of

little importance £o§$§;§éing twist operators, for their con=-

tribution can be observed in rather limited region QEaI-1D

GevE where such logs change very slow, The main motivation of

- the discuassion of such effects in our work is the need to use

e
as small M a&s posaible in order to get rid off efﬁuﬁs of
the order /Hifﬁﬁ y See section 1.2 ,
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This Hec.'i:i-:rn gives an example of the application of the
method used throughout this work, formal description of the
motion in arbitrary extermel field, to calculations of lora-
rithmic renormalization of operators, containing gluon field.

In particular, the twist-4 spin-1 operator (2,7) is censidered
=q¥ 65t 0, ¥
=37 Cupt byl

The gluonic field should be devided into classical external

ef a
field Ft;( S quantum field &,
L) 4 aq (L€ ] o
A + a
;1},4 ’q;“ ™ : (2.23)
so the operator ﬁ& becomes equal to the sum
>afd) — ,q = =
9{"" LN+ 9 Cpys oy as -
(2.24)
i k ﬁ abc £ . ¢ (,t-’ f
[t 3};3’;*} + L5t a, a; i ¥
where the covariant derivative Q’){} contains ﬁﬂm; « Let us

formally add this term to gluon Iagrangian as smatl pertuzéatien

QL ;;;ﬁv«zi(@‘a e ga aa faff g(f’1+

Y@y 1iyqa @ 2 ¥ 2,2
+ sWg.tva, + Q7 o@x?’ e (2.25)
Feynmenn gasuge 1s chosen here, for which additionsl term
_L(GD a )Z and the ghost one @ ‘;f@ v are added "to
original La.g::migian The remxl‘t:l.ng propagators are: :

25 )@y = fdj.{%:_gg /w] 19>

(2,26)

T e

/"I?q(/}i,ll ;?‘f,r/}r) ;

L

The operator of momentum G\/m for gluonic fields acts as

Tollows

The Lagrangian (2.25) containjonly one term .&wa"f”
which is not bilinear in fields, so corrections due to operator

Q{ can be expanded in powers of the interaction of Q/,ﬂ
with quark fields., Diagrams shown at Fig. 4 a,b are of zeroc
order in this interaction ( crosses mean vertexes created

by operator (,2{ Jo The corresponding expressions are

S . q {1 | |
Mi 5 "JT? {Gwﬂ t {J/ ?‘ - Aea]

/ fé?‘
Mf - & E4P¥§ 1 fo 2lTT J}?[MEEJ'QQGJJ]

Note that in these expressions irace is taken over all varisb-

les including coordinate ones.
In the first order in interaction with quarks one has
diagrams shown at Fig. ( c,d which correspond to

Hd 2
Mo = Sl (Pl Ly ety
ng) % (2.29)
’[@Tﬁw“zﬁsvfr] )

and in second order there appear diagrams e,f,g, expressions

for them are the same as in standerd perturbation theory.
Strictly speaking, one should alao!include the renormalize-~

2
tion of the external field Gyp — Z G,y . However, in

25



the formalism used the source of Q, 1s congerved and
the same constant 7  determines renormelization of the
charge 5. s 80 that the product ?giﬁ is not renormalized.
Therefore, including 9 in the operastor we may ignore field
renormalization.

We loock for logarithmic renormalization, so becauase of
dimensional considerations one should loock for terms of the
same dimension as the original operator O/q .

(&l
Starting with Mﬁ. y We may rewrite it as follows

M:I}: ‘i'jfd?x 6 (")-E'f* o L[{ t{; *i '!x)] (2.29)

LEC C"'

