

Супер ст-фабрика

А.Ю. Барняков и др.

Научная сессия ИЯФ СО РАН, г. Новосибирск, 2-3 Марта 2023

Концептуальный проект СЦТФ

Ключевые (целевые) характеристики:

- Симметричный e^+e^- коллайдер 4-го поколения (CW);
- Энергия эксперимента $2E = 3 \div 7 \Gamma_{2}B/c;$
- Светимость $L \sim 10^{35} \, \frac{1}{(\text{см}^2 \cdot \text{с})};$
- Продольная поляризация $e^-(\sim 80\%)$ в месте встречи;
- Универсальный детектор с высоким разрешением, эффективностью и симметричностью.

Основные вехи 2021 – 2022 (или «в предыдущих сериях!»)

• 2021:

- ✓ Проект переехал в г. Саров (рассматривается как часть развития НЦФМ)
 - РФЯЦ ВНИИЭФ, ГК РОССАТОМ занимается продвижением проекта в гос.структурах
 - ИЯФ СО РАН выступает в роли научного руководителя и организатора проекта
 - Размещение комплекса предполагается на открытой площадке ГК РОССАТОМ в Нижегородской обл. (вблизи г. Саров)
- Проведено международное рабочее совещание (в смешанном формате) по проектам будущих Супер ст фабрик (Российской и Китайской)
 - 157 участников из 10 стран (Россия, Китай, Италия, Германия, Япония, Польша, Швеция, Англия, Грузия, Мексика)
- ✓ Организовано международное партнерство (прото-коллаборация) для реализации проекта Супер *ст* фабрика
 - Сегодня в партнерство входят 9 организаций: 7 Российских институтов (ИЯФ, НГУ, НГТУ, МГУ, ФИАН, ВШЭ, ВНИИЭФ), 1 международная (ОИЯИ), 1 Мексиканский институт (CINVESTAV-IPN).
- 2022:
 - ✓ Завершено очередное обновление программы исследований на СЦТФ
 - В разработке физ.программы приняли участие физики из ИЯФ, НГУ, ФИАН, ВШЭ –> программа стала более детализированной
 - ✓ CREMLIN+ грант на 2020-2024гг. прекращен
 - Суммарный объем доведенного до ИЯФ финансирования с 2020г. ~ 280kEuro
 - Нарушилось сотрудничество с Германией (GSI, JLU), Италией (INFN-Ferrara, Lecce, Frascatti, Bari), Францией (LAL-Orsay), CERN
 - ✓ Появилось финансирование НИР через РФЯЦ ВНИИЭФ ГК РОССАТОМ
 - В общей сложности ИЯФом выполнено 3 договора НИР на сумму ~ 100 млн.р. (продолжение: ~ 120 млн.р. на 2023–25гг.)
 - ✓ Проведена первая летняя научная школа для молодых ученых, посвященная проекту Супер с*т*-фабрики
 - В качестве площадки выступил филиал МГУ в НЦФМ (г. Саров)
 - Планируется данное научное мероприятие сделать ежегодным с расширением состава участников

Физическая программа эксперимента на Супер *ст*-фабрике (2022)

партнерство СЦТФ (ИЯФ, НГУ, ФИАН, НИУ ВШЭ).

Оглавление

Bı	ведеі	ние		5		
1	Изм	ерени	е сечения $e^+e^- ightarrow$ адроны	8		
2	Чар	Іармоний				
	2.1	Состо	яния чармония ниже порога <i>DD</i>	13		
	2.2	Изуче	ние экзотических состояний чармония	15		
		2.2.1	Х-состояния	15		
		2.2.2	Y-состояния	18		
		2.2.3	Z_c -состояния	19		
3	Физ	вика L)-мезонов	22		
	3.1	Введе	ние	22		
	3.2	Отбор	<i>D</i> -мезонов в пороговом эксперименте	25		
	3.3	Спект	роскопия D-мезонов	27		
	3.4	Измер	ение абсолютных вероятностей распадов	31		
	3.5	Лепто	нные и полулептонные распады <i>D</i> -мезонов	33		
	3.6	Редки	е и запрещенные распады <i>D</i> -мезонов	37	į	
	3.7	Смеш	ивание в системе нейтральных D-мезонов	42		
		3.7.1	Распады некогерентных состояний	45		
		3.7.2	Распады когерентных пар D	46		
		3.7.3	Анализ распада $D \rightarrow K_S^0 \pi^+ \pi^-$	47	ł	
	3.8	Наруг	рушение \mathcal{CP} -симметрии в распадах D мезонов			
	3.9	Измер	Измерение сильных фаз в распадах очарованных адронов в нейтральные каоны 56			
		3.9.1	Измерение сильных фаз с использованием полулептонных распадов ней-			
			тральных каонов	58	1	
		3.9.2	Измерение сильных фаз с использованием СР-собственного конечного			
			состояния нейтрального каона	59		
		3.9.3	Оценка потенциальной точности измерения сильных фаз	60		
1	Физика $ au$ -лептонов					
	4.1	Введе	ние	62		
	4.2	Свойс	гва <i>τ</i> -лептона			
		4.2.1	Проверка лептонной универсальности	63	į	
		4.2.2	Масса <i>т</i> -лептона	64		
		4.2.3	Время жизни т-лептона	65	1	
		4.2.4	Электрический и магнитный дипольные моменты τ -лептона $\ . \ . \ .$	66		
	4.3	Лепто	нные распалы τ-лептонов	68		

