Научная сессия ИЯФ СО РАН 10 февраля 2022

СТАТУС И ПЕРСПЕКТИВЫ КОМПЛЕКСА ВЭПП-4 П.Пиминов и команда ВЭПП-4

УНУ ВЭПП-3/ВЭПП-4М + ВЭПП-2000

15 февраля 2021 - Включение комплекса после длительной остановки из-за финансов

24 февраля 2021 - Заход СИ

15 марта 2021 – Старт набора статистики с КЕДРом для 2х-фотоной физики

7 апреля 2021 - Заход СИ

2 июня 2021 – Заход светимости с КЕДРом на У(1S)

4 июня 2021 – Авария на ИП ВЭПП-3

15 июня 2021 – Комплекс остановлен из-за отсутствия щеток для ГПН

19 июня 2021 - КЕДР вывел поле

30 июня 2021 – Заход СИ

5 июля 2021 - Отключение комплекса

Летняя остановка

13 сентября 2021 – Включение комплекса. Начало экспериментов с Дейтроном. У Дейтрона проблемы с вакуумом и закоротками, нестабильная работа ИК

13 сентября 2021 - Старт набора статистики

17 ноября 2021 - Начало работы ВЭПП-4М

22 ноября 2021 - Заход СИ

13 декабря 2021 - Переход на ИП ВЭПП-3 с «новым» трансформатором.

30 декабря 2021 - Новогодняя остановка

Статистика 2021

Дейтрон @ ВЭПП-3

Измерение компоненты тензорной анализирующей способности T₂₀ реакции фоторасщепления дейтрона на ВЭПП-З

Набор данных проходил с 30 сентября по 12 ноября 2021 г. Набранный интеграл тока составил 60 килокулон, а расчетный интеграл светимости 17 обратных пикобарн. Этот интеграл равномерно распределен между двумя состояниями мишени с разными знаками тензорной поляризации. Начат анализ данных эксперимента.

Synchrotron radiation

	VEPP-3	3, 74 m	VEPP-4M, 366 m			
	1.2 GeV	2 GeV	1.9 GeV	2.5 GeV	4.5 GeV	
	100 nm∙rad	290 nm∙rad	28 nm∙rad	50 nm∙rad	160 nm∙rad	
	200 mA @ 1÷2 bunches		25 mA @ 1÷25 bunches			
1	LIGA-technology an	nd X-ray lithography.	Metrology experiments.			
2	Fast dynamic process.		Phase contrast microscopy, micro-tomography and hard X-ray fluorescence.			
3	Precise diffraction and anomalous scattering.		Nanosecond spectroscopy of fast processes.			
4	X-ray fluorescence analysis.		Material study under extremal conditions			
5	High pressure diffrac	ction.	Material study for thermonuclear applications			
6	X-ray microscopy and micro-tomography.					
7	Time resolved diffraction.					
8	Time resolved luminescence.					
9	Precise diffraction.					

Bunch current, mA

0.0

12 M II.

an estate inte

Выведенный пучок

КЕДР @ ВЭПП-4М

Набор статистики для 2х-фотоной физики на 2.5 ГэВ ~ 10 из 100÷200 pb⁻¹

Измерение энергии @ Ү(15)

Требуемая точность измерения энергии для Y(1S) ~ 20 кэВ

Оценка ошибок для Y(1S)

- Квадратичная нелинейность ($B_y(x^2)$): $\Delta E \le 45$ кэВ, $\sigma_E \le 45$ кэВ
- Разброс горизонтальных орбит (ошибка): <x²>^{1/2} = 1 мм σ_E = 140 кэВ Требуется стабилизация горизонтальной орбиты в каждом заходе
- Хроматизм оптических функций в месте встречи: △М ≈ 20 ± 10 кэВ Требуется настройка режима и совпадение с моделью
- Вертикальная дисперсия разного знака (поправка): ΔM ≈ 20 ± 10 кэВ
 Требуется настройка на максимум светимости ΔL/L ≤ 0.05, при η_y ≈ 0.8 мм