4 =
The axial vector T}[‘f qd;s;},;{”_ﬁ JI}__;l expressed in terms
stzeng th

this combination vanishes

of gluon field can be g’Z}J é}} , but
identtcally . So, (29)
is in fact zero,

For M';fj we expand the propagator in ngf. Zero oxrder
term 95}/@2 does not contribute because of convolution

with Eﬂﬂd"&‘ . Pirst order term is equal to

rg:r 27[0?7“?,%3;% 'f/(x//fpf - {p;/”} (2.30)

end the next ones can not give log, Due to this, we may ignore
commatators in (30) and extract @;‘ﬂ . What is left is easi-

ly found in ordinary momentum representation

. Z
dp 1 (2 )

a8 e .
(KI[ J [*>= ‘5 en)t pv 3 ST o (2.31)
28
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1l

and finally

- X f’x }
M & f (2.32)
rrm}

The calculation of M is more lengthy, sc we only outline

the main stepss The fermionic propagator cen be rewritten

as
A { 3
e 7 * & (j: (2.33}
@ {P r t_gﬁ:«w Qﬂv ?La

The contribution of terms linear in G;., from the expansion
of fermionic and gluonic propagators are calculated as above.
Terms of zero order in G/MV should be rewritten in the
form in which ell momenta (P, and 'p®are, say, in its
right part, and all coordinate dependent parts are in its
left part, The following expansion in commutators is of use

here

+.[8 M + [[gﬁ]ﬁﬁ]ﬁ-fm(&:i#)

J_
xiT

Remember, that [p between fermi fields is in fundamental
f

f .
i E

representation of color group, while ouside them it is in ad-
el a ¢
joint representation, &’,9, 'f"pﬂ means ¢ ¢ [J,?. e

The last step is the calculation of expressions of the type

KO @, 1xD

pect tgﬁ;_fﬂj?gﬁ * K., where K/... is the arbitrary c-number

vector, and this can be used for their calculation. For

. They are invarianf with res~

example, expanding (x| ((P+ H)_‘E/J{/\" in Kﬂ one has
.3 { v
(ﬂ@z 0, _0;;:)- 0
(2.35)



Transforming thiefrelatian as follows
1

5 & . ik
S Ty ey P L E?ig? ]-+
a(}lﬂ}?&ﬂwﬁjj J’ﬁpf_ﬂ Cpéi o
.,,{éwgz@‘[t?‘ﬁ]j-h_ X2
one finds the following result
-Rl'::l 3 ' g qé

r

Another expression found in similar way is
L 00 h>= -2 u [ % @m
g;{ﬁ%j h) == o bl (6,

Hsing.them we are able to find the contribuition of diagrams

c,d:

Mic“”“ j_ f%)_g_ ﬁ,, Jd;{

3 5 16772 - (2.38)

The final result for the renormalization of the operator

C& is
2

S i
=5 “-‘%/ )f;% g"’;‘f jdt{x‘%f*} (2.39)

which corresponds to the anomalous dimension of this operator
ud {
S e
26 ™ )

. ‘ﬁ} ﬁ“}lj .
(TQJ(HJJ i / ;;'69) (;%if4%{ (2.40)

This result is not in agreement with that given in paperf?{ﬁ

28

where also mixing of C& with the nonexisting operator

(2.8) is considered,

In conclusion 1let us emphasize the methodical virtue of
the formalism used in this section, much more economical than
the steandard perturbation theory. The remson is that only lo=-
cal and gauge invariant objects appear at each atages of calcu-

lationsa,

2e4s Logarithmic mixing of gpin-? operators

Spin-2 twist-4 operators are rather numerous, including

diquark and quark=-gluon operators ( some of them we have alres—
dy met in section 2.2 ) and also pure gluoniepperatnrs. The dig-
cussion of their mixing matrix we begin with the following sta-
tement: this matrix is triangular for diquark operators do not
mix with others, It follows from the fact that pairing of two
quark lines in a loop give ordinary polarization operator for
vector current which is proportional to gﬂUKE K.k > where K.
is the gluon 4-momentum. This fact imply the operator ;aqui;
which, by convention used, we write as (- %) Al
by means of the equations of motion and refer as the digquark
operator.
So, we start with the classification of the diquark opera-

tors. Note that we try to follow the notations of the work

[13] where spin-zero case is considered as close as possible.
First we enumerate all possible structures, Lorentz spin 2

can be created in tree ways:
YO K8 Y+ (L=R)
AR

o - (2.41)
¥ 6‘/‘*&? %" e ﬁw y‘i
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There are two color scalars