		4.3.1 Обобщенная структура заряженного слабого взаимодействия 68	5				
		4.3.2 Обычные лептонные распады 7-лептонов	,				
		4.3.3 Радиационные лептонные распады τ-лептонов					
		4.3.4 Измерение параметров Мишеля в распадах $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$ с распадами					
		мюона на лету	2				
		4.3.5 Пятичастичные лептонные распады τ-лептонов	j				
	4.4	Адронные распады τ-лептонов	1				
		4.4.1 $\tau \rightarrow P^- \nu_{\tau} (P = \pi, K)$	1				
		4.4.2 $\tau^- \rightarrow P^- \nu_\tau \gamma$ in $\tau^- \rightarrow P^- \ell^+ \ell^- \nu_\tau$, $(P = \pi, K; \ell = e, \mu)$	3				
		4.4.3 $\tau^- \to \pi^- \pi^0 \nu_{\tau}$)				
		4.4.4 Поиск токов второго рода в адронных распадах 7-лептонов 80)				
		4.4.5 Адронные распады τ с каонами в конечном состоянии	2				
	4.5 СР-нарушение в распадах т-лептонов						
	4.6	Нарушение лептонного аромата в распадах т-лептонов)				
	4.7	Поиск распадов т в заряженный лептон и невидимую частицу 90)				
5 Поиск Новой физики в распадах <i>с</i> -кварка							
	5.1	Переходы $c \rightarrow (s, d)l^+\nu_l$ 93	1				
	5.2	Переходы $c \to u l$, $c \to u\gamma$, $c \to u\nu\nu$					
6	6 Очарованные барионы						
	6.1	Измерение форм-факторов очарованных барионов	2				
	6.2	Поиск СР-нарушений в распадах очарованных барионов	ł				
_	~						
7	Спе	ктроскопия состояний из легких кварков 106	i				
	7.1	Легкие кварки в квантовой хромодинамике)				
	7.2 Модель конституентных кварков						
	7.3	Экзотические состояния 111					
		7.3.1 Глюоний					
		7.3.2 Гибриды 112	!				
		7.3.3 Многокварковые состояния	;				
8	8 Двухфотонная физика 11-						
3a	Заключение 115						

Расширенная и детализированная физическая программа эксперимента в 4 раза больше предыдущей версии. Рассмотрены направления исследований:

физика чармония,

физика D-мезона,

физика *τ*-лептона,

очарованные барионы,

поиск новой физики,

спектроскопия состояний из легких кварков, двухфотонная физика.

Рассмотрены некоторые преимущества
 экспериментов с поляризованными пучками.

 Приведены оценки преимуществ экспериментов на ССТФ в перед другими современными и планируемыми экспериментами.