Модернизация

- ✓ Диагностика пучка
- ✓ Модернизация предварительных каскадов ВЧ ВЭПП-4 (ТриадаТВ)
- ✓ Тиристорные ИП ВЭПП-3 и ВЭПП-4М + контролер Сенькова
- ✓ Модернизация трансформаторов ИП ВЭПП-3 и ВЭПП-4М (выполнено 1/4)
- ✓ Новая электроника для ИП ВЭПП-3 и ВЭПП-4М
- ✓ Система быстрой защиты ВЧ ВЭПП-4
- ✓ Слаботочное питание ВЧ ВЭПП-4
- ✓ Новые генераторы электростатики ВЭПП-4М + контролер Сенькова
- ✓ Система измерения импульсных полей VsDC-4 @ VME
- ✓ ІТ-инфраструктура + пультовые компьютеры
- ✓ Новый теплообменик ВЭПП-4 и система термостабилизации
- ✓ Система темозащиты и термоконтроля на PLC
- ✓ Новые ИП 10А (замена УМ) + контролер Торнадо ~ 60 млн.руб.
- ✓ Новые ИП 25A MPS-25 (замена ТИР, ВУР) + контролер Торнадо ~ 20 млн.руб.
- ✓ Новые ИП 500А ВЧ-500 (замена В-1000) + контролер Сенькова ~ 10 млн.руб.
- ✓ Новая электроника ИСТов + контролер Сенькова ~ 15 млн.руб.
- ✓ Модернизация импульсного питания канала ВЭПП-3-4 ~ 40 млн.руб.

Обновление системы оптической диагностики ВЭПП-3

Новая электроника ИП ВЭПП-3/4

Модуль управления тиристорами

Новый модуль управления тиристорами встраивается в существующую схему электроники управления источником без глобальных изменений существующих цепей используется существующая система синхронизации, выход согласован с существующей схемой поджига тиристоров и т.д.

Модернизация электроники позволит улучшить характеристики по выходным пульсациям и повысить надежность работы. Плата модуля разработана и в настоящий момент изготавливается.

MPS-25 vs ТИР-25

1 этап для ВЭПП-З 16 шт. ~ 7 млн.руб.

- MPS-25-40 (25А×40В) 7шт. + 2шт.(резерв) = 9 шт.
- MPS-25-120 (25А×120В) 5шт. + 2шт.(резерв) = 7 шт.

2 этап для ВЭПП-4 35 шт. ~ 16 млн.руб.

Изготовлен прототип с контроллером от ООО "Модульные Системы Торнадо", ведутся испытания

Продольная поляризация

Для наилучшего согласования векторов поляризации и спин-флипа на впуске предлагается схема из двух соленоидов в канале ВЭПП-3 - ВЭПП-4М. Можно ограничиться и одним из них - F1. При одном знаке поля он обеспечит проекцию S_n=-0.97 (первый сгусток из ВЭПП-3). При другом S_n=+0.65 (второй сгусток). Проекция поляризации инжектируемого пучка на

 $S_n = \vec{S} \cdot \vec{n}$

 $n_x = \sin \pi n, n_y = \cos \pi n, n_z = 0$

 $v = \frac{E[MeV]}{440.65} = 3.513 @ E = 1548 MeV$ z

ВЭПП-3 соленоид X е No2 F1 BЭПП-4М е No1

Проекция поляризации инжектируемого пучка на равновесное направление поляризации в ВЭПП-4М vs угла поворота спина в импульсных соленоидах

F₁ – угол поворота в соленоиде между МЗ и М4 F₂ – угол поворота в соленоиде между М4 и М5