FL;; ?a_;j;' w;/@f”{ ¢ | / ;’-'f’;’l [y (2.42)

and four different flavor structures

Ty ) (F ) (& A8 ) (¥ 2%¥)
(2.43)

(@ X)) (o) (FXV)(F Ny )

The direct product give 24 combinations. Fortunately, they are

not all independent because of Piertz transformatioms, fo? w1
cndiees (T {8

-
MGG ) - (B NGy, 62 cow
;-1* I J T o et
CARA AL ALARD
There are in fact 6 independent singlet and 6 nonsinglet ope=-

rators, which are listed below. For 5’“”*"5513; Fﬂf@: fq"yf:" (f?{

gte,

| 80 oy ﬂ;e g &Q}L = (f% (187)

(2,45)

$.2 Lol + (-8); §,-¢% & () + (1+4)
= : (18 1)

= (%) o (2%¢%), S (M), @ (X} (82g)

e

p——

Sekegy 7 2 8 - EapR
*"bi - f,}\ )l{g} ﬂg L (i{——?f; fb/z’ - aﬂfﬁ')&w (ﬁﬂ'}ﬁ i ler R )

i e 'ff/].i'@ji t (L=4)

e — j

N, - {h‘jﬁ 9,

(bajeias)

N IR O, (Reg) )

I’ N, = () o {Af")_{ + (L>g) 2@ @ 1027)

Brackets in the right side contain representations of right-
handed and left-handed flavor groups. These representations
are not mixed by renormalization. For example, because of

this the operator /g is not mixed st all and is renormalized
multiplicatively.

The calculation of the one=loop logarithmic renormalization
is made with standard perturbative diagrams shown at Fig.5.
In Lorentz gauge the renormelization of external line and
vector current is zero separately, which helps in the calcula-
tiona.

For the operator fb’ré the result is most simple;

ehim) st J_,_g._/ I %) (2.4

L%

&
ana therefore”/

- WA 3 [auw
C M s ()

c:ﬁégi?) (2.47)

L‘wa doublets (55 5, ) (™ ;L;’,Jhava identical mixing matrices

'This result also disagrees with that of [271], even in num-
ber of operators.




e (2.48)

Singlet matrix is the largest one, t mikes Sf ,Q, 3} S?i
F r r

16 -
Biszantogp - 1 (2.49)
% ks -3 Z _10
pﬂ@f: 2 3 ; 5
0 0 0 %;

We remind that in principle it is only part of larger matrix,
including operators B v @ » (2 1§ ) il ﬁé’wh{; Cirg

é«u ¢, 5;;4 Gpv kit

However, the triangular form of this matrix shows that at
least the eigenvalues of (49) are true anomalous dimensions,
The main result of these calculation is that mixing is
very weak for diquark operators., For the operator Bﬂu which
enter OPE directly we have checked that theip mixing with §-

1

is also mumerically small.
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3. Date analysis
Although studies of scaling violations in deep=inelas=-

tic scattering has been made in experiments with electron,
mion and ~néutrino beams during last decade, the accuracy
of most data are insufficient for quantitative unequivo-
cal separation of power corrections under discussion.
In this section we discuss the parameters of scaling
violation in lowest moments, which are obtained with
the help of some plauaible assu%}iona.
2el. Gross~Llewellyn-Smith sum rule

Among first moments, only that for singlet #4;f1,$?iﬁ
aveilable from existing date, they are shown st Fig.6
and teken from the work [5] . Perturbative corrections
with two values of A , namely 0.7 and 0.1 Cev, is
shown by the dashed lines. Data seem to exclude the first
possibility. Interesting, that this very case, no power
correction and large /| , is edvocated in this paper.

Error bars are too large, but if any s¢aling viola-
tion is present, it probably hes sign opposite to those
predicted by the pertubation theory.