Публикации: https://sct.inp.nsk.su/media/cdr/SCT_Physics_Program__rus_Egsu8BE.pdf

Ускорительный комплекс ССТФ

Реалистичная структура накопителя или НЕ «сферический конь в вакууме»

E(MeV)	1500	2000	2500	3000	3500
Π (m)			935.874		
F _{RF} (MHz)			350		
2θ (mrad)			60		
eta_x^*/eta_y^* (mm)			100/1		
$\varepsilon_y/\varepsilon_x$ (%)	10	0.5	0.5	0.5	0.5
I(A) / N _b	2.9 / 941	1.64 / 983	2.5 / 983	2.7 / 983	2.9 / 974
$N_{e/bunch} \times 10^{-10}$	6	3.25	5	5.3	5.8
U ₀ (keV)	91	288	504	820	1266
<i>V_{RF}</i> (k∨)	750	2000	3000	3900	5000
ν_s	0.0108	0.0152	0.0166	0.0172	0.018
δ _{RF} (%)	1.3	1.83	1.97	1.97	1.98
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.27/0.9	0.36/1.1	0.5/1.2	0.5/1.2	0.6/1.3
σ_s (mm) (SR/IBS+WG)	3.6/17	4.7/15	6/14	7/14	8/14
$\varepsilon_{\chi}(nm)$ (SR/IBS+WG)	2.0/2.9	3.5/3.5	5.5/3.2	7.9/4.1	11/5.7
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	0.29	0.4	1	1	1
ξ_x / ξ_y	0.003/0.03	0.002/0.06	0.002/0.08	0.002/0.065	0.002/0.05
$ au_{Touschek}$ (s)	304	304	302	560	1100
$ au_{Luminosity}$ (s)	12000	5000	3000	3200	3500

2022:

- Разработана структура с реалистичными магнитами - Время жизни по Тушеку ~300 с $-L = 0.3 \div 1.0 \cdot 10^{35}$ см⁻² c^{-1}

Требуется проверка эффектов
встречи и коллективных
эффектов на всех энергиях при
помощи моделирования
Прототипирование?!

Финальный фокус

Модель квадрупольной СП линзы ФФ Direct Double Helical (DDH) технология 2 концентрических обмотки на двух цилиндрах

2022:

- Проект криогенной системы ФФ
- Проектирование СП магнитов ФФ:
 - Компенсирующий соленоид
 - Экранирующий соленоид
 - Проработана технология изготовления СП соленоидов
 - Расчет тепловой нагрузки
 - Система защиты
 - Расчет опор магнита
 - Расчет магнитных полей квадрупольных линз ФФ
 - Изготовлен прототип квадр.линз ФФ (PLA)
 - Металлический (Al) прототип в цеху
 - Разработан стенд для измерения магнитных полей квадрупольных линз ФФ
- Предложена концепция процедуры точной (~50 мкм) механической сборки системы ФФ (с возможностью подстройки)

Изготовить металлический прототип и провести магнитные измерения в 2023г.

Электронная СВЧ фотопушка

Универсальный детектор СЦТФ

Трековая система

- ТРС на основе GEM (внутренний треккер)
- ДК с гексогональной ячейкой (основной треккер)

Система идентификации

• ФАРИЧ (детектор черенковских колец)

Мюонная система

• Сцинтилляторы со считыванием на КФЭУ через спекторсмещающее волокно (aka KLM–Belle II)

Калориметр

• Кристаллы на основе чистого Csl

Магнитная система

• Железное ярмо с пазами для МС и СП катушка с рабочим объемом поля ${\sim}26~{\rm m}^3$

Программное обеспечение

- AURORA (моделирование и реконструкция эксепримента)
- Медленный и оперативный контроль

Система сбора данных

• ...?

Инженерные системы детектора

- Система питания, охлаждения, позиционирования, ...
- Радиационная защита
- ...

ТРС со считыванием при помощи GEM детекторов

٠

Газовый объем с высоковольтным делителем

Планы:

- 2023:
 - изготовить и собрать прототип
- 2024:
 - Провести серию экспериментов
 - Разработать программу полного моделирования ВТ на основе TPC-GEM

- Разработан проект прототипа внутреннего трекера на основе ТРС со считыванием при помощи GEM детекторов.
 - Исследовать разные газовые смеси,
 - Испытывать разные комбинациями микроструктурных детекторов (GEM и muRWELL или GEM и Thick RWELL),
 - Сравнить разные варианты считывающей электроники.
- Проведена конструкторская проработка некоторых ключевых узлов прототипа. Идет изготовление.
- Проведены ٠ расчеты пространственного разрешения B зависимости OT размера пикселя считываюшей структуры ДЛЯ газовых нескольких смесей. Оптимальный пикселя размер 0.7÷1.0 мм.

