Эксперимент КЕДР

В. Блинов

Институт Ядерной Физики им. Будкера СО РАН

Энергия пучка: $1 \div 5$ ГэВ Число банчей: 2×2 Светимость: $(1 \div 80) \times 10^{30}$ см $^{-2}$ с $^{-1}$ Метод обратного комптоновского рассеяния

• Е<ЗГэВ: △*E*/*E* = 3 × 10⁻⁵, 100 кэВ

Метод резонансной деполяризации с измерением частоты деполяризации

• Е<3 ГэВ: внутрисгустковое рассеяние $\triangle E/E = (5 \div 15) \times 10^{-6}$, $(10 \div 30)$ кэВ За время эксперимента проведено 3089 калибровок энергии

 E>3ГэВ: ассиметрия рассеяния циркулярно поляризованных лазерных фотонов △E/E = 10⁻⁵, (30÷50) кэВ

Физические задачи

- Измерение масс элементарных частиц
 - Низкая энергия: J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^\pm -мезоны, au-лептон
 - Высокая энергия: $\Upsilon(1s), \Upsilon(2s), \Upsilon(3s), \Upsilon(4s)$ мезоны
- Измерения лептонных ширин ψ и Υ мезонов
- Измерение R в области 2E = 2 ÷ 10 ГэВ
- Измерение сечения $\gamma\gamma
 ightarrow hadrons$ и другие 2γ -процессы
- Ряд других процессов

Детектор КЕДР

 Все системы детектора находятся в адекватном для выполнения физической программы состоянии

- Модернизация инженерных систем детектора
- Лазерный поляриметр
- Модернизация системы сбора данных детектора
- Система регистрации рассеянных электронов (позитронов)
- Новая дрейфовая камера
- Модернизация системы высковольтного питания (переход на CAEN)

Лазерный поляриметр

• Скорость счета увеличена в 5 раз

- Сконструирован новый узел ввода лазерного излучения с охлаждаемым водой медным зеркалом
 - \Rightarrow повышение скорости счета $\simeq 10$ раз !

- Новая система запуска лазера и управления поляризацией на основе VME (CAEN)
- Новый GEM детектор (1120 каналов) + (2 кГц \rightarrow 4 кГц)

Модернизация системы сбора данных

- Разработаны все необходимые блоки электроники
- Развернут стенд тестирования
- Разработаны алгоритмы и структура данных для маршрутизации, поступающих с электроники ССД информации по компьютерам вычислительного кластера для их обработки
- Ведется разработка ПО ССД

• Система работает в составе детектора

- Статистику, набранную в 2018–2019 годах для измерения R, не предполагается использовать для үү-физики. Для поддержания СРРЭ в работоспособном состоянии записывается каждое второе событие, проходящее триггер с РЭ
- Проведен профилактический ремонт/настройка всех 120 блоков камерной электроники.
- Продолжается разработка новых измерительных плат для повышения эффективности сбора данных СРРЭ

Новая дрейфовая камера

 Корпус ДК собран, преднатяжение создано, торцевые фланцы вклеены. Камера готова к натяжению проволочек.

• Пины, инструмент для фиксации проволочек в пинах изготовлены.

 Сектора предусилителей, ВВ питания (делители, кабельная трасса) изготовлены и проверены. Платы оцифровывающей электроники 50 шт. изготовлены, из них 17 шт. проверены и настроены.

- Отработана технология натяжения проволоки на модели ячейки.
- Сигнальный кабель: конструкция кабеля согласована по спецзаказу на ОАО "Подольск-кабель". Планируется возобновление заявки на изготовление и поставку.

- Началу процесса натяжения проволочек мешает отсутствие экранной проволоки.
 Всего в ДК около 16 тыс. проволочек, из них 2.5 тыс. экранные. Требуемое количество проволоки: не менее 4100 метров. Диаметр 70 мкм. Материал: основа титан, покрытие 1 мкм медь, покрытие 0.7 мкм золото.
- Ведётся отработка технологии изготовления проволоки на АО "Денисовский завод" (Владимирская область).

В 2019 году проведено 8 смен:

- технические смены выставка линии пучка
- набор данных с прототипом ФАРИЧ—3 – проверка считывания SiPM с новой электроникой, тестирование образцов аэрогеля с цирконием
- эксперименты с кристаллами LYSO измерение временного разрешения и черенковской компоненты в излучении

Планы на 2020

- переход на новую электронику CAEN (высоковольтное питание, система сбора данных)
- собрать и запустить в эксплуатацию детекторы на основе ГЭУ для координатной системы пучка
- автоматизация установки величины магнитного поля в поворотном магните

● II сканирование области 2*E* = 4.5 ÷ 7.0 ГэВ: *LT* = 4.8 пб⁻¹

Результаты измерение R в области 2E = 2.8 ÷ 5.0 ГэВ

🕱 Результаты 2019

Измерение *R* при 2 $E = 1.84 \div 3.72$ ГэВ, $\int Ldt \simeq 3.4$ пб $^{-1}$

cə

C.

Параметры J/Ψ – мезона

 $\Gamma_{ee} = (5.550 \pm 0.056 \pm 0.080)$ кэВ

 $\Gamma_{ee} imes B_h = (4.884 \pm 0.048 \pm 0.078)$ кэВ

 $\Gamma_{ee} imes B_{ee} = (0.3331 \pm 0.0066 \pm 0.0004)$ кэВ

 $\Gamma = (92.94 \pm 1.83)$ кэВ, ($\Gamma_{ee} = (5.55 \pm 0.14 \pm 0.02)$ кэВ, PDG 2016)

co

Результаты по $\gamma\gamma$ – физике

- Продолжается обработка $ee \rightarrow ee + LL$ на статистике $\approx 6 \ {\rm IfG}^{-1}$. Проверена эффективность идентификации мягких электронов на событиях $ee \rightarrow ee\gamma$. Обнаружена разница в данных моделирования и эксперимента, объясняющая противоречие в наблюдаемых сечениях $ee \rightarrow ee + ee$ и $ee \rightarrow ee + \mu\mu$. Ведется работа по улучшению моделирования.
- Для уточнения радиационных поправок в конечном состоянии к процессу *ee* → *ee* + *ee* запрошена помощь теоретиков (Роман Герасимов).

- Завершение сканирования области 2E = 4.5 ÷ 7.0 ГэВ, ∫Ldt = 1.5 пб⁻¹. Измерение R.
- Набор статистики при

$$2E = 9.46 \ \Gamma \Rightarrow B, \quad \Upsilon(1S) \\ 2E = 10.02 \ \Gamma \Rightarrow B, \quad \Upsilon(2S) \\ 2E = 10.36 \ \Gamma \Rightarrow B, \quad \Upsilon(3S) \end{cases} \int Ldt = 10 \div 30 \ n6^{-1}$$

- Набор при 2*E* = 8.0 ÷ 10* ГэВ, *∫Ldt* = 200 пб⁻¹. Двухфотонная физика.
 - * Повышение энергии до 5 ГэВ в пучке позволит обогатить физическую программу измерением масс и лептонных ширин семейства Υ – мезонов при наборе интеграла светимости для двухфотонной физики.

- Завершено выполнение физической программы при 2*E* < 7 ГэВ
- Начат набор статистики при 2*E* > 7 ГэВ
- Для выполнения физической программы на этой энергии требуется кратно повысить надежность работы комплекса ВЭПП–4М и набрать $\int L dt \simeq 200 250 \text{ n6}^{-1}$.

Команда установки детектор "КЕДР" - январь 2014 (фото А.А. Осипова)

Спасибо за внимание

Market Market