For illustration, we have plotted alac the curve with
gome power term as well ( solid line ), Using formula
(-2.10 ) connecting this correction in terms of the redu=
ced metrix element of the operator D: (2.1 ), we may

asay that this line corresponds to

e

)



LOet v .1 6ot (3.1)

Of course, this is not better than order-of-magnitude
guess, Further experimental work is evidently needed
in order to clarify this point,

2, Second moments of FS

In this case the situation is somehow better, because
higher statistics electron and muon data can be used.
Another particularity of this case becomes evident from
our results ( 2,19 )}  the only quark-qluon operator
which contributes OFE of currents has coeffecient much
smaller than in F}’FL and is probably inessential,

This give us the possibility to concentrate below on
diquark operators,

Combined BEBC-GGM data for V,V beams in the form of
Nechtmann moments are available from [5], while similar
analyais for combined SLAC electron and FNAL muon expe~
riments are available fram[?} « For our purposes it is
rather inconvenient to plot these moments directly
versus Qz for large but unimportant Q-independent part
of these moments becomes dominant, with scaling viola-
tions hardly seen within the accuracy of general norma-
lization of data points., We Propose to take derivative
and use the following index of acaling violation
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L o f-'flh't <

A

which is insensitive to normalization differences of
different data sets. This quantity is shown at Pig. 7-9
for the second moment, sixth moment and all moments at
anj.T Gevz , respectevely, After this derivative is
«aken, errora become large and the plots do not look
very atrractive, But thia i1s the real situation with
sur experimental knowledge of scaling violation.

1t is evident from these figures, that second moments
have much smaller effect than higher ones, so the accu=
racy is poor in this case by itself, However, very sméth
dependence on momentum number n suggests some extrapo-
lation from high n to n=2 in order to make more definite
eatimates of scale hreaking parameter, The simple expres-

sion for moments

v ¢ dsn n’
Mine) (00 EritneY)- <Ly + B2 +%£3}

and inddces

2 2
[(no}) = 2~ + ?_fff___f"-’_/?f"’)’)(a.n
8 240 4 YAL» @

were used with the parameters found to be equal to
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The corresponding curves are shown at Fig,7-9 as the
dashed .fines . In our enalysis we have also included

- perurbative ( logerithmic ) scaling violation due %
renormalization pf the leading twist operators. The
QCD parameter /| was taken to be 100 Mev and its ef-
fect alo is shown by the dotted curves. By itself, i
can not explain scaling violation observed.

Other people [E]jﬂ:] has also attempted similar power
fits, and find similar p?rametera. Among the first one:
is the work [10] , where more deteiled studies of quark-
resobance duality was made. Again, their parameter &
is close to ours.

Hote the negative sign of the parameter £, . It is
needed for two purposes: first, to reproduce rapid dec

rease of all moments below QE: 1 Gev®

, and second, tc
slow down n-dependence as it is seen in Pig.s.

In what follows we refer (3.5) as %o "experimental"
values of scale breaking parameters, Their accuracy is
presumably inside 50% .

6./6 zzle

The most difficult for experimental investigations

is the measurements of structure function F.. The

available data of SLAC-MIT groups [12] Shaw up
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surprigingly large effect, for which no rational ex-
planations have been proposed, Therefore, such effect
is referred as the " §,/6¢ puzzle".
A8 far as x-dependence of ratio Gi,f Gy is very wesk,
it can also be considered (with some accurecy)to be the
iatio of second moments we are mainly interested in.
The date poins from [12 . and also some neutrino data [Se [20])
are shown at ¥Fig.1i0.
The contribution of perturbative corrections fto lea-

iing twist operators is given by

M GOT &0, 6D
. '“‘g;r“(q"' <<zﬁ.,3>} (3.6)

M, (2¢) | perrtuzd

where @fﬁm}}is the average of gluon stress tensor and
U Guy M =KLy W =1/2 . This contribution with A =100 Mev
iz shown by the dotted lime, and is evidently too small.