ДК с гексагональной ячейкой

<u>2022 г.</u>

- Малый прототип:
- Пространственное разрешение ячейки, σ = (97 ± 6) мкм;
- ✓ Скорость анодного старения в смеси He/C₃H₈ (60/40) с образцами углепластика (НИИКАМ) R = (30 ± 6) %/(Кл/см), углепластик не влияет.
- Большой прототип:
- подготовлены рабочие чертежи на корпус из углепластика для НИИКАМ.
- Проволока:
- Первый опыт золочения проволоки (Ті) на АО "Денисовский завод".
- Передана катодная проволока (Al:ø400 мкм) для золочения.

<u>2023-2024 гг.</u>

ниикам:

- новые торцевые пластины для малого прототипа;
- оснастка для натяж. проволочек (~ 0.35 млн. руб.);
- внутренняя обечайка ДК (~ 1.65 млн. руб.);
- корпуса большого прототипа (~ 7.58 млн. руб.).
- АО "Денисовский завод"
- золочёние катодной алюминиевой проволоки (~ 0.4 млн. руб.)
- Высоковольтные испытания
- различные конструкции композитного материала
- Измерение пространственного разрешения
- ячейки на малом прототипе со смесью He/C_2H_6 (50/50),
- Радиационные тесты:
- Влияния конструкционных клеёв на скорость старения
- Электроника.
- Работа с предусилителем в режиме счёта кластеров

Установка магнетронного напыления

<u>2022:</u>

- Стабильный процесс напыления Ni, Ag (или Au) 40 и 50 мкм проволочки (Al)
 - толщина до 70 нм
 - скорость 4 м/мин.
- Расход золота для толщины 10 нм 10-15 г/км (1500-2000 евро), возможна рециркуляция
- Процесс напыления не приводит к отжигу и потере механических свойств
- Покрытие обеспечивает пайку и подавляет вторичную эмиссию с поверхности катодных проволочек.
- Произведено и передано для тестов коллегам из MEG2 600 м 40 и 50 мкм проволочки.

Токи катодной проволочки при облучении γ от ⁵⁵Fe (E_{cath}=const; E_{an}=var)

ФАРИЧ с двойным аэрогелевым радиатором

ФАРИЧ: полномасштабные аэрогель и фотодекторы

Фотонные детекторы и FEE

<u>2022:</u>

 ФИАН+ИЯФ удалось приобрести 50 матриц КФЭУ РАЗЗ25-WB-0808 (КЕТЕК) – достаточно чтобы сделать ФД 180х180 мм

- В ИЯФ пришла первая версия разработки компактной FEE на основе FPGA-TDC (GSI), но у нас она адекватно не работает:
 - Пытаемся запустить хотя бы ее аналоговую часть

2023-2024:

- Исследовать несколько «больших» фокусирующих аэрогелей
- Разработать вариант считывания ФД прототипа ФАРИЧ при помощи распределенных ЛЗ
- Спроектировать систему охлаждения ФД проттипа ФАРИЧ

Прототип калориметра на основе чистого Csl для СЦТФ

Декабрь 2021:

- Первый цикл измерений отклика прототипа из 16-ти счётчиков на пучке комптоновских γ с E^{max}_γ =64, 130, 225, 324, 361, 729 МэВ.
- σ_E/E~10% из-за не стабильной температуры ЛФД
 (∆g/g=-3.3%/град.).
- Выявлены ряд недостатков и проблемы.

<u>2022:</u>

- Начата автоматизация рабочего 5D-стола.
- Исправлены недостатки в ЗЧПУ,

-1.5

- Доработаны крепления кабелей питания ЛФД
- Испытана процедура компенсации температурной зависимости коэф. усиления ЛФД.
 - Долговременная стабильность (1÷2)%.
- Ведётся доработка системы измерения температуры.

Временной канал с кФЭУ

Для прецизионного измерения времени счётчик каждый предлагается оснастить несколькими КФЭУ. Такая схема может позволить восстанавливать угол влёта γ в калориметр, и реконструировать точку рождения внутри детектора. Это важно для поиска долгоживущих нейтральных частиц новой физики, которые распадаются с испусканием γ вдали от места встречи.

• Испытан счётчик с двумя КФЭУ Hamamatsu MPPC S14160-3050HS (3х3 мм²), полученный световыход (10 ± 1) ф.э./МэВ/см² согласуется с расчетами.

 Временное разрешение счётчика составило 23 нс/Е[МэВ], ведутся дальнейшие работы по временному канала счётчика.