Два знака спиральности электронов (Spin Flip за счет двух сгустков): F₁=100°, F₂=0° → проекция спина электронов первого банча S_n= -0.97 F₁=120°, F₂=50° → проекция спина электронов второго банча S_n= +0.85 П.Пиминов, Статус и перспективы ВЭПП-4, Научная сессия ИЯФ, 2022

Продольная поляризация

- 1. Отработка метода получения продольной поляризации в электрон-позитронном коллайдере с инжекцией поляризованного пучка из внешнего источника на энергии 1548 МэВ.
- 2. Этапы:
- проектирование и изготовление двух SC соленоидов с интегралом не менее 145 см × 5.6 Т, 5-ти "теплых "квадруполей (4 нормальных, одна скью, примерно 3 кГс/см) и вакуумной камеры вставки;
- разработка или подбор источников питания магнитов вставки;
- монтаж вставки в центре технического промежутка;
- изготовление одного импульсного соленоида с интегралом поля 9.1 Т·м (генератором послужит один из имеющихся ГИМНов с бывшего Позитрона) и его размещение в канале инжекции между МЗ и М4;
- проведение эксперимента по получению продольной поляризации электронов с спиральностью двух знаков (S_n=-0.97 и S_n=+0.65);
- изучение факторов влияния на время жизни продольной поляризации (энергия, бетатронные колебания, искажения орбиты).
- 3. Изучение возможности применения Комптоновского поляриметра с регистрацией рассеянных электронов для измерения степени продольной поляризации в сочетании с Тушековским поляриметром.
- 4. Исследование влияния эффектов встречи на поляризацию пучка.

BJTTT-4M2: Crab Waist

$\mathbb{E}^{80.}$ \mathbb{B}_{x} \mathbb{B}_{x} D $1.2\mathbb{E}^{1.2\mathbb{E}^{3}}$	Энергия пучка	1850 МэВ
	Периметр,	366.075 м
50 0.8	Число сгустков	2x2
40.	Число частиц	8.5·10 ¹⁰
30 1 A A A A - 0.2	Ток сгустка	11 мА
20.	Рад. эмиттанс	24 нм∙рад
	Бетатронная связь	0.05
0.0 0.0 5. 10. 15. 20. 25. 300.4	Энерг. разброс	3.1·10 ⁻⁴
	Гор. бета-функция	0.5 м
	Вер. бета-функция	0.01 м
	Продольный размер	0.04 м
ВЭПП-4М2	Угол пересечения	30 мрад
	Угол Пивинского	5.48
	Рад. параметр встречи	0.014
	Вер. параметр встречи	0.05
	Светимость	4.1·10 ³¹ см ⁻² с ⁻¹

NICA Booster-Nuclotron Transfer Line

Договор №16-197 на выполнение НИР и ОКР «Разработка и изготовление систем перевода пучков из Бустера в Нуклотрон ускорительного комплекса NICA» (ОИЯИ, Дубна)

KOHTPAKT FAIR HEBT FAIR Contract No. CC2.3.2-2 HEBT batch 2, 3 & 4

Магниты	кол-во	в FAIR	прошли FAT & отпр.
dip4_0	2		
dip10_0	6	3	
dip13_0	2	1	1
dip13_3	3	5 R	<u></u>
dip19_0	4	86 - 2 25 - 2	2
dip15_0	4	4	
dip15_1	1	1	
dip16_0	1	1	
dip17_0	1		1
Quadrupole 2	91	44	22
Quadrupole 2 L	4		
Quadrupole 10	4	4	
Quadrupole 11	70	5	11
Quadrupole 12	12		
Steering 13	5		
Steering 18	48	29	6
Steering 100	45	26	2
Total	303	118	43

Выполнено: Доставлено в FAIR - 118 2020 - 40% Прошли FAT и отправлено - 43 2021 - 57% Готовится к сдаче - 10 П.Пиминов, Статус и перспективы ВЭПП-4, Научная сессия ИЯФ, 2022 Спасибо за внимание