As we show below, diquerk operator comtribution (% 4.3)
zoes into right direction ( the dashed curve ) but also
iz not sufficient, As we understand it now, the most
reascnﬂhle.interpr#tatiﬂn of these puzzle ia the interac-
tion with quark condensate to be studied in the second
part of this work. The empirical 1/Q% curve is shown
at Fig. 10 by the solid line. This interpretation can
be checked in the following way: the predicted effect
ahould be much larger for electromegnetic scattering

than for weak ones, This is a good problem for experimenta.

ok f



4., Constituent versus current guarks
m_

2,7, Haive quark picture
In this section we discuas the relation between the mag

nitude of some average values of Lext twist operators.
as found from our OPE formulae and experimental deta,
with some current ideae about hadronic sructure,

There are gome models like the nonrelativistic quark
models, MIT bag etc. which produce not only reasonable
clesgification of hadronic states, but also produce mass
spectra and other parameters (like magnetic mamﬁntﬂ)in
qualitative agreement with experiments, However, they all
cperaie with some cbjects, called constituent quarks,
which are treated as meaningful dynamical degrees of
freedom of the system, From the field theoretical point
of view such description is very nmtrivial, because each
valencé quark crea.tf& the cloud of virtual gluons and light quark
pairs, and no reason is known so far for such clouds to
interact relatively weakly. Some suggestions on this will
be discussed below.

The most naive point of view is the idee that consti-
tuent quarks and the true (or current ) quarks of the
field theoryare nearly the same, This is true for global
properties like charge, color and flavor, but completely
wrong in other respects. First, the constituent quark
1s ireated as massive object ( with mass ~ 0,3 Gev '

while current quarks u,d are nearly mesaless, which is the

35—

origin of the important broperty of strong inferactions,

nearly exact chiral symuetry. Therefore, in order consti-
tuent quark idea makes sense the breakdown of chiral sym-
meiry should happen. We return to this point later,

Also the very naive peint of view expressed above con-
tradicts some facts concerning the important role of glue
in hadronie stucture. Tor example, data on leading twis:
8pin-2 operators tell us, that nearly one half of the nuce
leons momenium is carried by gluons.

An interesting attempt to explane the last puinf wasg
made in the works 19|, Loosely speaking, they propose
valente quarks to posess some cloud of virtual particles,
but have trged to calculate its properties perturbatively,
More precisely, it was proposed that the naive three quark
picture of the nucleon takes place in some low normaliza-
tion point Alym~ 1 fenui-T, This suggestion has been shown
to work, for example, for stress tensors: after transfor-
mation to low Mo » the quarks really carry nearly all
energy and momentum,

The aim of the present section is to estimate the ave-
rage values of the next twist nperatars in the same mammer
and then confront the results IlN::j'f‘%t:‘.lat@u. in advance we may
say, that the result is rather disappointing: both sign
end megnitude of the effect is wrong. Further discussion
of this will be continued@ below.

We start with the diquark operators, for their connection

with the naive quark picture is most gimple., As it was
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; These quantities have the dimension of mass squared and
shown in section 2.4, the mixing of these operators while

their sical meani can be explaned as followsa: it is the
transformed to low normalisation point Ay from - i .- find i g a%

s robability to™quarks with similar or opposite chiralities in
is rather small and can be neglected. Using the properties 4 RS 4 e

the same point in the plane transverse to momentum of the pro-
of tree-quark wave function, we mey strongly reduce. the . 5 .

ton in infinite momentum frame. Longitudinal distance is drop-i
mumber of independent operators, classified in section 2.4. % = g

Starting with color, cne may see that ed due to Lorentz contraction in thi:l frame.
This observation lead to some ain}\lified order-of-magnitude

o s e P &o i egtimates of numerical value of (4.3). Let us neglect correla-

<N’}(q’l f 12“2 ){Lf:; 4 3 %JKﬂ’) = ('" E')GVM#; ,}J:’)[l"j%}ﬂ»“'” H tion of chirality and position of three v&lanﬁmar}m in the nuc-
leon and consider them as being homogeneously distributed in

adi « Th the followi estimate is obtained
The factor (-8/3) has very simple meaning. The length of gome disk of r us R en e ng

"color spin” squared (f.”);'=16;’3 and the extra factor (-1/2)
is nothing else that ccs{12t}°], the angle between three vec-
tors added to zero in total, This sign will become impor-

: { :
nu_ ~ ﬂi»‘i‘ ~ —;-3‘;;2 > 001 Geifz (4.4)

Pirst factor 1/2 Iia due to chirality, second factor 3 is the

tant below, : o :
number of quark pairs, and JITR"~ is the disk area. Numerical

—
The isospin matrices T  can be reduced as follows: . : :
value in (4.4) is obtained by the connection of R with mean

i ey gt Gty ] 2. 2<2%?) , and th £ im
WITTRIET v Iy = (43 NMITY, > 42 souere radius R 2¢2)) , and the e o 3t experiaentel

value.