Кристаллы GAGG (Gd₃Al₂Ga₃O₁₂(Ce))

р = 6.63 г/см³, Х₀ = 1.62 см, R_M = 2.40 см, <u>НЕгигр.</u>

• LY ≥40000 фот./МэВ, *τ* = 50 ÷ 150 нс, *λ_m* = 520 нм

- Нужны кристаллы 4 х 4 х 26 см³, m=2.76 кг.
- Производятся були с размерами 6x6x20 см³.

• Измерены характеристики кристаллика 17x17x20 мм^з:

- Световыход LY = (47000 ± 9000) фот./МэВ,
- L_{abs}(сц. света) > 2 м,
- Осн. комп. высвечивания т₁ = (60 ± 20) нс.

Нужно стимулировать выращивание кристаллов GAGG бОльших размеров, снижение их стоимости (сырьё отн. недорогое) и освоение массового производства (десятки тонн)

Мюонная система: сцинтилляторы с WLS и SiPM

1500

Momentum Me

2500

использующимся на BELLE и доработать

Магнитная система

- Проработана конструкция:
 - Соленоид из трех катушек,
 - Заложены упоры, подвесы, криопроводы, ...
- Проведены расчеты
 - Магнитных полей
 - Механических нагрузок

0.5

СП провод разработан для PANDA

- Изготовлено и испытано несколько метров
- Отрабатывается технология производства длинных (> 1 км) кусков стренда (strand)
- Сверхчистый Al закуплен для производства
 2x3.5 км и 1x1.5 км провода (достаточно для СЦТФ)
- Данная работа комплементарна работам по магниту для SPD (NIKA).

ПО проекта детектора

ПО доступно пользователям кластера ИЯФ и в виде образов виртуальных машин!!!

Фреймворк Aurora

версия 2.1.0 (декабрь 2022):

- Взаимодействие модулей, система конфигурирования и сборки
- Генераторы событий
- Унифицированное описание геометрии
- Оцифровка
- Реконструкция
- Параметрическое моделирование
- Инструменты (визуализация, тесты,..)

Веб-дисплей детектора:

- детектор в разрезе
- отображены срабатывания полосок мюонной системы

<u>2023:</u>

- Интеграция наработок по ДК и ECAL
- Разработки для других систем
- Развитие средств анализа и визуализации
- Систематизация и развитие генераторов событий
- Развитие параметрического моделирования
- Общеструктурное развитие Aurora:
- развитие внешней инфраструктуры
- запуск полной цепочки обработки событий

Человеческие ресурсы

- Базовая команда: 3(+1) человека
 - Нужны люди от систем
 - Нужны люди для общих работ

Заключение

Запланировано:

- Международной рабочее совещание: «International Workshop on future Super Tau—Charm Factories», Китай, 2023.
- Договор на НИР (НИОКР) по тематикам Супер ЦТау фабрики между ИЯФ ОС РАН и РФЯЦ ВНИИЭФ (ГК РОССАТОМ) на 2023–2025гг. (~120 млн.р)
- Харитоновские чтения (планируется существенным образом затронуть тему проекта СЦТФ), Июль 2023, НЦФМ, г. Саров (п. Сатис)

Необходимо:

- Публикация физической программы эксперимента СЦТФ?!
- Расширение состава участников, созданного в 2021 партнерства?!
- Улучшать финансирование НИР (расчеты, проектирование, прототипирование) по проекту СЦТФ

Продолжение следует ...

мол.

«Приключения Буратино, или Золотой Ключик», А.Н. Толстой

не путать с

«Приключения Пиноккио», Карло Коллоди

Еще много суеты ждет впереди, а так же награда для Папы Карло!

5

SCT Physics in a nutshell

Advantages of the SCT factory

1.	Threshold	production	of τ	leptons	and
	charmed h	adrons			

- \circ Well-defined initial state
- Low multiplicity of particles
- Kinematic constraints

- 2. Longitudinal polarization of the electron beam
 - \circ Boosted sensitivity to \mathcal{CP} violation in baryons and τ leptons
 - Measuring the Weinberg angle

3. Coherent $D^0\overline{D}^0$ pairs

- \circ Measuring charm mixing and CP violation with unique techniques
- Measuring phases of the decay amplitudes

4. Full event reconstruction

 Superior background suppression
 Measuring absolute branching fraction of charmed hadrons