E - T
it Pd, Pa 0 be the probability te have Nlguatks with Now we are able to give average value of any operator and,

. i t . cti ixing and gquark-
isospin 1 E.nqb. Wonselativistic wave Twiction teil uv, using our results of section 2.2 neglecting mixing q

proéaély inde the fol f
that _g._.ﬂ =1/2, and this is'Dot far from reality. gluon operators one finds ¢ following results for scale

i : ing param defined i .
What is left now is the spin structure, with two possi=- NEDRALIIE eters o, (defined in (3.3))

v

bilities: s = - Lo we T Fnds Mg - 0007 e (4.5)
My LG LN LK) 2R @y Ay = 0.0y, -0.90 Ryp = ~0.008 6e?
Nig = 2 «(ﬁ a:« li";_’ )[‘ﬁ, A’V %))) "Bxperimental” value of of:-"‘"ro{: found in section 3.2 is 0.15

GevE, so the dissgreement in sign and magnitude is evident.

the
Rather pecu € lar example is‘case of first moments

4]



T4 ark-
in which we have only one adluonic operatoir without any

mixing possible, Its estimate in the neive quark pice
ture can be given as follows, Gluonic field 'being pro=-
duced by other quarks) effects on the guark atruck by the
scattering., Inspection of the operator {f i J di ¥
shows that in the rest frame of the nuclecn ii is the
naive Hemilionian for perturbative spin splitting of
hedrons, say the nucleon and the isobar, This results

in the following estimate

(o, Doz - mpydm, -, ) ~=ib.3 ve? ;

Comparing this with (3.1) we observe that now the sign
agrees, but the value is 'BﬁﬁgﬁalIEr.

S0, the conclusion of this section is that the naive
quark picture is in contradiction with date on scaling vio-
lation,

2s The si of the di k _contribution

We start this section with the proof that diquark ope-

rators under congideration are positively definite. This

is evident for the ocperator

Oue 2 BLA) (8, 9) - L., (FHYNTELY D

for {f:0 IOga,ﬁ’f_ﬂ> matrix element can be written as the
sum of full squares:

_49_

ol [2 TR0+ LFEC) ] |p0> 4O

It is clear then that the introduction of 3} in each fer-
mionic bracket, or 1 , or A can not influence this
general statement, Looking then at OPE formulae found in
gection 2.2, one may conclude that the contribution of

diquark operators to scaling violation is pogitive, in

agreement with data.

This conclusion seems to contradict the explicité esti-
mates of the preceeding section, where the negative effect
was found. Is here the violation of gemeral positivity
stetement made above = reafly pitscnit ¢

The answer is negative: no violation takes place here,
It is very instructive to clarify this point, for it also
sheds 1light on what physical contribution is missing in the
naive quark picture,

Note first, that minus sign appears in (4.1) due to
color matrices, for the valente quarks have different co-
lors. But whereiﬁhe positive contribution from diquarks
of the same color, which garantees total positivity ?
Even if there are no such quarks in the wave function,
there exists the low momentum region of the loop diag=-
ram, which also should correspond to matrix element of
the diquark operator. We did not included it in our naive
quark calculation, Is this a mistake ?

The anawer is again negative: the calculation was right.

Remember our discussion at the end of section 1.2. The
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corresponding part of the loop diagram depends on the normali-
zation point, and it should cancel power correction to the co=
efficient of the leading twist operator of the orﬂer)}iﬁ/dﬁz .
The existence of this additional contribution explains why
there is no contradiction between the positivity of diquark
operators and the negative sign of the scale breaking parame -
ter in the naive quark approximation,

This consideration shows clearly where the naive quark pic-
ture goes wrong: it is in the assumption that low momentum
part of the loop-type contribution can be estimated perturba-
tively. In order to explain data one should introduce large
nonperturbative contribution to this average value, so that
it is not canceled by much smaller correction to coefficient
of the leading twist operator.

It is very important that the dimgonal loop=-type contribu-
tion has peculiar features, leading to observable predictions.
Its flavor structure is the same as for the single quark opera-

tors, so it implies the validity of the well known relations

es v eMNs
My (0= 2 M0 Mo 617000 (e

not only for leading twist operators, but for next-to-leading
ones as well, Data discussed in section 3.2 seem to support

this result for o{;'s

Wi
o dz’ indeed., Unfortunately, general
accuracy of data is not high and this point needs further
studies,

4,3, Constituent quark structure

As we have shown above, the periurbative approach to this

problem gives completely wrong results, both in sign and mag-
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nitude, Much larger nonperturbative effect is present, which
seems to be diagonal in flavor (or loop~-type. In this section
we are going to discuss what its physical origin may be.
First, one has to connect data with CPE results ( 2,19 )
simplifying the flavor structure in this "additive quark"

manner:

: o BT $i— =TH > e
oy = K G FLAPRY) + [ PUEFP LI ) = 0.166e

This result imply very large diquark denmsities 1, Hﬁgﬁﬁl
of the order of 0,1 Gev? which is at least one order of mag-
nitude larger than those estimated for naive Q?ee quark pic-
ture of the nucleon. Two limiting pictures can be proposed
in order to explain this result, The first one is most strei=~
ghtforward, it assumes that virtual quark pairs in the nucleon
are uncorrelated but very numerous, in order to provide so
large diquark density. The second possibility is that virtu-
al pairs are not numerous, but very strongly correlated with
valenee quark positions, so that their relative density (which
is in fact measured) is very high.

Already on the basis of our present knowledge of the lea-
ding twist physics we may give strong arguments against the
former possibility. The reason is that the density of quark

pairs is known by F, and F3 structure function difference and

it is by no means large., Therefore, we are left with the lat-

ter one.
S0, let the constituent quark c%ﬁiat;nf the valence one
together with correlated(in space) quark-antiquark pair dis-

tributed in some region of dimension Fﬂ;g. « Then, in order

-
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to obtain the needed diquark density one needs that
Q{_?I ~1/(05+1 ce) k8210)

or constituent quark is rather small indeed, If so; many em-
pirical observations ebout the hadronic structure obtain na-
tural explanation,

First, being much smaller than the hadron itself, the conati=-
tuent quark becomes ressocnable dynamical object, as it was in
fact considered for long time in hadronic spectroscopy. Second,
the so called additive quark model is explained, as it waﬁ pPro=-
posed on the basis of hadronic cross sections [22] , quark
penetration thrdgh heavy nuclei 23] etc, Note, that these
models use guark-quark cross section of the order of

4 S
62‘2:_9_6;” (4,11
quite in agreement with (4.10).

Concluding this point we may say, that many phenomenologi-
cal f&cts-puint toward the existence of some substructure in
the nucleon, with its scale several times smaller than the
mucleon dimension, We would like to note, that our arguments,
although consistent with earlier observations, are more strict
and less model dependent.

Now, what can be the posgsible origin of two scales in ordi-
nary hadrons ? While the hadronic dimensions are naturelly
identified with the scale of color confinement, ﬁe are gning'
to connect the dimensions of the constituent quarks with ano-
ther, also poorely understood phenomenon in QCD), the spontaneus

breakdown of chiral symmetry leading to its nonzero mass. The
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telatic
Y between chiral symmetry breaking and instanton physics

was discussed in worksf}iﬂj, Although the problem is far
from being solved, some large numerical factors producing
new acale really seem to appear in it. To give an example,

the expression of effective mass is [25:

Hef = %’ft{ﬂf VRS (4.12)
LolFyiod > — (0.2% Gt )’

where g is the instanton radius, For needed ”%Fﬂ'j Gev

rather small @ £ 1/500 Mev instantons are sufficient, Si-

miler observaiion was alsc made in [2Y] . Such dimensi-

ons are again close to constituent quark dimensions pro-

posed above, S€¢ (¥./0).

Summarizing the present chapier we may say, that data
on scaling violation together with our OPE results give
such walues for certain diquark operators over the nucleon,
which imply the existence ofﬁt%ﬁgtera of size nearly 1/3
of that of the nucleon. They are naturally identified
with constituent guarks. The arising physical picture
explains many phenomenological observations coterning had-

ronic structure and interactions.



DeSummary and discussion

The present paper is the first one devoted to systematic
celeculations

OFE of power corrections io deep-inelastic scattering.
S0 1t ie clear that the first questions we came across were
the methodical ones., The standard perturbalive diagrams are
very inadequate for OPE calculations, for any diagram con=-
tains the contribution from all distances, large and asmall,
ilso they azenot gauge invariant by itself, only in sum,

We believe Schwinger formalism used in our work is
highly effective and very adequate for such calculations,

We hap;f;ts use in other related problems and for further
calculations of power corrections.

Which suitible method, one has to face then the complexity
of the problem by itself. The widespread opinion that power
corrections are very complicated has caused some pessimism
about the use of further studies of deep-inelastic scattering.
It is true, that in principle many different effects cause
power corrections, but the point is that in reality few of
them are impor tant. And we believe that deep=inelastic
acattering still remains the best way to look for more and
more information about hadronic struciure.

However, not tooc much can be found from the present data.
We have discussed them in chapter 3, and in fact the only
reliable estimate with, say, 50% accuracy camn be made for
scaling violation parameter for ﬁ:?H,Q?). But even this
information turns out to be very important. It can not be

The ; :
explained hy;nﬂlve quark picture in which nucleon is made

of three valente quark. More dense quark cloud = the consti-

tuent gquark == should be present inside the nucleon, with

A

dimensions about 1/3 of that for the nucleon. This result
is of great importance for hadronic physics in general.
Although such picture of the nucleon was susspected from
data on hadronic collisions [£43 ;, and hadronic spectros-
copy, 1t was always based on some modeﬂaependenﬁ arguments,
In our work the only basis is QCD itself and experimental
data, so the coneclusion is much more strict. We call for
more attention of experimentalist to this question, for
better data at moderate QE=1-1D GevE. It is proper time now
to come from the question "whether QCD is right?"-ta "ﬁaw
the nucleon is made?"

Now, in summary, what is the physical reason for scaling
violating Q“E effects? As far as we understand them now it

ig the inferference between scattering over one and two

current gquarks ingide the same constituent guark. Interfe-

rence with scattering accompaniad by absorbtion or emission
of gluon with large (~Q ) momentum can also contribute,

but its role is not ao far clear.
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Figure captions
1. Diagrams contributed to coefficients for FG?" type

operators.

2., Compton effect diagrams.

3. Diagrams for Compton scattering on two quarks.

4, Diagrams for renormalization of jguark-gluon operators,
5. Diagrams for renormalization of diquark operaic.s.

6. Deviations from GLS sum rule ['171] as measured by BEL(-
GGM groups ['5] « The dashed lines are per'l:urbaﬁ.-,ive rorrec—
tionsg with A fiven at FPipgure, the solid line includes
also power correction of magnitude (3.1).

7. Index of scaling violation (3.7) for the second moment
of Fg for weak iﬂ] and electromagnetiuj'?j deep~inelastic
scattering, Dotted line is perturbabtive contribuiion with
M\ =G,1 Gev, the dashed one includes power correcitions (34).
d. The same ap at Fig.7, but fngggjxth Loment,

9. The same a8 at Fir.7, but aa a function of moment num-
ber n at fixed Qanj.T Geve.

10. Ratio of imilcgrated over X lengitudinel and trunsverse
gtruciure functions for RIT-U1AC dota ]Jﬂ; and nevirino
data ( taken from cumpillaticn [20]), Dolted line is the
perlurbative conlribution wilth /A=0.1 Gev, doan=-dotted one
ig that of diquark twist-4 contribution, and the seclid

line i3 empirical ¢~ piv.
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